1 Supplementary information

2 Global trends in mangrove forest fragmentation

3 Authors

- 4 Dale N. Bryan-Brown
- 5 Rod M. Connolly
- 6 Daniel R. Richards
- 7 Maria Fernanda Adame
- 8 Daniel A. Friess
- 9 Christopher J. Brown

10 Supplementary materials 1

All following equations and explanations are derived from the Fragstats (version 4.2) helpmanual.

13 The clumpiness index

14
$$Gi = \left(\frac{g_{ii}}{\sum_{k=1}^{m} g_{ik}}\right)$$

15

$$CLUMPY = \begin{bmatrix} \frac{G_i - P_i}{1 - P_i} \text{ for } G_i \ge P_i \\ \frac{G_i - P_i}{1 - P_i} \text{ for } G_i < P_i \text{ ; } P_i \ge 0.5 \\ \frac{G_i - P_i}{-P_i} \text{ for } G_i < P_i \text{ ; } P_i < 0.5 \end{bmatrix}$$

16 Where g_{ii} = number of adjacencies between focal habitat and focal habitat, g_{ik} = number of 17 adjacencies between focal habitat and non-focal habitat (m), P_i = percentage of landscape 18 occupied by the habitat

- 19 CLUMPY ranges from -1 to1
- 20 CLUMPY = -1 is a maximally disaggregated habitat;
- 21 CLUMPY = 0 is a randomly distributed habitat;
- 22 CLUMPY = 1 is a maximally aggregated habitat;
- 23 This is a metric of like adjacencies (contagion) which is normalised by quantity of habitat in
- the landscape.

25 **Perimeter-Area fractal dimension**

26
$$PAFRAC = \frac{\frac{2}{\left[n_i \sum_{j=1}^n \left(\sum_{j=1}^n \ln p_{ij} \cdot \sum_{j=1}^n \ln a_{ij}\right)\right] - \left[\left(\sum_{j=1}^n \ln p_{ij}\right) \left(\sum_{j=1}^n \ln a_{ij}\right)\right]}{\left(n_i \sum_{j=1}^n \ln p_{ij}^2\right) - \left(\sum_{j=1}^n \ln p_{ij}\right)}$$

- 27 Where n_i is the number of patches in the landscape of habitat type i, p_{ij} and a_{ij} are the
- 28 perimeter and area of patch ij, respectively.
- 29 PAFRAC ranges from 1 (patches are simple geometric shapes) and tends to 2
- 30 PAFRAC = 1; patch shape is simple
- 31 PAFRAC = 2; patch has theoretical maximal convolution
- 32 PAFRAC employs regression analysis on landscapes, accordingly only landscapes with
- 33 NP>20 were considered when mapping and modelling PAFRAC in mangroves

34 Mean patch area

$$35 \qquad \qquad AREA_MN = \frac{\sum a_{ij}}{n}$$

36 Where a_i is the area of patch i of habitat j (in hectares) and n is number of patches.

37 Mean Euclidean nearest neighbour

$$ENN_MN = \frac{\sum \min(h_{ij})}{n}$$

39 Where h_{ij} is the distance in metres between patch i and j, and n is the number of patches in the

40 landscape

41 Supplementary Figure S1

Total deforestation

42 Supplementary Figure S2(a): The global distribution of shifts in the four metrics reported in

- 43 the paper. Panel A) Total mangrove loss, B) Proportional mangrove loss, C) shift in the
- 44 distance to nearest mangrove patch and, D) change in average size of mangrove patches.

Mean number of patches

Total number of patches

Patch shape - PAFRAC

Patch shape - clumpiness

- 45 Supplementary Figure S1(b): The global distribution of shifts in the three metrics unreported
- 46 in the paper. Panel A) and B) show the mean and total shift in number of patches,
- 47 respectively. Panel C) and D) shows the distribution of shifts in average patch shape, as
- 48 measured by PAFRAC and the clumpiness index, respectively.

49 Supplementary Table S1

- 50 The Spearman rank correlations (mangrove fragmentation as a function of mangrove loss) for
- 51 different fragmentation metrics. Correlation coefficients are given with p-values in
- 52 parentheses. Table A shows the relationship between fragmentation and loss for each land-
- use transition. Table B shows the relationship between fragmentation and loss without
- 54 considering the dominant land-use transition of the landscapes.

55 Table A:

				Mean Euclidean
	Clumpiness		Moon notch size	nearest
	index	FAFKAC	Mean paten size	neighbouring
				patch
Aquaculture	0.53509	0.58419	0.73112	0.49822
	(p < 0.00001)	(p < 0.00001)	(p < 0.00001)	(p < 0.00001)
Rice	0.55937	0.68847	0.63448	0.43210
plantations	(p < 0.00001)	(p < 0.00001)	(p < 0.00001)	(p = 0.00003)
Oil palm	0.25241	0.32181	0.67644	0.30532
plantations	(p < 0.00001)	(p < 0.00001)	(p < 0.00001)	(p < 0.00001)
Mangrove	0.33155	0.37602	0.72454	0.31218
regrowth	(p = 0.00001)	(p < 0.00001)	(p < 0.00001)	(p = 0.00005)
Urban	0.34229	0.56971	0.53678	0.24801
developments	(p = 0.00068)	(p < 0.00001)	(p < 0.00001)	(p = 0.01713)
Other	0.35591	0.37341	0.59747	0.34039
	(p < 0.00001)	(p < 0.00001)	(p < 0.00001)	(p < 0.00001)

56

57 Table B

	Clumpiness index	PAFRAC	Mean patch size	Mean Euclidean nearest neighbour
All	0.38260	0.44830	0.66359	0.37191
landscapes	(1.//E-49)	(8.90 E-63)	(2.08 E-176)	(3.47 E-46)

58