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Supplementary Table S1: A list of enzymes that use or produce halides according to the BRENDA®! database

Substrates Products
E.C. # Enzyme Name Br- cr I~ Br- cr I~
1.10.3.2 Laccase X
1.11.1.10 Chloride peroxidase X
1.11.1.11 L-ascorbate peroxidase X
1.11.1.7 Peroxidase X
1.11.1.8 lodide peroxidase X
1.11.1.B2 Chloride peroxidase (vanadium-containing) X X
1.11.2.1 Unspecific peroxygenase X
1.11.2.2 Myeloperoxidase X
1.13.11.49 Chlorite O2-lyase X X
1.13.11.64 5-nitrosalicylate dioxygenase X
1.14.12.13 2-halobenzoate 1,2-dioxygenase X X X
1.14.13.1 Salicylate 1-monooxygenase X
1.14.13.22 Cyclohexanone monooxygenase X
1.14.13.50 Pentachlorophenol monooxygenase X X
1.14.19.49 Tetracycline 7-halogenase X
1.14.19.55 4-hydroxybenzoate brominase (decarboxylating) X
1.14.19.56 1H-pyrrole-2-carbonyl-[peptidyl-carrier protein] chlorinase X
1.14.19.57 1H-pyrrole-2-carbonyl-[peptidyl-carrier protein] brominase X
1.14.19.58 Tryptophan 5-halogenase X
1.14.19.59 Tryptophan 6-halogenase X X
1.14.19.9 Tryptophan 7-halogenase X X
1.14.20.14 Hapalindole-type alkaloid chlorinase X X
12111 lodotyrosine deiodinase X X X X
1.21.1.2 2,4-dichlorobenzoyl-CoA reductase X
1.21.99.3 Thyroxine 5-deiodinase X X
1.21.99.4 Thyroxine 5'-deiodinase X X
1.21.99.5 Tetrachloroethene reductive dehalogenase X X X
2.1.1.165 Methyl-halide transferase X X X
2.1.1.9 Thiol S-methyltransferase X X X
2.5.1.18 Glutathione transferase X X X
2.5.1.47 Cysteine synthase X
2.5.1.63 Adenosyl-fluoride synthase X
2.5.1.94 Adenosyl-chloride synthase X X X X
3.1.1.42 Chlorogenate hydrolase X
3.8.1.10 2-haloacid dehalogenase (configuration-inverting) X X
3.8.1.2 (S)-2-haloacid dehalogenase X X X
3.8.1.3 Haloacetate dehalogenase X
3.8.1.5 Haloalkane dehalogenase X X X
3.8.1.6 4-chlorobenzoate dehalogenase X
3.8.1.7 4-chlorobenzoyl-CoA dehalogenase X X X
3.8.1.8 Atrazine chlorohydrolase X
3.8.1.9 (R)-2-haloacid dehalogenase X X
4.4.1.16 Selenocysteine lyase X
451.1 DDT-dehydrochlorinase X
45.1.2 3-chloro-D-alanine dehydrochlorinase X
4513 Dichloromethane dehalogenase X
4514 L-2-amino-4-chloropent-4-enoate dehydrochlorinase X

[2l BRENDAW is available at www.brenda-enzymes.org
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Figure S1: Standard curves for the Iwasaki assay. Absorbance at 460 nm is plotted against concentrations of A) chloride, B) bromide, and C)
iodide. For chloride the relationship between absorbance at 460 nm and concentration is quadratic. For bromide and iodide, the relationship
is linear. Each replicate is plotted as an individual data point (n=6). Detection limits are defined as the blank value plus three times the
standard deviation of the blank. These values are 156 uM for chloride, 29 puM for bromide, and 36 uM for iodide. Detection limits are

summarised in Table 1. GraphPad Prism was used for plotting and fitting data to linear or quadratic models.
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Figure S2: Standard curves for the lucigenin assay. Natural logarithms of fluorescence are plotted against concentrations of A) chloride, B)
bromide, and C) iodide (n=1). Detection limits were determined as concentrations corresponding to fluorescence values that are triple the
standard deviation of the intercept from the linear fit using Origin 6.1 (OriginLab, MA, USA). These values are 49 uM for chloride, 63 uM for

bromide, and 35 uM for iodide. Detection limits are summarised in Table 1.
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Figure S3: Inhibition of the HOX assay by Tris-H2S04. The C/VCPO originally contained 50 mM Tris-H2S04 which inhibited the HOX assay for
both A) chloride and B) bromide. The final concentration of Tris-H2SO4in the assay mixture was 2.5 mM. Desalting into phosphate buffer (50
mM, pH 8.0) using PD10 columns significantly increased fluorescence for both chloride and bromide, but the effect was more pronounced
for chloride. Values plotted are means with standard deviation (n=3). After we made this observation, the CiVCPO was always dialysed against

phosphate buffer before use, dramatically improving assay sensitivity. GraphPad Prism was used for plotting the data.
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Section S1 Detailed Methods

Method S1.1 Expression and purification of CiVCPO

The vanadium-dependent chloroperoxidase from Curvularia inaequalis (CiVCPO) was expressed from the
pBADVCPO vector as previously described.!?! The sequence of the recombinant CiVCPO is given in Section S1.9.
The vector was transformed into chemo-competent E. coli BL21(DE3) cells and colonies selected on LB agar
containing 100 pg/ml ampicillin. For expression, 1 | of LB medium containing 100 pg/ml ampicillin was inoculated
with 10 ml of an overnight culture grown from a single colony in the same medium. Cultures were incubated
(180 rpm) at 37 °C until an optical density (600 nm) of 0.4-0.6 was reached. Expression was then induced by the
addition of 0.02 % L-arabinose, followed by incubation at 25 °C for 24 h (160 rpm). Cells were harvested by
centrifugation at 4500 g for 30 min (4 °C) and resuspended in 1 ml (per gram of cells) cold 50 mM Tris-H,SO4 (pH
8.1) containing 2 mg/ml lysozyme, 1 mg/ml DNasel, and cOmplete™ protease inhibitor cocktail (Roche,
Mannheim, Germany). Cells were then lysed on ice by ultrasonication (three cycles of 5 min at 60 % power and
50 % cycle setting) using a SONOPULS HD 2070 (BANDELIN electronic GmbH & Co. KG, Berlin, Germany). The
suspension was allowed to cool on ice for five min between sonication cycles. The E. coli lysate was then clarified
at 4 °C by centrifugation at 10,000 g for 1 h. The clarified lysate was transferred to a new tube, thoroughly mixed
with an equal volume of 2-propanol and incubated at 60 °C for 20 min. Precipitated proteins were removed by
centrifugation at 10,000 g for 30 min (4 °C). The CiVCPO was then purified by chromatography on a 5 ml DEAE
Sephacel column equilibrated with 50 mM Tris-H,SO4 (pH 8.1). The column was washed with 25 ml of 50 mM
Tris-H,S04 (pH 8.1) and then with 25 ml of the same buffer containing 100 mM NaCl. Protein was eluted from
the column using 50 mM Tris-H,SO4 (pH 8.1) containing 1 M NaCl. The eluate (30 ml) was dialysed three times
(twice for 4 h and then once overnight) against 4.5 | of 50 mM Tris-H,SO4 (pH 8.1) supplemented with 100 uM
sodium orthovanadate, which converts the purified apoenzyme to the active vanadium-bound holoenzyme.?!
After finding that Tris-H,SO4 buffer inhibited the HOX assay (Figure S3), the purified CiVCPO was always first
dialysed against 50 mM sodium phosphate (pH 8.0) before use.

Method S1.2 Determining the specific activity of CiVCPO

Specific activities of CiVCPO preparations were determined using the monochlorodimedone assay. Bromination
of monochlorodimedone results in a decrease in absorbance at 290 nm (Ae = 20,000 M*cm™).[ Reactions (600
ul) containing 42 UM monochlorodimedone, 100 uM bromide, 8.8 mM H,0,, and 1 mM orthovanadate in 20 mM
phosphate buffer (pH 6.0) were initiated by addition of 10 ul purified CiVCPO. The decrease in absorbance at 290
nm was monitored using a 1 cm-pathlength quartz cuvette and a JASCO V-550 spectrophotometer (JASCO, MD,

USA). Specific activity was expressed as umol monochlorodimedone brominated/min/(mg CiVCPO).

S6



Method S1.3 Expression and purification of recombinant DhaA and DhIA

Recombinant His-tagged DhaA and DhIA were expressed from the vectors pET21b-DhaA and pET11a-DhlA as
previously described.”! Sequences of the recombinant proteins are given in Section $S1.9. The plasmids were
transformed into chemo-competent E. coli BL21(DE3) cells and colonies selected on LB agar plates containing
100 pg/ml ampicillin. For expression, 1 | of LB medium containing 100 pg/ml ampicillin was inoculated with 10
ml of an overnight culture grown from a single colony in the same medium. Cultures were incubated (180 rpm)
at 37 °C until an optical density (600 nm) of 0.4-0.6 was reached. Expression was then induced by the addition of
isopropyl B-D-1-thiogalactopyranoside (0.5 mM), followed by overnight incubation at 25 °C (160 rpm). Cells were
harvested at 4 °C by centrifugation at 4,500 g for 30 min and resuspended in 1 ml (per gram of cells) cold 20 mM
phosphate buffer (pH 7.5) containing 1 mg/ml lysozyme and 1 mg/ml DNasel. Cells were lysed on ice by
ultrasonication (three cycles of 5 min at 60 % power and 50 % cycle setting) using a SONOPULS HD 2070
(BANDELIN electronic GmbH & Co. KG, Berlin, Germany). The lysate was clarified at 4 °C by centrifugation at
10,000 g for 1 h. The recombinant His-tagged proteins were purified by immobilised metal-affinity
chromatography using Roti®garose-His/Ni Beads and the manufacturer’s protocol (Carl Roth GmbH + Co. KG,
Karlsruhe, Germany). Purified proteins (~6 ml) were dialysed three times (twice for 4 h and then once overnight)
against 4.5 | of 50 mM phosphate buffer (pH 8.0) to remove chloride and imidazole before being used in

dehalogenase reactions.

Method S1.4 Fluorescence (HOX) assay using CiVCPO and aminophenyl fluorescein
HOX assay reactions were 40 pul in volume and contained 2 mM H,0,, 25 pM aminophenyl fluorescein, 1 mM
sodium orthovanadate, 2.5 U/ml CiVCPO, and various halide concentrations in 20 mM sodium phosphate (pH 6.0
for chloride and bromide, pH 6.5 for iodide). We always performed at least three and up to nine replicates of
assays. Reactions were incubated at room temperature for 60 min before fluorescence at 525 nm was measured
by excitation at 488 nm using a Varioskan™ LUX plate reader (Thermo Fisher Scientific, Vantaa, Finland). Black
384-well plates were always used to prevent crosstalk between adjacent wells. Standard curves for chloride,
bromide, and iodide were prepared by diluting stock solutions (2 pl) into a master mix containing all other assay
components (38 pl). The standard curves plotted in Figure 1 show the final halide concentrations in the 40 pl
reactions, not the concentrations of the stock solutions. The slightly higher background for iodide (Figure 1)
results from the pH 6.5 buffer used. Sample volume could be increased from 2 pl to 30 ul by using a more

concentrated master mix if desired.

Method S1.5 Iwasaki assay

The concentration of halide ions in 100 ul samples was analysed using the method developed by Iwasaki and co-
workers.[®) Samples were reacted with mercuric thiocyanate and ferricammonium sulfate and absorbance at 460
nm measured using a Sunrise microplate reader (Tecan Austria GmbH, Grodig, Austria). Calibration curves were
prepared for chloride, bromide, and iodide. Detection limits were defined as the blank value plus triple the

standard deviation from the blank (Figure S1).
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Method S1.6 Lucigenin assay

An indicator stock solution (4 mM) was prepared by dissolving 2 mg of lucigenin in 1 ml of deionised water.
Halides were then diluted to final concentrations between 0 mM and 10 mM in 20 mM sodium phosphate (pH
8.0, 1 ml) containing 3.92 uM lucigenin. The fluorescence of lucigenin solutions at 503 nm was determined using
a FluoroMax-4P spectrofluorometer (HORIBA Scientific, NJ, USA) with a 150-W xenon arc lamp as 368 nm
excitation light source. All measurements were carried out at 25 °C in square quartz cuvettes with a 1-cm
pathlength. Natural logarithms of fluorescence were plotted against halide concentrations between 0 mM and
0.8 mM for chloride, bromide, and iodide (Figure S2). Detection limits were determined as concentrations
corresponding to fluorescence values that are triple the standard deviation of the intercept from the linear fit

using Origin 6.1 (OriginLab, MA, USA).

Method S1.7 Dehalogenase assays

To demonstrate a linear relationship between the amount of dehalogenase product formed and fluorescence
obtained using the HOX assay, different concentrations of 1-bromobutane were completely hydrolysed using
DhaA. Reactions (1 ml) containing 0.01 mg/ml DhaA and 1-bromobutane (0 to 2.5 mM) in 50 mM sodium
phosphate (pH 8.0) were incubated at 30 °C, shaking at 800 rpm, for 1 h. After incubation, 10 ul phosphoric acid
(42.5 %) was added to terminate the reactions.!”’ Next, 10 ul aliquots of the terminated reactions were diluted
1/100 into 50 mM phosphate buffer (990 pl, pH 8.0). This dilution was performed in triplicate for each sample.
Adding 4 pl of each diluted sample to a 36 pul HOX assay master mix resulted in an overall dilution of 1/1000 into
the reaction mixture. Reactions were incubated at room temperature for 60 min before measuring and plotting

fluorescence against the original concentrations of 1-bromobutane (Figure 2A).

A similar approach was followed for determining the specific activities of the recombinant dehalogenases DhaA
and DhIA. First, a series of standards (1 ml) containing chloride (0 to 25 mM) or bromide (0 to 3 mM) in 50 mM
sodium phosphate (pH 8.0) was prepared. Standards were treated in the same way as dehalogenase reactions
by incubating at 30 °C for 1 h (800 rpm), adding 10 pl phosphoric acid (42.5 %), and diluting 10 pl aliquots 1/100
into 50 mM sodium phosphate (990 pl, pH 8.0). The HOX assay was then performed by adding 4 pl of the diluted
standards to 36 pl of master mix. The initial standards were thus diluted 1/1000 into the final assay mixtures.
After incubation at room temperature for 60 min, fluorescence was measured and plotted against the
concentrations of the original standards. The linear calibration curves obtained (Figure 2B and C) were then used

to quantify the amount of chloride or bromide released by DhaA and DhIA reactions.

All dehalogenase reactions for calculation of specific activities were performed in triplicate in 1 ml of 50 mM
sodium phosphate (pH 8.0). Reactions contained 10 mM of either 1,2-dibromoethane, 1,2-dichloroethane, 1,3-
dichloropropane, 1-bromo-3-chloropropane, or 1-bromohexane as substrate and were initiated by the addition
of 10 pug DhaA or DhIA (final concentrations of 0.01 mg/ml). Reactions were incubated at 30 °C by shaking at 800
rpm for 30 to 90 min and then terminated, diluted, and assayed exactly as for the calibration standards. For each

of three replicate dehalogenase reactions, three dilutions and HOX assays were performed, resulting in a total
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of nine assay replicates for each combination of dehalogenase and substrate. The concentrations of halides
produced were calculated using standard curves (Figure 2B and 2C) and used to express specific activities as nmol
halide formed/s/(mg dehalogenase). The remaining volumes of the terminated dehalogenase reactions were

used for calculation of specific activities using a GC-MS method.

Method S1.8 GC-MS analysis of dehalogenase reaction products

Each of three replicate dehalogenase reactions was analysed by GC-MS once, resulting in three replicates for
each combination of dehalogenase and substrate. Due to the limited throughput of the GC-MS method, more
replicates could not be analysed. Reaction products were quantified by comparison of product peak areas to

standard curves for 2-bromoethanol, 2-chloroethanol, 3-chloro-1-propanol, and 1-bromohexanol.

Samples (200 pl) of the terminated dehalogenase reactions were taken and extracted by adding 200 pl tert-butyl
methyl ether and vortexing at maximum speed for 1 min. The organic phase was then separated from the
aqueous phase by centrifugation at 13,000 g for 5 min. Samples (1 pl) were analysed using a GCMS-QP2010 SE
device (Shimadzu, Duisburg, Germany) with a ZB-5MSi column (30m x 0.25 mm, thickness 0.25 pum). Injector
temperature was 220 °C and a flow rate of 1.08 ml/min was used. Column temperature was initially at 33 °C for
8 min, increased at 10 °C/min until 150 °C, held at 150°C for 1 min, and finally increased at 25 °C/min until 200
°C was reached. Mass spectrometer ion source temperature was 200 °C and interface temperature was 220 °C.
Calibration curves were generated by preparing a standard series of each alcohol product in 1 ml of 50 mM
sodium phosphate (pH 8.0). These standards were then treated with 10 ul phosphoric acid (42.5 %) before 200
pl portions were extracted using 200 pl tert-butyl methyl ether and analysed by GC-MS. The retention time was
5.56 min for 2-bromoethanol (Figure S4), 3.31 min for 2-chloroethanol (Figure S5), 9.5 min for 3-chloro-1-
propanol (Figure S6), and 11.51 min for 1-hexanol (Figure S7). Standard curves (plots of peak area against product

concentration) are shown in Figure S8.
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Figure S4: GC-MS analysis of a 2-bromoethanol product standard. The chromatogram shows the retention time of 5.56 min.
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Figure S5: GC-MS analysis of a 2-chloroethanol product standard. The chromatogram shows the retention time of 3.31 min.
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Figure S6: GC-MS analysis of a 3-chloro-1-propanol product standard. The chromatogram shows the retention time of 9.5 min.
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Figure S7: GC-MS analysis of a 1-hexanol product standard. The chromatogram shows the retention time of 11.51 min.
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Section S1.9 Protein sequences

Vanadium-dependent chloroperoxidase from Curvularia inaequalis, expressed from pBADVCPO!!
The glll secretion sequence encoded by the pBAD vector is underlined. The sequence differs from PDB 1IDQ at

two positions, highlighted in bold (D164A and P544R).™?!

>CiVCPO
MKKLLFATPLVVPEFYSHSTMASHMGSVTPIPLPKIDEPEEYNTNYILFWNHVGLELNRVTHTVGGPLTGPPLSAR

ALGMLHLATHDAYFSICPPTDFTTFLSPDTENAAYRLPSPNGANDARQAVAGAALKMLSSLYMKPVEQPNPNPGA
NISDNAYAQLGLVLDRSVLEAPGGVDRESASFMFGEAVADVFFALLNDPRGASQEGYHPTPGRYKEFDDEPTHPVV
LIPVDPNNPNGPKMPFRQYHAPFYGKTTKRFATQSEHFLADPPGLRSNADETAEYDDAVRVATIAMGGAQALNSTK
RSPWOTAQGLYWAYDGSNLIGTPPREFYNQIVRRIAVTYKKEEDLANSEVNNADFARLFALVDVACTDAGIFSWKE
KWEFEFWRPLSGVRDDGRPDHGDPFWLTLGAPATNTNDIPFKPPFPAYPSGHATFGGAVEFQMVRRYYNGRVGTWK
DDEPDNIAIDMMISEELNGVNRDLRQPYDPTAPIEDQPGIVRTRIVRHFDSAWELMFENAISRIFLGVHWREDAA
AARDILIPTTTKDVYAVDNNGATVFONVEDIRYTTRGTREDREGLFPIGGVPLGIEIADEIFNNGLKPTPPEIQP
MPOETPVOKPVGQQOPVKGMWEEEQAPVVKEAP

DhIA from Xanthobacter autotrophicus GJ10, expressed from pET11a-DhIA*!

>DhlA
MINATIRTPDOQREFSNLDQYPEFSPNYLDDLPGYPGLRAHYLDEGNSDAEDVFLCLHGEPTWSYLYRKMIPVFAESGA
RVIAPDFFGFGKSDKPVDEEDYTFEFHRNFLLALTERLDLRNITLVVQDWGGFLGLTLPMADPSREFKRLI IMNAC
LMTDPVTQPAFSAFVTQPADGFTAWKYDLVTPSDLRLDQFMKRWAPTLTEAEASAYAAPEFPDTSYQAGVRKEPKM
VAQRDQACIDISTEAISFWONDWNGQTFMATIGMKDKLLGPDVMYPMKALINGCPEPLETADAGHEVQEFGEQVAR
EALKHFAETEHHHHHH

DhaA from Rhodococcus rhodochrous NCIMB13064, expressed from pET21b-DhaAl®?!

>DhaA
MSEIGTGFPFDPHYVEVLGERMHYVDVGPRDGTPVLELHGNPTSSYLWRNITIPHVAPSHRCIAPDLIGMGKSDKP
DLDYFFDDHVRYLDAFIEALGLEEVVLVIHDWGSALGFHWAKRNPERVKGIACMEFIRPIPTWDEWPEFARETEQ
AFRTADVGRELITDONAFIEGALPKCVVRPLTEVEMDHYREPFLKPVDREPLWRFPNELPTAGEPANIVALVEAY
MNWLHQSPVPKLLEFWGTPGVLIPPAEAARLAESLPNCKTVDIGPGLHYLQEDNPDLIGSEIARWLPALHHHHHH
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Section S2 Synthesis of aminophenyl fluorescein

Aminophenyl fluorescein was synthesised in two steps as described in the literature (Scheme S1).[®! Unless
otherwise noted, chemicals of the highest purity available were purchased used without further purification. The

purity of compounds [2] and [3] reported is > 95 %, according to NMR.

F e
dry pyridine o
+ - 02N
reflux, 24 h @\ O O
NO, (o] o OH
[1b]

[ [2] (16%)

Fe, CaCl,, EtOH,
water

> O
)
"o 0 OH

[3]1 (69%)
Scheme S1: Synthesis of aminophenyl fluorescein from fluorescein. Fluorescein [1]is refluxed with 4-
fluoronitrobenzene [1b] in dry pyridine for 24 hours, yielding the nitrophenyl intermediate [2] which is purified

by flash column chromatography and then reduced using iron powder to yield aminophenyl fluorescein [3].

Method S2.1 NMR spectroscopy

NMR spectra were recorded on a Bruker Avance Il HD 600 spectrometer equipped with a Prodigy BBO cryo probe
(*H: 600 MHz, 13C: 151MHz; Bruker BioSpin GmbH, Rheinstetten, Germany). Chemical shifts are given in parts per
million (ppm) and were calibrated with internal standards of the deuterium-labelled solvents (CDs),CO (*H 2.05
ppm, 3C 29.84 ppm) and CDsCN (*H 1.94 ppm, 3C 1.32 ppm). NMR assignments of compounds were confirmed
by H -H COSY, H - H, H - 13C, HSQC and H - 3C, HMBC, and by comparison to predicted spectra. Proton
multiplicities are denoted by the following abbreviations: s (singlet), br s (broad singlet), d (doublet), br d (broad
doublet), dd (doublet of a doublet), ddd (doublet of a doublet of a doublet), t (triplet), dt (doublet of a triplet), g
(quartet), dq (doublet of a quartet), p (quintet), hep (septet), m (multiplet). Coupling constants (J) are presented
in Hz (Hertz). Carbon multiplicities (suppressed CH coupling) are denoted by the following abbreviations: s

(singlet), d (doublet), t (triplet) and g (quartet).
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Method S2.2 Chromatographic methods

TLC was performed using silica gel 60 aluminium plates containing a fluorescent indicator from Merck and
visualised under 254 nm UV light. Flash column chromatography (FC) was carried out on a Biichi Sepacore™
MPLC system (Blichi Labortechnik AG, Flawil, Switzerland) using silica gel 60 M (particle size 40-63 um, 230-400
mesh ASTM; Macherey-Nagel, Diiren, Germany).

Method S2.3 Melting point determination
Melting points were determined using a Blichi® Melting Point B-545 (Biichi Labortechnik AG, Flawil, Switzerland)

and are uncorrected.

Method S2.4 Synthesis of 3'-hydroxy-6'-(4-nitrophenoxy)-3H-spiro[isobenzofuran-
1,9'-xanthen]-3-one

Compound [2] was synthesized according to the following literature procedure.®! An oven-dried 500 ml three-
neck flask equipped with a reflux condenser was flushed with argon three times using Schlenk-technique.
Fluorescein [1] (free acid, 20 g, 60.18 mmol, 1.00 equiv.) and dry pyridine (200 ml) were added under an inert
atmosphere and the resulting solution was stirred for 5 min. 4-Fluoronitrobenzene [1b] (33.97 g, 240.74 mmol,
4.00 equiv.) was further added and the reaction mixture was refluxed for 24 h under an argon atmosphere. After
cooling to room temperature, the mixture was acidified with aqueous HCl and extracted with ethyl acetate (5
times, 200 ml). The organic extracts were combined, dried over MgSQ,, filtered and evaporated under reduced
pressure to obtain the crude material as black oil. The pure product was obtained after purification by flash

column chromatography (silica gel/crude material = 100/1, 20 %-50 % EtOAc in PE) as yellow crystals.

Yield: 16 % (4.50 g, 9.92 mmol)

Appearance: yellow crystals

Melting Point: 106-109 °C (decomposition); Lit®®!.: 104.5-106.5 °C (decomposition)
TLC: R (PE/EtOAC = 1/1) = 0.67

'H NMR (600 MHz, acetone-ds): 6 = 6.67 (dd, J = 8.7, 2.3 Hz, 1H), 6.71 (d, J = 8.7 Hz, 1H), 6.78 (d, J = 2.3 Hz, 1H),
6.92 (dd, J = 8.7, 2.3 Hz, 1H), 6.95 (d, J = 8.7 Hz, 1H), 7.11 (d, J = 2.2 Hz, 1H),
7.28 (d, J=9.3 Hz, 2H), 7.35 (d, J = 7.8 Hz, 1H), 7.84 (t, J = 7.5 Hz, 1H), 8.02 (d,
J=6.7 Hz, 1H), 8.30 (d, J = 8.8 Hz, 2H) ppm.

13C-NMR (151 MHz, acetone-ds): 6 = 82.8, 103.4, 108.8, 111.2, 113.8, 116.7, 117.3, 119.4, 124.9, 125.6, 126.9,
127.6, 130.2, 131.0, 131.1, 136.3, 144.4, 153.0, 153.4, 153.7, 157.7, 160.6,
163.0, 169.3 ppm.

NMR spectra for compound [2] are shown in Figures $9-S12.
Comment: The *H-NMR is in accordance with the literature. "]
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Method S2.5 Synthesis of 3'-(4-aminophenoxy)-6'-hydroxy-3H-spiro[isobenzofuran
-1,9'-xanthen]- 3-one
The fluorophore APF [3] was synthesized according to the following literature procedure.’® A 50 ml round
bottom flask was charged with the nitro compound [2] (4.50 g, 9.92 mmol, 1.00 equiv.) and EtOH (17.5 ml), water
(8.5 ml), iron powder (1.66 g, 29.77 mmol, 3.00 equiv.) and CaCl;(1.10 g, 9.92 mmol, 1.00 equiv.) were added.
The resulting black suspension was stirred at 60 °C until TLC analysis indicated full conversion of the starting
material (2 h) and was then filtered over a short pad of celite. The solids were thoroughly washed with EtOAc
and the solvent removed under reduced pressure. The pure product was obtained by flash column
chromatography (dry load, silica gel/crude material = 100/1, 2 %-10 % MeOH in DCM) to obtain the product as

beige solid.

Yield: 69 % (2.91 g, 6.87 mmol)

Appearance: beige solid

Melting Point: 152-155 °C (decomposition); Lit!®.: 153-155 °C (decomposition)
TLC: R¢ (CHCl3/MeOH =97/3) =0.30

H NMR (600 MHz, acetonitrile-ds): & = 4.14 (br s, 2H), 6.55 (dd, J = 8.7, 2.5 Hz, 1H), 6.61 (dd, J = 8.8, 2.5 Hz, 1H),
6.64 (d, J = 8.7 Hz, 1H), 6.67 (s, 1H), 6.67 — 6.71 (m, 3H), 6.71 (d, J = 8.8 Hz,
1H), 6.85 (d, J = 8.8 Hz, 1H), 7.19 (d, J = 7.6 Hz, 1H), 7.68 (td, J = 7.5, 1.0 Hz,
1H), 7.74 (td, J = 7.5, 1.2 Hz, 1H), 7.97 (dt, J = 7.7, 1.0 Hz, 1H) ppm.

13C-NMR (151 MHz, acetonitrile-ds): 6 = 83.7, 103.5, 104.6,111.6, 113.4, 113.6, 113.8, 116.5, 122.5, 124.9, 125.7,
127.5, 130.3, 130.4, 131.0, 136.4, 146.5, 147.0, 153.2, 153.2, 153.9, 160.0,
162.4,170.0 ppm.

NMR spectra for compound [3] are shown in Figures S13-S16.

Comment: The *H-NMR and melting point are in accordance with the literature.® &
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Section 2.2 List of abbreviations and chemical formulas

APF aminophenyl fluorescein

Br- bromide

CaCl, calcium chloride

CDsCN deuterated acetonitrile

(CD3),CO deuterated acetone

CHCl3 chloroform

CiVCPO vanadium-dependent chloroperoxidase from Curvularia inaequalis
cl- chloride

Cosy correlated spectroscopy

DCM dichloromethane

DhaA dehalogenase from Rhodococcus rhodochrous NCIMB13064
DhIA dehalogenase from Xanthobacter autotrophicus GJ10
EtOAC ethyl acetate

EtOH ethanol

equiv. equivalents

HMBC heteronuclear multiple-bond correlation spectroscopy
HOBr hypobromous acid

HOCI hypochlorous acid

HOI hypoiodous acid

HOX hypohalous acid

HSQC heteronuclear single-quantum correlation spectroscopy
H,0, hydrogen peroxide

I~ iodide

MeOH methanol

MgS04 magnesium sulfate

NMR nuclear magnetic resonance spectroscopy

PE petroleum ether

ppm parts per million

rpm revolutions per minute

TLC thin layer chromatography

X halide
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