
Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

In this study, authors demonstrated the interactive process for retrieving the associated task in a given 

context (contextual task demand, CTD) via implicit probability learning. They aimed to link three 

different processes with a hypothesized model which posits: (1) a spatial context will first trigger 

hippocampus to retrieve its associated CTD (i.e., via context-CTD association), (2) the CTD will be 

reinstated in the PFC, and (3) this process will predict goal-directed behavior (i.e., accuracy and RT on a 

perceptual discrimination task). To demonstrate this framework, the authors showed the results that (1) 

more prediction error (PE) was linked to slower RT and lower accuracy for the cue-based task, showing 

CTD learning; (2) context-trial pattern similarity (PS) for the congruent (i.e., same CTD in context and 

trial periods) was higher than for the incongruent condition in prefrontal sub-regions, which was 

interpreted as reinstatement of CTD, which was also negatively related to RT; (3) and context-context PS 

for the same CTD in different contexts and univariate activation in hippocampus were positively related 

to CTD reinstatement in PFC. 

The research question in this study is important, and the study design is clever and well-suited for the 

goal. However, I have concerns about the data analyses and their interpretation which weaken the 

overall arguments of the paper. Further, I found the writing style to be arduous on the reader – too 

many acronyms (e.g., CTD, PS, PE, …) used too frequently – that made it challenging to parse the results 

and discussion alike. More handholding of the reader would benefit the impact of this paper. Note: I will 

use the authors acronyms in my comments for consistency/clarity. 

Major points 

1. The authors emphasize the importance of implicit learning of contextual task demand (CTD) over time 

via mnemonic mechanisms (line 47). However, it was not clearly shown that the statistical learning was 

built up as a function of time (or repetition). It would be helpful if there was a clearer foundation as to 

why you focused on implicit learning compared to explicit learning when people learned the CTDs. The 

benefit here would be that implicit learning might, I assume, create more continuous scales (or variance) 

for the RT given that CTD would have been gradually learned. If so, the learning effect should be 

provided for the (a) behavioral outcomes, (b) pattern separation in hippocampus for same CTD, and the 

(c) relationship between dlPFC and (b) or (a) as a function of repetition. Or at least, the differences 

between the first run, which was removed from the main analysis, and the subsequent runs should be 

provided. 

2. Do you believe that the CTD retrieval process would be different if the association was explicitly 

learned compared to it was learned implicitly? Although implicit learning was introduced as an 

important topic, I couldn’t find the implication for that topic in the results. 

3. For the pattern separation account for CTD learning, the authors set up the argument (line 82) that 



CTD learning would promote pattern separation between the different contexts that share same CTD to 

prevent retroactive interference from recurrent retrieval (i.e., co-activated context). This argument 

should be verified if the pattern separation increased in the course of the learning. Or, even if the 

learning was fluctuated rather than linearly improved over time, the relationship between CTD learning 

effect (e.g., RT or accuracy) and the pattern separation should be provided to support the argument. 

Moreover, it is strange to use the difference between the Same CTD with different contexts vs. Different 

CTD as a validation for context-context PS measurement (in Figure 5 results). To verify if the context-

context PS in hippocampus could successfully measure the representation of the context-CTD 

association, the PS in Same context with same CTD should be significantly higher than the PS between 

Different CTDs in different contexts. Indeed, it was not clearly verified that Same CTD with different 

contexts increased pattern separation over the learning. 

4. (Figure 3 results) Although the contextual model seems to predict CTD better than temporal model 

(which needs quantitative comparisons), the behavioral results (line 150) show that the regression 

coefficient for the temporal model PE (0.32 ± 0.004) was higher than that for the contextual model PE 

(0.01 ± 0.004) for RT, suggesting that temporal model had a better predictability for the RT (i.e., the 

bigger temporal PE, the slower RT). Given that the contextual model includes both temporal and 

contextual information, how could you conclude that the CTD was learned through contextual 

information alone? Moreover, it should be explained clearer (or more explicitly) why the model 

prediction (or PE) would be more sensitive to detect CTD learning effect compared to behavior outcome 

itself. 

5. The formula “Po(t) = Po(t) + α(T(t-1) - Po(t-1))” is not mathematically valid, as one of Po(t) in both 

hands should be replaced based on the model setup. For example, if the prediction is integrated, then 

the denotation should be Po(t-1) on the right hand of the formula. More details for each element will be 

also helpful. For example, if the Po is over 0.5, does it predict the object task more, and vice versa for 

the face task (i.e., under 0.5)? Dose the T(t-1) - Po(t-1) indicate PE? Then, shouldn’t it be |T(t-1) - Po(t-

1)| in the formula? Or PE was separately calculated? Also, it needs more details as to how the 

reinforcement learning model was differently built for the temporal model (using only trial sequence) vs. 

contextual model (using contextual information + trial sequence, in Methods, behavioral analysis, line 

470). Was the only difference which trials were fed into the model for learning? 

6. Fig. 5D shows that context-context PS in hippocampus for the same CTD in different contexts predicts 

better CTD reinstatement in the prefrontal area, which means that less pattern separation for the 

different contexts sharing same CTD predicts better CTD reinstatement. Isn’t it the opposite from the 

prediction in the introduction (line 84)? The authors covered this opposite result in the discussion; 

however, it was still not justified enough how the inconsistent results could support the same argument. 

7. In the model in the Fig. 1A, the process has one directional modulation from the hippocampus to 

behavioral outcome. I am curious if you can show the directional relationship for the CTD retrieval? 



Minor points 

1. In Fig.1B, it would be helpful if the figure shows how the separated representation predicts CTD 

learning. 

2. (line 150) Was there no statistical significance for the accuracy in the temporal model? 

3. The scale for the x-axis (PE) in the Figure 3 was missing. Did you group the PE in 5 scales or were there 

only 5 levels of PE? Why was the RT transformed to logged scale? This was never explained or justified. 

Also, the relationship in the Fig 3C seems to fit better for U-shape. 

4. What does “the context’s PS was computed in relation to out-of-run trials (line 179)” mean? Did you 

mean that you did not include PS within a run to remove auto-correlation? 

5. It would be easier to read the plots with significance symbols (asterisks) in Fig. 4C-F, middle column. 

6. In the Fig. 4B, right panel, was the data being used for the contrast still context-trial PS? Also, were 

the same task/other task same trials with congruent/incongruent on the left panel? And what is the 

scale of reinstatement at onset of context on the x-axis? 

7. (line 183) Does “context and trial …” means RSA between context and trial timepoints, same as 

“context-context RSA” for RSA in context timepoints between paired contexts? Then, using context-trial 

RSA would be more consistent. 

8. (line 274) What does “block-level” mean? Does it mean that the pattern was averaged within a block 

or the PS was conducted across blocks rather than within a block? 

9. In Fig. 5C-D, it seems the term “modulation index (a.u.)” was not defined. Also, the scale on the x-axis 

in panel D were missing. 

10. (line 500) Why were the post-error trials excluded? 

11. (line 564) Was the separate GLM built for each trial or were all regressors with each regressor for 

each trial built in one GLM? 

12. For pattern similarity analysis, what did you mean by normalized beta? Does it mean voxel-wise 

normalization of the beta estimate modeled on each trial? Also, did you use all voxels under each 

defined ROIs? Then, what was the number of voxels selected for each PS? 

13. Was the context also modeled separately for the beta patterns? And given that it was presented for 

7.5 seconds, was it modeled with boxcars? 



14. For the Methods, while the preprocessing for the imaging data was described so detailed (maybe too 

specific), other analyses were not described enough. 

Reviewer #2 (Remarks to the Author): 

Summary: 

In the present study, Jiang and colleagues use reinforcement learning models and fMRI to investigate 

performance in a cue-guided, context-dependent perceptual decision task. Participants view a 

“navigation cue” that guides them to one of four virtual “rooms”. Perceptual trials within these rooms 

consist of stimuli that are more or less difficult for each task. They then are shown a “task cue” which 

indicates which type of judgement they will try to make about the upcoming perceptual stream - gender 

or object type. Then, they perform eight trials of the perceptual task. 

The authors report that a context-aware RL model explains additional variability in behavior unexplained 

by a context-unaware model. They also report that patterns of fMRI activity in hippocampus and DLPFC 

at the time of cue presentation predict performance in the subsequent perceptual decision task. 

Specifically, they report that the differentiation of hippocampal activity patterns between different cues 

that point to the same room and perceptual task predicts the fidelity of reinstatement of the 

“contextual task demand” in DLPFC, which subsequently predicts behavioral performance. 

While the experiment and analyses reported are quite impressive from a methodological standpoint, it 

is unclear what precisely is learned from the results. Importantly, there are unresolved questions about 

what appears to be the primary claim of the paper, the directional relationship between hippocampus, 

DLPFC, and behavior (illustrated in Figure 1a). 

Major: 

1. We found it difficult to distill the primary claim of the paper. It appears to be that hippocampal 

activity, indicated by pattern separability, indexes reinstatement of “contextual task demands” in DLPFC, 

which subsequently modulate behavior. The directionality and causal nature of the relationship appear 

to be central to the claim - the manuscript is peppered with language such as that “hippocampal 

representations of context modulate proactive retrieval” (Line 38) and “CTD depends on the 

hippocampus” (Line 73). 

If this is the main finding, it leads to two concerns: 

- First, it’s not clear what this finding would add to previous work, including work from the author’s own 

lab. Specifically, it has been shown that contextual task demands (stimulus-action tendencies) are 

reinstated by hippocampus on the basis of informative cues (Hindy & Turk-Browne 2016, 2019), and that 



contextual task demands can be decoded from PFC activity patterns preceding performance of the task, 

and used to predict performance on the subsequent task (Waskom et al 2014, 2016, 2017). Moreover, 

prior work has shown task-dependent tuning of sensory processing (Tajima et al., 2017) and 

sensorimotor processing can be tuned according to the anticipated demands (Muhle-Karbe et al., 2017). 

Given these findings, it would be helpful if the authors could pull reinstatement results from visual ROIs 

(e.g., face area and object area and/or V1) as control regions compared to the DLFPC to rule out 

perceptual facilitation and 2) include a discussion explicating how their neural findings are similar and/or 

distinct from, e.g., the Hindy findings. 

- Second, and more importantly, it is not clear that this chain of events is supported by the analyses 

presented. Specifically, the claim would require: 

a. That hippocampal reinstatement precede DLPFC reinstatement. However, both activity patterns are 

decoded during the same time interval. No evidence in support of the necessary ordering is presented - 

and this would be difficult to do in fMRI. In fact, there is evidence in the literature of the opposite order 

of cue-evoked processing, though not in the exact same task (Hung et al 2013). 

b. Excluding the possibility that correlations between hippocampal activity, DLPFC activity, and behavior 

are driven by a common, unobserved, cause. Here, evidence for this is that the behavioral model 

predictions are relatively improved (but see below for technical questions regarding this analysis) by the 

addition of HC and DLPFC reactivation measures. This does not exclude the possibility that all three are 

reflective of variability in learning performance that is not captured by the model, but which originates 

from neural processing unrelated to these regions. The relationship between activity and behavior is 

itself unconvincing, because functions commonly ascribed to these regions are also reflective of 

underlying causes that could occur in parallel to the behavioral variability of interest (e.g. stimulus 

surprise or novelty detection, pre-fetching of upcoming stimuli or stimulus-action associations, working 

memory contents or general load). 

2. A very intriguing claim, somewhat obscured in the manuscript (Discussion, Lines 398-402) is that 

pattern separation entails a tradeoff against the cost of reduced transfer learning between instances of 

the same task that were preceded by different cues. This would be an interesting result, and should be 

highlighted earlier on in the paper. However, it needs further substantiation, linking pattern similarity 

measures to subsequent performance improvements (or decrements). For instance: is it the case that 

pattern similarity following cue A at timepoint t predicts improved performance (on match trials) on that 

same task at later timepoints t+x (and worsened performance on mismatch trials), following Same-CTD 

cue B? 

3. There are several places in the manuscript where the authors use multiple regression to support the 

claim that covariate B accounts for variance unexplained by covariate A - e.g. in the comparison of the 

temporal and contextual models, and in the However, this approach is only valid when the covariates 

are perfectly orthogonal. Can the authors report the correlation between regressors, and whether the 

results hold if the regressors are orthogonalized against each other, and/or the regression of each is run 

on the residuals after regression on the other? 

- In the case of the model comparison, an alternative approach could be to combine the two models into 



a single model, for instance by using a linear weighting parameter (e.g. w*temporal + (1-w)*contextual). 

This would allow them to compete for prediction of behavior on equal terms and permit statistical 

analysis commensurate with the regression weights reported, while still providing separable estimates 

of trial-by-trial activity. 

- It seems as though a strong test of the author’s hypothesis might be that the pattern similarity 

measure predicts the value of this weighting parameter, across trials or runs. There are many reasons 

that this wouldn’t work, but it may be worth investigating. 

- In general, the authors claims would be better supported if they could show that some neurally-

derived measure improves the predictive power of the behavioral model. 

- Is it the case that the contextual model fits behavior “better” than the temporal model? Or vice-versa? 

If the claim is that the contextual model predictions underlie the neural activity, and on this basis the 

temporal model is excluded from MRI analysis, it seems important to justify this exclusion - either by 

showing a better fit to behavior, or by identifying separable neural correlates. 

- Can the authors present a comparison of the contextual (and temporal) models against a model that 

allows learning rate to vary between contexts? This might have been a minor comment, but for the 

above query about whether neural responding and behavior may be both driven by learning variability 

not captured by the model. 

Minor: 

1. We suggest that the authors reconsider using “PS” to refer to pattern similarity, as the manuscript 

also relies on the term “pattern separation” or “pattern separability” at several points. This confused us 

in more than one instance. Perhaps “PSim” might be a better abbreviation? 

2. The labels of the regions in each MRI image are a bit obscure, especially in contrast to the more 

simplified names used elsewhere in the manuscript. Can the authors please choose descriptive labels 

and use them consistently throughout the manuscript? 

3. The use of a grid-fitting approach is strange. While we don’t necessarily suspect that this introduced 

any confounds, why don’t the authors employ a more standard optimization approach? 

4. The operational definition of pattern similarity is intriguing and may obscure some issues. Specifically, 

similarity is defined across runs (Page 9, Lines 178-179), which might lead to a confound with learning, 

as similarity should only decrease across time. Is there a common reference point against which pattern 

similarity can be measured? Or could the authors instead employ a dissimilarity measure (e.g. against 

patterns evoked by the other cues within the same run)? 



5. Page 20, Line 474: The left side of the equation should read Po(t+1). 

6. Page 24, Line 578: Activity was extracted from bilateral hippocampus, were the final effects with 

DLPFC driven by the right hippocampus? 

7. Is the “contextual task demand” distinct from a response bias? That is, the authors show that RT and 

accuracy are correlated with the “prediction error” derived from their models, and suggest that this is 

indicative of ongoing conflict between task performance and reinstated task demands. However, this 

prediction error is exactly one minus the predicted probability of the task, which has associated with it a 

pair of responses distinct from those of the other task. Does this effect persist throughout all eight trials 

in each room? Or is it largely found in the first few, and then decays, as might be expected of a response 

bias? 

Reviewer #3 (Remarks to the Author): 

Jiang and colleagues present a carefully designed study that investigates the interactions of prefrontal 

reinstatement of task demands and hippocampal activity during a novel immersive virtual navigation 

paradigm. Using a reinforcement learning model they show that a model that learns the task-demands 

of the contexts tracks subject behavior well. Pattern similarity analyses during the task revealed that 

participants who reinstate representations of the context’s task demands, respond more quickly in a 

perceptual decision-making task. This effect was strongest in a dorsolateral prefrontal cortex (dlPFC) ROI 

and a superior parietal ROI. The authors document a pattern separation effect in HPC such that contexts 

that have different task demands show higher similarity than contexts that share a task demand. Finally, 

they examine the relationship between prefrontal task pattern reinstatements and hippocampal 

activations and pattern similarity. They show a positive relationship between dlPFC and hippocampal 

task reinstatement and univariate activity that is specific to when two contexts shared the same task 

demands. 

The study is well designed and executed. This paper makes important advances in understanding how 

the hippocampus and regions in the prefrontal cortex support contextual retrieval of relevant task 

demands. Though I have no serious problems with the manuscript, I have a few concerns outlined below 

regarding additional analyses, clarifying certain experimental choices made, and improving the 

transparency and reproducibility of the work presented. 

1. Individual subject data - Throughout the paper the authors report quintiles for their effects. This 

approach nicely illustrates their main findings, however, it would be useful to show the individual 

subject data for these analyses. This is a within subjects design and showing the individual subject data 

is important for understanding variability in the effect. Furthermore, the authors state the first run of 

scanning was thrown out because subjects had not yet learned the task. It would be nice to include 



learning curves for individual subjects to illustrate this effect. 

2. Medial ROIs - mPFC has been shown to be important for context dependent memory retrieval and 

certain aspects of generalization behavior. It could be of interest for the authors to examine pattern 

similarity in this regions for the Same CTD condition and how that relates the dlPFC effects reported in 

the manuscript. 

3. It may be of interest to the authors to examine the relationship between univariate activity in motor 

regions and the dlPFC same CTD pattern similarity effect. Given that the task sets are paired with 

different handed button responses, we might expect an effect where when subjects enter a context you 

get modulation of activity in motor regions in a task dependent way. This analysis could expand on and 

further support the hypothesis that dlPFC is contributing to retrieval of task-sets via a suppressive 

mechanism. 

Minor suggestions 

• You have chosen to use the human connectome project parcellation for your regions of interest in this 

paper. Some of these ROIs are quite small. It would be useful to report the number of voxels in each ROI 

on average. 

• Regarding the above point, in the manuscript the authors mention 4 ROIs that were used, but the 

reports lateralized effects. Please be clear that lateralized ROIs were used in the main text. 

• Table 1 shows four prefrontal ROIs but statistics reported in the main text report lateralized effects. 

Please make sure these statistics are aligned. 

• Correction for multiple comparisons are applied in some parts of the manuscript but not all. Please be 

explicit about where they are applied by including corrected or uncorrected next to the reported p-

value. 

• It is important for reproducibility that the authors report the software and version used for statistical 

analyses performed on the pattern similarity data. 

• Presumably the star and the bracket in Figure 5b reflects a significant between-condition difference, 

but I didn’t see this stated in the caption 

• I am not sure that “pattern separation” is the best way to describe the hippocampal results. I realize 

that this is true in the literal sense (i.e., the hypotheses concern differences in fMRI pattern similarity), 

the authors are referring to theories suggesting that the hippocampus assigns sparse, minimally 

overlapping representations to similar inputs. While it is true that the hippocampus differentiates 

between the Same context trial pairs and other conditions, the exaggerated reduction of pattern 

similarity for the Same CTD trials does not necessarily fit with traditional theories of pattern separation 

(e.g., Guzowski et al., 2004). By describing this effect in terms of pattern separation, I think the authors 

are making the data sound more prosaic than they really are—the finding of exaggerated differentiation 

for similar contexts/items is well-documented (e.g., work by Brice Kuhl’s lab) and it is a finding that isn’t 

easily explained by sparse coding alone. There are theories that try to account for this kind of effect 

(e.g., Ritvo et al., 2019) that may be worthy of consideration. 

• Related to above, the authors cite McClelland, McNaughton, and O’Reilly in reference to pattern 

separation. I may be misremembering, but I did not think that paper emphasized pattern separation and 

pattern completion, I thought this was emphasized in O’Reilly’s later, more biologically-based models (as 

well as work by Marr, Ed Rolls, etc.). 

• I also felt that this statement was overly speculative given what the authors actually found in the 



study: “The reduction in hippocampal PS in the Same CTD condition may facilitate the separation of and 

memory for individual contexts, as suggested by prior work documenting that greater hippocampal 

pattern distinctiveness is associated with better subsequent memory performance at the item level” 

Reviewed by Charan Ranganath in collaboration with a trainee 

(I sign all reviews) 
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Response to reviews 

We thank Dr. Ranganath and the two anonymous reviewers for their positive feedback and 
thoughtful comments, based on which we extensively revised the manuscript. We deeply 
appreciate the input, as we believe the work was strengthened through revision. Please see 
below our point-by-point responses to the comments.   

Reviewer #1 

Further, I found the writing style to be arduous on the reader – too many acronyms (e.g., CTD, 
PS, PE, …) used too frequently – that made it challenging to parse the results and discussion 
alike. More handholding of the reader would benefit the impact of this paper.  

Response: We replaced the acronyms “PS” and “PE” with “pattern similarity” and “prediction 
error” in the revised manuscript. “CTD” is kept as the only specialized acronym (as compared 
to other commonly used acronyms such as “RT” and “PFC”). 

1) The authors emphasize the importance of implicit learning of contextual task demand (CTD) 
over time via mnemonic mechanisms (line 47). However, it was not clearly shown that the 
statistical learning was built up as a function of time (or repetition). It would be helpful if there 
was a clearer foundation as to why you focused on implicit learning compared to explicit 
learning when people learned the CTDs. The benefit here would be that implicit learning might, 
I assume, create more continuous scales (or variance) for the RT given that CTD would have 
been gradually learned. If so, the learning effect should be provided for the (a) behavioral 
outcomes, (b) pattern separation in hippocampus for same CTD, and the (c) relationship 
between dlPFC and (b) or (a) as a function of repetition. Or at least, the differences between 
the first run, which was removed from the main analysis, and the subsequent runs should be 
provided. 

Response: We thank the reviewer for highlighting the potentially interesting question of 
whether the CTD association strengths might vary across implicit vs explicit learning conditions. 
In the manuscript, we do not state a perspective on this and regret that the reviewer concluded 
that implicit learning is central to our mechanistic claims. We could indeed imagine that implicit 
learning approach would give rise to a continuous strength distribution that shift with learning, 
we also note that some explicit learning/declarative memory models would make the same 
prediction. To avoid this potential confusion, we now state that we adopted an incidental 
learning paradigm as this is typical in the literature on item-specific cognitive control demand 
learning, but that we do not assume such learning is implicit (or exclusively implicit). The 
related text has been added to the revised manuscript: 

“We adopted an incidental learning paradigm, as this is typical in the literature of item-specific 
learning of cognitive control demand. However, we do not assume such learning is implicit (or 
exclusively implicit).” (Page 22) 

Following the reviewer’s guidance, we now report the differences between the first run and 
subsequent runs (for details, see also our response below to point 3a).  
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2) Do you believe that the CTD retrieval process would be different if the association was 
explicitly learned compared to it was learned implicitly? Although implicit learning was 
introduced as an important topic, I couldn’t find the implication for that topic in the results. 

Response: We added the following discussion to the revised manuscript: 
“This study used associations that are learned implicitly. We expect that explicitly 

learned CTD will result in similar retrieval processes, given the importance of hippocampus in 
the retrieval of explicitly formed associations1. For example, the hippocampal pattern 
differentiation findings (c.f., Fig. 5B) were first observed in studies exploring explicit 
associations2.” (Page 21). 

3a) For the pattern separation account for CTD learning, the authors set up the argument (line 
82) that CTD learning would promote pattern separation between the different contexts that 
share same CTD to prevent retroactive interference from recurrent retrieval (i.e., co-activated 
context). This argument should be verified if the pattern separation increased in the course of 
the learning. Or, even if the learning was fluctuated rather than linearly improved over time, the 
relationship between CTD learning effect (e.g., RT or accuracy) and the pattern separation 
should be provided to support the argument. 

Response: Following the reviewer’s guidance, we performed the following test for the 
temporal change of hippocampal pattern differentiation: 

“A key assumption of hippocampal pattern differentiation is that the differentiation 
occurs, potentially relatively rapidly, through learning. To test this, we calculated context-
context pattern similarity between run 1 and runs 2-6 and compared it to the context-context 
pattern similarity calculated within runs 2-6. Consistent with the pattern differentiation analysis 
in Fig. 5B, the comparison was performed between the Same CTD and the Different CTD 
conditions. To test whether the difference in context-context pattern similarity evolves through 
time, we conducted a repeated-measures 2 (condition: Same CTD/Different CTD) × 2 (time: 
run 1/run 2-6) ANOVA, which revealed a significant interaction between condition and time 
(F1,32=11.22, P = 0.002). Post-hoc analysis showed that in run 1, context-context pattern 
similarity was marginally higher in the Same CTD (0.0061 ± 0.0010) than the Different CTD 
condition (0.0043 ± 0.0008, t32 = 1.84; P = 0.07; paired t-test; d = 0.33; Supplementary Fig. 4), 
whereas in runs 2-6, the pattern was reversed and showed differentiation in the Same CTD 
condition (Same CTD: 0.0031 ± 0.0008; Different CTD: 0.0051 ± 0.0005; t32 = -2.91; P < 0.01, 
paired t-test; d = 0.51; Fig. 5B and Supplementary Fig. 4). Taken together, these results 
support the conclusion that hippocampal pattern differentiation increased through time.” 
(Supplementary Note 6) 
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Supplementary Figure 4. Individual context-context pattern similarity, plotted as a 
function of experimental condition (Same Context and Different CTD) and time (run 1 
and runs 2-6). Each line represents one participant.

3b) Moreover, it is strange to use the difference between the Same CTD with different contexts 
vs. Different CTD as a validation for context-context PS measurement (in Figure 5 results). To 
verify if the context-context PS in hippocampus could successfully measure the representation 
of the context-CTD association, the PS in Same context with same CTD should be significantly 
higher than the PS between Different CTDs in different contexts. Indeed, it was not clearly 
verified that Same CTD with different contexts increased pattern separation over the learning. 

Response: The validation results reported in Fig. 5B are motivated by the hippocampal pattern 
differentiation approach and outcomes in Favila et al2, such that pattern similarity between 
different scenes decreased when the scenes were paired with the same face image than 
different face images. Because context-context pattern similarity in Different CTD conditions 
were always calculated between different contexts, we matched this in the Same CTD 
condition by only using context-context pattern similarity between different contexts. 

We thank the reviewer for suggesting another test to validate the hippocampal pattern 
similarity data. We conducted the test and added the following to the revised manuscript: 

“… we found a context-level representation effect, such that context-context pattern 
similarity within the same context condition (0.0063 ± 0.0005) was significantly higher than 
context-context pattern similarity in the Different CTD condition (0.0044 ± 0.0007, t32 = 2.39; P 
= 0.02, paired t-test; d = 0.42; Supplementary Fig. 3; Note: This test was performed on all 6 
runs, because no learning was assumed in this prediction).” (Page 13, prior to Fig. 5B results) 
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Supplementary Figure 3. Individual context-context pattern similarity for Same Context 
and Different CTD conditions. Each line represents one participant. 

4) (Figure 3 results) Although the contextual model seems to predict CTD better than temporal 
model (which needs quantitative comparisons), the behavioral results (line 150) show that the 
regression coefficient for the temporal model PE (0.32 ± 0.004) was higher than that for the 
contextual model PE (0.01 ± 0.004) for RT, suggesting that temporal model had a better 
predictability for the RT (i.e., the bigger temporal PE, the slower RT). Given that the contextual 
model includes both temporal and contextual information, how could you conclude that the 
CTD was learned through contextual information alone? Moreover, it should be explained 
clearer (or more explicitly) why the model prediction (or PE) would be more sensitive to detect 
CTD learning effect compared to behavior outcome itself.

Response: Thank you for this important suggestion. We now clarified the rationale behind the 
model-based behavioral analysis in the revised manuscript, which reads: 

“A seemingly straightforward way to test the learning of CTD would be to compare the 
behavioral performance between conditions when the required task was congruent with the 
CTD (e.g., face task in a context of 75% face trials) to when it was incongruent (e.g., face task 
in a context of 75% object trials). However, this test can be confounded by other learning 
strategies that (partially) capture the statistical contingency. For example, one can in theory 
employ a temporal learning strategy, which makes predictions based on previous trials and 
ignores transitions of contexts, to achieve accurate prediction in most trials except for when 
there is a change of CTD between blocks. To control for temporal learning and to determine 
whether participants learned the task demand probabilistically associated with each context…” 
(Page 6).  

We apologize for the confusion about the comparison between the two models. As mentioned 
above, the temporal model was used to control for the confounding factor of temporal learning 
and to provide a more stringent test for CTD learning. Therefore, the relative contribution from 
the two models is not central to the test of our hypotheses. We revised the interpretation of the 
related behavioral results in the following manner: 
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“Given that both the contextual model and the temporal model were included in the 
same analysis to explain variance in the behavioral data, these latter findings indicate that, 
when temporal learning was accounted for, CTD was learned and additionally influenced task 
execution.” (Page 7, last sentence of behavioral results) 

5) The formula “Po(t) = Po(t) + α(T(t-1) - Po(t-1))” is not mathematically valid, as one of Po(t) in 
both hands should be replaced based on the model setup. For example, if the prediction is 
integrated, then the denotation should be Po(t-1) on the right hand of the formula. More details 
for each element will be also helpful. For example, if the Po is over 0.5, does it predict the 
object task more, and vice versa for the face task (i.e., under 0.5)? Does the T(t-1) - Po(t-1) 
indicate PE? Then, shouldn’t it be |T(t-1) - Po(t-1)| in the formula? Or PE was separately 
calculated? Also, it needs more details as to how the reinforcement learning model was 
differently built for the temporal model (using only trial sequence) vs. contextual model (using 
contextual information + trial sequence, in Methods, behavioral analysis, line 470). Was the 
only difference which trials were fed into the model for learning? 

Response: We apologize for the typo. In the revised manuscript, the formula has been 
corrected to the following form: 

“Po(t) = Po(t-1) + α(T(t-1) - Po(t-1))” 

We also clarified the meaning of Po in the following manner: 
“Without loss of generality, we denote 0 and 1 for a face and an object trial, respectively. 

The reinforcement learning model learns to predict the task demand at trial t using the 
probability of performing an object task (denoted as Po(t), with Po(t) greater than 0.5 predicting 
higher likelihood of encountering an object task than face task), …” (Page 22) 

T(t-1) - Po(t-1) is the signed prediction error. We clarified that the behavioral analysis was 
based on |T(t-1) - Po(t-1)| in the following manner: 

“Relatedly, trial-level (unsigned) prediction error, which was used in model-based 
behavioral analysis, was defined as |T(t-1) - Po(t-1)|, or the absolute difference between T and 
Po.” (Page 22) 

Finally, we added more detail to the descriptions of the temporal and contextual learning 
models:  

“The temporal model selectively used temporal information (i.e., ignored context 
changes), and consisted of only one reinforcement learner that is active throughout the 
experiment and learns task predictions from the sequence of trials. By contrast, the contextual 
model used a combination of temporal information and context to learn the CTD, such that 
there was one reinforcement learner for each of the four contexts. At each trial, only the 
learner associated with the present context was activated (i.e., no updating of Po for the other 
three learners). The four contextual learners shared the same learning rate. Thus, at a given 
trial, the temporal model and the contextual model differ in: (1) the learning rate used, and (2) 
the learner updated (for the temporal model it is always the same learner, whereas in the 
contextual model it is the learner corresponding to the present context).” (Page 23)

6) Fig. 5D shows that context-context PS in hippocampus for the same CTD in different 
contexts predicts better CTD reinstatement in the prefrontal area, which means that less 
pattern separation for the different contexts sharing same CTD predicts better CTD 
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reinstatement. Isn’t it the opposite from the prediction in the introduction (line 84)? The authors 
covered this opposite result in the discussion; however, it was still not justified enough how the 
inconsistent results could support the same argument. 

Response: We apologize for the confusion in the introduction. We now clarified that pattern 
separation on contexts may have distinct effects on the memory of context (i.e., item memory) 
and the memory of context-CTD association (i.e., associative memory). The revised language 
now reads: 

“Specifically, consider two pairs of contexts (dark and light dots in Fig. 1B, each dot 
representing one context), each associated with one CTD. Hippocampal coding of contexts 
within each pair may be separated to counter the interference between contexts caused by the 
shared CTD. On the other hand, pattern separation may hinder the context-cued retrieval of 
the associated CTD: relative to weaker hippocampal pattern separation (right panel of Fig. 1B), 
when pattern separation is strong (left panel of Fig. 1B) it is hypothesized that the cuing of one 
context is less likely to concurrently retrieve, or suffer interference from, the other context 
sharing the same CTD. In other words, strong pattern separation, while keeping contexts more 
distinct, fails to leverage the other context to boost retrieval and reinstatement of the shared 
CTD through recurrent retrieval3, 4” (Page 4) 

7) In the model in the Fig. 1A, the process has one directional modulation from the 
hippocampus to behavioral outcome. I am curious if you can show the directional relationship 
for the CTD retrieval? 

Response:  Thank you for this insightful comment. We added discussion on this issue to the 
revised manuscript, which reads: 

“The direct modulation from the hippocampus to behavior is supported by two findings: 
(1) the relationship between hippocampal pattern differentiation in the Same CTD condition 
and CTD reinstatement in right dlPFC/frontopolar cortex (Fig. 5D), which modulated RT in 
trials later in the same block (Fig. 4C); and (2) the modulation of hippocampal activity at 
context onset on RT in trials later in the same block.” (Page 18, prior to conclusion paragraph) 

8) In Fig.1B, it would be helpful if the figure shows how the separated representation predicts 
CTD learning.

Response: Following the reviewer’s suggestion, we changed Fig. 1B to the following: 

Stronger hippocampal separation of contexts sharing the same CTD may lead to more 
distinct neural coding of contexts (indicated by the distance between dots of the same 
color) and weaker facilitation (indicated by the thickness of the red arrows) from the 
other context to retrieve the associated CTD.
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For convenience, the updated Figure 1 has been added to the end of this response letter 
(along with in the manuscript). 

9) (line 150) Was there no statistical significance for the accuracy in the temporal model?

Response: We added the following result: 
“The prediction error in the temporal model demonstrated a trend towards modulating 

accuracy (regression coefficient: 0.09 ± 0.05; t32 = 1.81; P > 0.07, one-sample t-test; d = 0.31).” 
(Page 7) 

10) The scale for the x-axis (PE) in the Figure 3 was missing. Did you group the PE in 5 scales 
or were there only 5 levels of PE? Why was the RT transformed to logged scale? This was 
never explained or justified. Also, the relationship in the Fig 3C seems to fit better for U-shape.

Response: We now clarified in the figure legend that the x-axis represents data quintiles. The 
quintiles were for display purpose only, whereas the analyses were conducted at the trial level. 
We also clarified that the purpose of the log transform was to make the RT distribution more 
Gaussian (Page 23). Finally, a linear relationship between prediction error and (log) RT has 
been well established in previous studies using similar experimental designs5, 6. Therefore, a 
linear model was used in the present study. 

11) What does “the context’s PS was computed in relation to out-of-run trials (line 179)” mean? 
Did you mean that you did not include PS within a run to remove auto-correlation?

Response: Yes. In the Methods section (Page 27), we cited Cai et al (2018) to justify the 
exclusion of within-run pattern similarity scores. 

12) It would be easier to read the plots with significance symbols (asterisks) in Fig. 4C-F, 
middle column.

Response: We added significance symbols to the middle column of Fig. 4C-F, based on the 
statistical results reported in Table 1. For convenience, the updated Figure 4 has been added 
to the end of this response letter (along with in the manuscript). 

13) In the Fig. 4B, right panel, was the data being used for the contrast still context-trial PS? 
Also, were the same task/other task same trials with congruent/incongruent on the left panel? 
And what is the scale of reinstatement at onset of context on the x-axis?

Response: Yes, the context-trial pattern similarity was used for the CTD reinstatement-
behavioral correlational analysis. We changed the text to congruent and incongruent for the 
table in the right panel of Fig. 4B. The x-axis represents the quintiles, which were for display 
purpose only (please also see above response to point 10). 

14) (line 183) Does “context and trial …” means RSA between context and trial timepoints, 
same as “context-context RSA” for RSA in context timepoints between paired contexts? Then, 
using context-trial RSA would be more consistent.
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Response: Thank you for this suggestion. We now use the term ‘context-trial pattern similarity’ 
in the revised manuscript. 

15) (line 274) What does “block-level” mean? Does it mean that the pattern was averaged 
within a block or the PS was conducted across blocks rather than within a block?

Response: We appreciate the request for further clarity here. The text, which now reads: 
“Here, context-context pattern similarity was calculated at the onset of the room for each 

block, again for Same Context, Same CTD, and Different CTD conditions (Fig. 5A).” (Page 13) 

16) In Fig. 5C-D, it seems the term “modulation index (a.u.)” was not defined. Also, the scale 
on the x-axis in panel D were missing.

Response: We now defined the modulation index in the caption of Fig. 5C, which reads: 
“Group mean (± MSE) of the modulation index of each of the four predictors and the 

ROI univariate activity on the CTD reinstatement in each of the four frontoparietal ROIs. 
Modulation index is defined as the regression coefficient of the regressor (e.g., pattern 
similarity, univariate activity) on CTD reinstatement measured in the dlPFC/frontopolar ROI.” 

We have clarified that the x-axes represent quintiles in the legend of Fig. 5D. 

17) (line 500) Why were the post-error trials excluded?

Response: We added the following clarification to the revised manuscript: 
“Specifically, post-error trials are known to display ‘post-error slowing’, possibly due to a 

cautionary shift in response thresholds7, which represents a process that is not targeted in the 
model-based behavioral analysis or the retrieval of CTD analysis.” (Page 23). 

18) (line 564) Was the separate GLM built for each trial or were all regressors with each 
regressor for each trial built in one GLM?

Response: We clarified this in the following manner: 
“A single GLM was constructed for each of the five runs.” (Page 26) 

19) For pattern similarity analysis, what did you mean by normalized beta? Does it mean 
voxel-wise normalization of the beta estimate modeled on each trial? Also, did you use all 
voxels under each defined ROIs? Then, what was the number of voxels selected for each PS?

Response: We added further clarification, which reads: 
“For each ROI and each event, its activity pattern was quantified as a vector of multi-

voxel normalized betas by dividing the original betas by the square root of the covariance 
matrix of the error terms from the GLM estimation8. All voxels in the ROIs were used in the 
calculation of pattern similarity.” (Page 26) 

Regarding the number of voxels used in the ROIs, please see response below to Reviewer 3’s 
point 4.  
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20) Was the context also modeled separately for the beta patterns? And given that it was 
presented for 7.5 seconds, was it modeled with boxcars?

Response: We clarified this point in the revised manuscript in the following manner: 
“To obtain event-level beta estimates for brain activity, each event (i.e., onset of building 

cue/building exterior and onset of room interior for each block, and onset of task cue for each 
trial) was represented by a single regressor of a hemodynamic function time-locked to the 
onset of the event. Each event was modeled using a stick function, because it was a priori 
unclear whether the learning and retrieval of CTD would last for the whole duration of stimulus 
presentation.” (Page 26) 

21) For the Methods, while the preprocessing for the imaging data was described so detailed 
(maybe too specific), other analyses were not described enough. 

Response: We apologize for the lack of detail in the analysis methods. In addition to the 
details added based on your and other reviewers’ comments, we included more information to 
help clarify the methods. To facilitate replication, the analysis scripts were also made available 
via the link in the Data Availability Statement. 

Reviewer #2

1) We found it difficult to distill the primary claim of the paper. It appears to be that 
hippocampal activity, indicated by pattern separability, indexes reinstatement of “contextual 
task demands” in DLPFC, which subsequently modulate behavior. The directionality and 
causal nature of the relationship appear to be central to the claim - the manuscript is peppered 
with language such as that “hippocampal representations of context modulate proactive 
retrieval” (Line 38) and “CTD depends on the hippocampus” (Line 73). 

If this is the main finding, it leads to two concerns: 
- First, it’s not clear what this finding would add to previous work, including work from the 
author’s own lab. Specifically, it has been shown that contextual task demands (stimulus-
action tendencies) are reinstated by hippocampus on the basis of informative cues (Hindy & 
Turk-Browne 2016, 2019), and that contextual task demands can be decoded from PFC 
activity patterns preceding performance of the task, and used to predict performance on the 
subsequent task (Waskom et al 2014, 2016, 2017). Moreover, prior work has shown task-
dependent tuning of sensory processing (Tajima et al., 2017) and sensorimotor processing can 
be tuned according to the anticipated demands (Muhle-Karbe et al., 2017). Given these 
findings, it would be helpful if the authors could pull reinstatement results from visual ROIs 
(e.g., face area and object area and/or V1) as control regions compared to the DLFPC to rule 
out perceptual facilitation and 2) include a discussion explicating how their neural findings are 
similar and/or distinct from, e.g., the Hindy findings. 

Response: We thank the reviewer for this guidance. Following their input, we performed the 
reinstatement analysis on visual cortex and now report the findings: 

“To examine the reinstatement of CTD in the visual cortex, we tested the interaction 
between context and congruency (Fig. 4B, left panel) in 34 visual ROIs (defined by the multi-
modal cortical parcellation from the Human Connectome Project; major assignment IDs: 1, 2, 3, 
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and 4; ROI size = 269 ± 52 voxels; range = 49–1183)9. After correction for multiple 
comparisons, only the left V8 ROI exhibited a significant context × congruency interaction 
effect (t32 = 3.69, P < 0.001). However, the reinstatement of CTD at the beginning of a block in 
left V8 did not modulate behavior later in the block (t32 = 0.80, P = 0.43, analysis conducted 
using the contrast shown in the right panel of Fig. 4B). Given that the right dlPFC/frontopolar 
ROI exhibited both a context × congruency interaction and modulation of CTD reinstatement 
on behavior, the lack of visual areas showing both effects suggests that the prefrontal 
reinstatement of CTD is not solely explained by perceptual facilitation.” (Supplementary Note 2) 

We further discussed how our major findings relate to prior work and substantively advance 
understanding of the acquisition and expression of learned context-control state associations. 
First, we note that compared to Hindy et al.’s (2016, 2019) focus on pattern completion, the 
main conclusion of our work concerns the role of pattern separation is building representations: 

“Multi-variate hippocampal activity patterns10 and connectivity11 provide additional 
support for the mechanism of pattern completion during cued retrieval of stimulus-action 
sequences. To further study the interaction between CTD reinstatement and hippocampal 
mnemonic mechanisms, we examined the relationship between hippocampal pattern 
separation and CTD reinstatement in dlPFC.” (Page 18) 

Compared to Waskom et al (2014) and other related work focused on the neural 
representation of task-set in frontoparietal networks, our work targets the interaction between 
the hippocampus and the PFC during the retrieval of associated task demand. We first clarified 
this using the sentence below: 

“Consistent with previous findings showing instantiation of task-set during task in PFC12-

20, the context-trial pattern similarity analyses revealed frontoparietal foci in which 
reinstatement of CTD was observed, including right dlPFC (Fig. 4C, left column). … We then 
investigated the relationship between CTD reinstatement in dlPFC and hippocampal activity at 
the onset of the spatial context.” (Page 17)

We then explained that Waskom et al (2017) and the present work examine different sources 
of task demand prediction: 

“One reinforcement learning model (contextual model) simulated the learning of CTD21, 
and a second reinforcement learning model (temporal model) simulated context-insensitive 
learning of task demand through temporal information5, 6.” (Page 7) 

2a) - Second, and more importantly, it is not clear that this chain of events is supported by the 
analyses presented. Specifically, the claim would require: 
a. That hippocampal reinstatement precede DLPFC reinstatement. However, both activity 
patterns are decoded during the same time interval. No evidence in support of the necessary 
ordering is presented - and this would be difficult to do in fMRI. In fact, there is evidence in the 
literature of the opposite order of cue-evoked processing, though not in the exact same task 
(Hung et al 2013). 

Response: We thank the reviewer for this insightful comment. We agree that testing 
directionality of modulation is challenging in fMRI studies. In the revised manuscript, we now 
explicitly acknowledge that our conclusions about directionality await further direct assessment 
using higher temporal resolution methods. Moreover, we conducted a control analysis to 
explore whether dlPFC reinstatement might stem from an alternative source: 
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“One alternative interpretation of the results is that hippocampal pattern separation is 
mediated by CTD reinstatement in the dlPFC. If this were true, one might predict that the 
dlPFC reinstatement would be modulated by other learning systems. We tested this prediction 
by repeating the analyses in the striatum (defined using the labels caudate, putamen and 
accumbens areas from FreeSurfer). CTD reinstatement in dlPFC was not significantly 
modulated by striatal univariate activity nor by striatal context-context pattern similarity in any 
of the Same Context, Same CTD, or Different CTD conditions (all Ps > 0.33). This result lends 
indirect support to the argument that CTD reinstatement in the dlPFC is modulated by 
hippocampal activity and pattern differentiation.” (Supplementary Note 7) 

2b) Excluding the possibility that correlations between hippocampal activity, DLPFC activity, 
and behavior are driven by a common, unobserved, cause. Here, evidence for this is that the 
behavioral model predictions are relatively improved (but see below for technical questions 
regarding this analysis) by the addition of HC and DLPFC reactivation measures. This does 
not exclude the possibility that all three are reflective of variability in learning performance that 
is not captured by the model, but which originates from neural processing unrelated to these 
regions. The relationship between activity and behavior is itself unconvincing, because 
functions commonly ascribed to these regions are also reflective of underlying causes that 
could occur in parallel to the behavioral variability of interest (e.g. stimulus surprise or novelty 
detection, pre-fetching of upcoming stimuli or stimulus-action associations, working memory 
contents or general load). 

Response: We appreciate this point. First, we note that the above analysis suggests that the 
striatum is not a common modulator. Second, we performed the following additional control 
analyses to search for potential common modulators in the cortex: 

“An additional possibility is that both the dlPFC reinstatement of CTD and the 
hippocampal context-context pattern similarity in the Same CTD condition are mediated by a 
common modulator. To test this hypothesis, we searched for potential common modulators in 
the 359 cortical ROIs (excluding right BA 9-46d) defined by the multi-modal cortical parcellation 
from the Human Connectome Project. Specifically, for each ROI, its univariate activity (which 
may vary with general load, surprise, or novelty) and context-trial pattern similarity in the Same 
Context (reflecting stimulus-level content representation) and the Same CTD (reflecting task 
demand-level representation) were used to explain variance of both the dlPFC reinstatement 
of CTD and the hippocampal context-context pattern similarity in the Same CTD condition at 
the block level. Individual modulation strength was then tested against 0 at the group level 
using one-sample t-test. Multiple comparisons were leniently corrected using FDR within each 
ROI, in order to reduce type II error. A common modulator would show significant modulation 
in at least one of its three measures above on both dlPFC reinstatement of CTD and 
hippocampal pattern differentiation. However, in contrast to a common modulator hypothesis, 
no ROI met the criteria. However, as this is a null result, interpretative caution is warranted. 
Future studies are encouraged to further examine the directionality of the relationship between 
dlPFC reinstatement of CTD and hippocampal activity patterns at retrieval.” (Supplementary 
Note 7) 

3) A very intriguing claim, somewhat obscured in the manuscript (Discussion, Lines 398-402) 
is that pattern separation entails a tradeoff against the cost of reduced transfer learning 
between instances of the same task that were preceded by different cues. This would be an 
interesting result, and should be highlighted earlier on in the paper. However, it needs further 
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substantiation, linking pattern similarity measures to subsequent performance improvements 
(or decrements). For instance: is it the case that pattern similarity following cue A at timepoint t 
predicts improved performance (on match trials) on that same task at later timepoints t+x (and 
worsened performance on mismatch trials), following Same-CTD cue B?

Response: We appreciate this insightful comment. We did not find a significant relationship 
between hippocampal pattern separation and behavioral performance at the block level (see 
last paragraph of Results). The analysis proposed by the reviewer is intriguing, yet the 
expected effect may be too weak to be detected given that performance at later time points t+x 
will also (and probably more strongly) be affected by Same CTD context-context pattern 
similarity when context B was presented. Therefore, to explore the reviewer’s point, we 
performed and report an alternative analysis that provides some purchase on the issue: 

“The argument that hippocampal pattern separation balances integration and separation 
would predict that stronger pattern separation will lead to stronger facilitation in behavior. We 
tested this prediction by correlating the Same CTD context-context pattern similarity in the 
hippocampus with the behavioral modulation of CTD shown in Fig. 3 (separately for accuracy 
and RT) across participants. Consistent with this prediction, we observed a significant 
correlation (r = -0.39, P = 0.025, Supplementary Fig. 6), such that, contextual prediction errors 
impact accuracy more (indicating stronger behavioral influence of CTD) when the pattern 
similarity scores are lower (indicating stronger separation).” (Page 19) 

Supplementary Figure 6. Individual modulation of contextual prediction error on accuracy 
(lower value indicates stronger modulation), plotted as a function of the Same CTD 
context-context pattern similarity in the hippocampus (lower value indicates stronger 
separation). Dashed line represents linear trend line.

4a) There are several places in the manuscript where the authors use multiple regression to 
support the claim that covariate B accounts for variance unexplained by covariate A - e.g. in 
the comparison of the temporal and contextual models, and in the However, this approach is 
only valid when the covariates are perfectly orthogonal. Can the authors report the correlation 
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between regressors, and whether the results hold if the regressors are orthogonalized against 
each other, and/or the regression of each is run on the residuals after regression on the other? 

Response: We thank the reviewer for this thoughtful comment; we added the following control 
analysis: 

“Given that temporal prediction error and contextual prediction error are correlated (r = 
0.44 ± 0.04, range: 0.10-0.87), we replicated the previous behavioral analyses using residuals 
of contextual prediction error after regression on the temporal prediction error, and obtained 
qualitatively similar results for both accuracy (regression coefficient: -0.19 ± 0.04; t32 = -4.52; P 
< 0.001, one-sample t-test; d = 0.79) and RT (regression coefficient: 0.01 ± 0.004; t32 = 2.64; P 
= 0.01, one-sample t-test; d = 0.46). In addition, after regressing shared variance with 
contextual prediction error, temporal prediction error still exhibited significant modulation on 
trial-level RT (regression coefficient: 0.03 ± 0.004; t32 = 9.29; P < 0.001, one-sample t-test; d = 
1.62).” (Supplementary Note 1) 

4b) In the case of the model comparison, an alternative approach could be to combine the two 
models into a single model, for instance by using a linear weighting parameter (e.g. 
w*temporal + (1-w)*contextual). This would allow them to compete for prediction of behavior on 
equal terms and permit statistical analysis commensurate with the regression weights reported, 
while still providing separable estimates of trial-by-trial activity. 

Response: Following the reviewer’s suggestion, we added a new analysis: 
“To quantitatively assess the joint contribution of temporal and contextual predictions of 

task demand to behavior, we designed an additional model, which combines both predictions 
and takes the form: 

Po(t) = w*Po
c(t) + (1-w)*Po

t(t) 
Where Po is the joint prediction of task demand, which is a weighted sum of Po

c and Po
t  

(denoting the contextual and temporal predictions of task demand [see Methods: Behavioral 
Analysis], respectively). The model includes three free parameters (the weight w and the 
respective learning rates for Po

c and Po
t), which were determined using a grid search (w range: 

0-1, step size = 0.01; learning rate range: 0.01-0.99, step size = 0.01) that maximizes the 
variance explained in the trial-wise RT data (see Methods: Behavioral Analysis). At the group 
level, the weight was significantly lower than 0.5 (w = 0.30 ± 0.05, t32 = 4.20; P < 0.001, one-
sample t-test; d = 0.73), indicating that subjects rely more on temporal than contextual 
predictions. Furthermore, the joint prediction error significantly modulated accuracy (regression 
coefficient: -0.24 ± 0.04; t32 = -5.72; P < 0.001, one-sample t-test; d = 1.00) and RT (regression 
coefficient: 0.04 ± 0.003; t32 = 13.53; P < 0.001, one-sample t-test; d = 2.36).” (Supplementary 
Note 8) 

We would like to further note that the purpose of modeling temporal and contextual 
predictions separately is to explicitly tease apart the behavioral modulation of temporal 
prediction and to be able to test the learning of the CTD directly. For this purpose, we decided 
to keep the two learners modeled separately in the main text. 

4c) It seems as though a strong test of the author’s hypothesis might be that the pattern 
similarity measure predicts the value of this weighting parameter, across trials or runs. There 
are many reasons that this wouldn’t work, but it may be worth investigating. 
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Response: We appreciate this insightful prediction. We agree with the reviewer that increase 
in pattern separation is predicted to lead to stronger modulation of CTD on behavior. This is 
now tested at the individual level, in the response to point 3 above. We also tested the 
correlation between the weighting parameter and Same CTD context-context pattern similarity 
across subjects, which was not significant (r = 0.02, P > 0.91). We speculate that this null 
result is due to the weighting parameter being unable to account for individual differences in 
the modulation of prediction error on behavior. 

4d) In general, the authors claims would be better supported if they could show that some 
neurally-derived measure improves the predictive power of the behavioral model. 

Response: We appreciate the reviewer’s point, while also noting that our view is that there 
should be some shared variance explained by the neural measure and behavioral models. To 
test whether the neural measure explains behavioral data that is above and beyond what is 
accounted for in the behavioral models, we now report the following: 

“We repeated the analysis above using both contextual prediction error and temporal 
prediction error as covariates, and observed a marginally significant modulation of 
dlPFC/frontopolar CTD reinstatement on RT (regression coefficient: -0.0040 ± 0.0022; t32 = -
1.81; P = 0.079, one-sample t-test; d = 0.32). This finding provides initial support for the claim 
that the neural measure of CTD reinstatement explains behavioral data above and beyond 
what is accounted for in the behavioral models.” (Page 11) 

4e) Is it the case that the contextual model fits behavior “better” than the temporal model? Or 
vice-versa? If the claim is that the contextual model predictions underlie the neural activity, and 
on this basis the temporal model is excluded from MRI analysis, it seems important to justify 
this exclusion - either by showing a better fit to behavior, or by identifying separable neural 
correlates. 

Response: As noted above in the response to point 4b, the participants appear to rely more 
on temporal than contextual prediction of task demand. That said, the goal of the behavioral 
analysis is to test whether the participants also learned the contextual task demand and used it 
to guide behavior, rather than to test if the contextual model has a stronger behavioral 
modulation than the temporal model. The behavioral analyses indeed reveal that the prediction 
error of the contextual model significantly mediates both accuracy and RT. Again, we further 
clarified the logic of these analyses in the manuscript. 
       In addition, we note that the fMRI analyses concerned activity patterns at the onset of the 
contexts and did not reply on parametric output from either model. Thus, we expect that 
conducting model comparison or running fMRI analysis on the temporal model would not 
change the main findings and the conclusion. 

4f) Can the authors present a comparison of the contextual (and temporal) models against a 
model that allows learning rate to vary between contexts? This might have been a minor 
comment, but for the above query about whether neural responding and behavior may be both 
driven by learning variability not captured by the model. 

Response: The goal of using contextual and temporal models is to look for behavioral 
evidence of the learning of CTD, while accounting for temporal learning of task demand. This 
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goal is achieved using the current contextual and temporal models. According to Behrens et al 
(2007) and Jiang et al (2015), the learning model with a changing learning rate is more 
effective in an unstable environment. In the context of this study, an unstable environment 
would mean (1) the CTD varies over time and/or (2) the rate of the variation shifts over time. 
Neither of these two criteria applies to the experimental design in this study, because the 
CTDs were constant. Thus, we think that using a model with a changing learning rate will not 
qualitatively change the behavioral results. We now provide a brief justification for adopting a 
fixed learning rate in the manuscript: 

“Recent studies have shown the benefit of adopting self-adjusting learning rates in learning 
models22, 23. The benefit is more pronounced in changing environments (e.g., when CTD 
changes over time in the context of the present experimental design). Given that the CTD in 
the experimental design stayed constant, we chose a simple fixed learning rate.” (Page 24) 

5) We suggest that the authors reconsider using “PS” to refer to pattern similarity, as the 
manuscript also relies on the term “pattern separation” or “pattern separability” at several 
points. This confused us in more than one instance. Perhaps “PSim” might be a better 
abbreviation?

Response: Following this suggestion and related comment from Reviewer 1, we now use the 
full term “pattern similarity” throughout the manuscript. 

6) The labels of the regions in each MRI image are a bit obscure, especially in contrast to the 
more simplified names used elsewhere in the manuscript. Can the authors please choose 
descriptive labels and use them consistently throughout the manuscript?

Response: We apologize for the obscurity. In the revised manuscript, we use both the 
descriptive labels and the labels from the Human Connectome Project, in order to be intuitive 
and precise. Please refer to the updated Fig. 4 and Fig. 5 (also attached to the end of this 
response letter for convenience). 

7) The use of a grid-fitting approach is strange. While we don’t necessarily suspect that this 
introduced any confounds, why don’t the authors employ a more standard optimization 
approach?

Response: We appreciate the reviewer’s concern. Given the low number of free parameters, 
we chose to use a grid search to cover the full search space, as compared to randomly 
choosing starting points (which may be trapped in local minima) as in most optimization 
procedures. We now briefly comment on this logic in the Methods (Page 23). 

8) The operational definition of pattern similarity is intriguing and may obscure some issues. 
Specifically, similarity is defined across runs (Page 9, Lines 178-179), which might lead to a 
confound with learning, as similarity should only decrease across time. Is there a common 
reference point against which pattern similarity can be measured? Or could the authors instead 
employ a dissimilarity measure (e.g. against patterns evoked by the other cues within the 
same run)?
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Response: We thank the reviewer for raising this important issue. We tested whether there 
was systematic temporal change of pattern similarity measures in the following manner: 

“We examined whether there was a systematic temporal change in context-context 
pattern similarity by calculating the correlation between block-level pattern similarity measures 
(each of the Same context, Same CTD and Different conditions) and time (each of block ID 
and the logarithm of block ID) for each participant. One sample t-tests against 0 at the group 
level did not reveal any significant temporal change that was consistent across participants (all 
Ps > 0.56).” (Supplementary Note 5)  

We decided not to calculate within-run pattern similarity due to the potential auto-
correlation confound that may be introduced24. 

9) Page 20, Line 474: The left side of the equation should read Po(t+1).

Response: We apologize for this typo. It has been fixed in the revised manuscript. 

10) Page 24, Line 578: Activity was extracted from bilateral hippocampus, were the final 
effects with DLPFC driven by the right hippocampus?

Response: Following this guidance, we tested this possibility and added the following: 
“When repeated separately for the left and right hippocampus, the regression coefficient 

for the Same CTD context-context pattern similarity did not significantly differ between the two 
hemispheres (left: 0.037 ± 0.038; right: 0.044 ± 0.032; t32 = 0.12; P =0.9; paired t-test).” (Page 
14) 

11) Is the “contextual task demand” distinct from a response bias? That is, the authors show 
that RT and accuracy are correlated with the “prediction error” derived from their models, and 
suggest that this is indicative of ongoing conflict between task performance and reinstated task 
demands. However, this prediction error is exactly one minus the predicted probability of the 
task, which has associated with it a pair of responses distinct from those of the other task. 
Does this effect persist throughout all eight trials in each room? Or is it largely found in the first 
few, and then decays, as might be expected of a response bias?

Response: The task demand includes response mapping, thus a response bias is assumed to 
be part (but not all) of the contextual task demand effect. We examined the univariate activity 
in motor and premotor cortex at the onset of the context (i.e., the room) but did not find strong 
evidence of proactive activity favoring the task predicted by the CTD (please see the response 
below to Reviewer 3’s point 3). We also added the following analysis: 

“Furthermore, to test whether motor and premotor reinstatement of CTD in the activity 
patterns at the context onset affects behavior later in the block, we tested the CTD 
reinstatement modulation on RT (using the contrast shown in the right panel of Fig. 4B and an 
identical procedure to that used with the frontoparietal ROIs) in each of the aforementioned 24 
ROIs. None of the ROIs showed significant behavioral modulation (all Ps > 0.09). Taken 
together, we did not observe strong evidence for response bias at the context onset.” 
(Supplementary Note 4) 

Reviewer #3 
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1) Individual subject data - Throughout the paper the authors report quintiles for their effects. 
This approach nicely illustrates their main findings, however, it would be useful to show the 
individual subject data for these analyses. This is a within subjects design and showing the 
individual subject data is important for understanding variability in the effect. Furthermore, the 
authors state the first run of scanning was thrown out because subjects had not yet learned the 
task. It would be nice to include learning curves for individual subjects to illustrate this effect. 

Response: Following the reviewer’s comment, we added individual data for each of the 
quintile plots. The added figures are attached below: 

Supplementary Figure 1. Individual quintile data corresponding to Fig. 3B (left) and 3C 
(right). 
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Supplementary Figure 2. Individual quintile data corresponding to Fig. 4C-F. 
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Supplementary Figure 5. Individual quintile data corresponding to Fig. 5D. 

The exclusion of Run 1 was based on the consideration that: (1) it was the beginning of the 
learning of CTD; (2) each context only has 2 blocks in Run 1, providing limited exposure to the 
participants; and (3) the main goal of the present study is the retrieval of CTD, thus we 
discarded Run 1 to exclude data before the CTD was learned. The learning curve based on 
expected vs. unexpected tasks may be confounded by temporal learning. To selectively 
assess the learning of CTD. we compared the hippocampal representation of contexts in the 
Same CTD and Different CTD conditions and examined how the difference between the two 
conditions evolved over time. As shown above in the response to Reviewer 1’s point 3a, 
pattern differentiation was absent in Run 1 but emerged subsequently, suggesting that Run 1 
reflects performance (and associated neural responses) that falls prior to the completion of 
CTD learning. 

2) Medial ROIs - mPFC has been shown to be important for context dependent memory 
retrieval and certain aspects of generalization behavior. It could be of interest for the authors to 
examine pattern similarity in this regions for the Same CTD condition and how that relates the 
dlPFC effects reported in the manuscript.

Response: Following this insightful comment, we added the following analysis: 
“Given the importance of the medial prefrontal cortex in context-dependent memory 

retrieval and generalization, we compared the context-context pattern similarity in the Same 
CTD condition with the Different CTD condition in each of the 32 ROIs in the ‘ACC and medial 
prefrontal cortex’ category (ROI size = 166 ± 30 voxels; range = 61–446) of the multi-modal 
cortical parcellation from the Human Connectome Project. Only the left pOFC area exhibited a 
significant reduction of context-context pattern similarity in the Same CTD than the Different 
CTD condition, and this was true only when using an uncorrected alpha-level (difference: 
0.0035 ± 0.0017, t32 = -2.11; uncorrected P = 0.043, paired t-test; d = 0.37). We then tested the 
modulation of the Same CTD condition context-context pattern similarity on the CTD 
reinstatement in the right dlPFC (see Fig. 5C) for each of the ROIs, but did not find any ROI 
showing the positive modulation that was observed for the hippocampus (all P > 0.051). These 
results suggest a limited involvement of the medial prefrontal cortex in the retrieval of the CTD.” 
(Supplementary Note 3)  

3) It may be of interest to the authors to examine the relationship between univariate activity in 
motor regions and the dlPFC same CTD pattern similarity effect. Given that the task sets are 
paired with different handed button responses, we might expect an effect where when subjects 
enter a context you get modulation of activity in motor regions in a task dependent way. This 
analysis could expand on and further support the hypothesis that dlPFC is contributing to 
retrieval of task-sets via a suppressive mechanism.

Response: Following the reviewer’s suggestion, we tested the univariate activity in the motor 
and premotor areas. The related text reads: 

“To examine whether and how the retrieval of the CTD mediates motor planning and 
response preparation, we tested the univariate activity at the onset of the context in each of the 
12 premotor, somatosensory, and motor cortex ROIs (major assignment IDs 6 and 8 in the 
multi-modal cortical parcellation from the Human Connectome Project; collapsed across left 
and right hemispheres; ROI size = 371 ± 32 voxels; range = 71–1106). The univariate activity 
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level was defined as the ROI-mean of the multi-voxel normalized betas8, in order to be 
consistent with the pattern similarity analyses. Given that participants used different hands for 
the two tasks in our experimental design, retrieval of the CTD predicts increased univariate 
activity in motor/premotor areas contralateral to the hand used for the task predicted by the 
CTD, as compared to the ipsilateral hand. Although we observed such a pattern in the L_1 
area when using an uncorrected alpha-level (contralateral - ipsilateral: 0.065 ± 0.027, t32 = 2.43; 
uncorrected P = 0.021, paired t-test; d = 0.42), no ROI survived the FDR correction.” 
(Supplementary Note 4) 

4) You have chosen to use the human connectome project parcellation for your regions of 
interest in this paper. Some of these ROIs are quite small. It would be useful to report the 
number of voxels in each ROI on average.

Response: We now report the mean ± MSE and the range of ROI size in the revised 
manuscript. The numbers are summarized in the table below: 

ROI Mean ± MSE (voxels) Range (voxels) 
Frontoparietal (main text) 198 ± 16 51–511 
Medial PFC (response to point 2) 166 ± 30 61–446 
Motor and premotor (response to point 3) 371 ± 32 71–1106 
Visual areas (response to R2’s point 1) 269 ± 52 49–1183 

5) Regarding the above point, in the manuscript the authors mention 4 ROIs that were used, 
but the reports lateralized effects. Please be clear that lateralized ROIs were used in the main 
text.

Response: Following the reviewer’s suggestion, we now report the hemisphere of the four 
PFC ROIs in the revised manuscript. In the methods section, we also clarified that lateralized 
ROIs were used. 

6) Table 1 shows four prefrontal ROIs but statistics reported in the main text report lateralized 
effects. Please make sure these statistics are aligned.

Response: We added the hemisphere to each of the four PFC ROIs. The labels in figures 
were also changed accordingly. Table 1 now reads (hemispheres highlighted in red font): 

R BA 9-46d L BA i6-8 L IFJP L BA 7PL
Same Context 
+ Same CTD

0.0026±0.0007 0.0021±0.0007 0.0028±0.0011 0.0023±0.0012
3.75*** 3.04** 2.61* 1.92

Same CTD 
0.0033±0.0014 0.0020±0.0011 0.0037±0.0014 0.0021±0.0014
3.65*** 1.85 2.59* 1.57 

Different CTD
-0.0012±0.0009 -0.0017±0.0008 -0.0036±0.0011 -0.0046±0.0010
-1.38 -2.16* -3.51** -4.54***

Table 1. Summary statistics of the context-trial pattern similarity congruency 
effects in the four cortical ROIs showing significant context × congruency 
interactions in context-trial pattern similarity. For each condition, the top and 
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bottom rows show the group mean ± MSE and the t-value (DOF = 32), 
respectively *: p < 0.05; **: p < 0.01; ***: p < 0.001. 

7) Correction for multiple comparisons are applied in some parts of the manuscript but not all. 
Please be explicit about where they are applied by including corrected or uncorrected next to 
the reported p-value.

Response: Because we used FDR correction to control for multiple comparisons, the 
uncorrected p-values are not intuitive to be converted into corrected p-values. As an alternative 
approach to addressing this point, we now state the following: 

“Unless otherwise specified, all reported P-values were uncorrected. We also report 
whether the reported results survived FDR correction.” (Page 27) 

In short, the right dlPFC/frontopolar ROI survived all multiple comparisons when 
controlled for the number of ROIs tested and/or the number of modulators tested. The 
hippocampal context-context pattern similarity results also survived FDR. Therefore, FDR 
correction did not change the main findings of the present study.

8) It is important for reproducibility that the authors report the software and version used for 
statistical analyses performed on the pattern similarity data.

Response: We thank the reviewer for this guidance. We now report that: 
 “All pattern similarity analyses and statistical tests were conducted using Matlab 2017a” 

(Page 27). As reported in the Data Availability Statement, related analysis scripts are shared 
on Github (https://github.com/JiefengJiang/CTD). 

9) Presumably the star and the bracket in Figure 5b reflects a significant between-condition 
difference, but I didn’t see this stated in the caption 

Response: We now state the statistical significance in the caption of Fig. 5b, which reads: 
“(B) Visualization of the hippocampus ROI (top, in red) and the group mean (± MSE) of 

the three conditions of hippocampal context-context pattern similarity (bottom). At the group 
level, pattern similarity in the Same CTD condition was significantly lower than the Different 
CTD condition.” (Page 16). 

10) I am not sure that “pattern separation” is the best way to describe the hippocampal results. 
I realize that this is true in the literal sense (i.e., the hypotheses concern differences in fMRI 
pattern similarity), the authors are referring to theories suggesting that the hippocampus 
assigns sparse, minimally overlapping representations to similar inputs. While it is true that the 
hippocampus differentiates between the Same context trial pairs and other conditions, the 
exaggerated reduction of pattern similarity for the Same CTD trials does not necessarily fit with 
traditional theories of pattern separation (e.g., Guzowski et al., 2004). By describing this effect 
in terms of pattern separation, I think the authors are making the data sound more prosaic than 
they really are—the finding of exaggerated differentiation for similar contexts/items is well-
documented (e.g., work by Brice Kuhl’s lab) and it is a finding that isn’t easily explained by 
sparse coding alone. There are theories that try to account for this kind of effect (e.g., Ritvo et 
al., 2019) that may be worthy of consideration.
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Response: We thank the reviewer for this insightful comment. In the revised manuscript, we 
discussed the difference between the traditional conceptualization of pattern separation and 
pattern differentiation in the following manner: 

“Distinct from the pattern separation theory that different memory traces are encoded in 
sparse neural codes, this effect assumes partially overlapping neural codes for overlapping 
experiences. Through the course of learning, the shared neural representations are pruned 
(possibly due to a pruning process following weak activation of the overlapping portion of the 
neural codes25) and lead to more differentiated codes for the experiences2. We first replicated 
this effect…” (Page 18) 

11) Related to above, the authors cite McClelland, McNaughton, and O’Reilly in reference to 
pattern separation. I may be misremembering, but I did not think that paper emphasized 
pattern separation and pattern completion, I thought this was emphasized in O’Reilly’s later, 
more biologically-based models (as well as work by Marr, Ed Rolls, etc.). 

Response: Thank you for catching this citation error. We now cited McClelland and O’Reilly 
(1994), Hippocampus as a reference to pattern separation. 

12) I also felt that this statement was overly speculative given what the authors actually found 
in the study: “The reduction in hippocampal PS in the Same CTD condition may facilitate the 
separation of and memory for individual contexts, as suggested by prior work documenting that 
greater hippocampal pattern distinctiveness is associated with better subsequent memory 
performance at the item level”

Response: We apologize for this confusion. Given that this statement is not central to the 
present study, we have removed it from the revised manuscript. 
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Updated figures 

Figure 1. Study overview. (A) Proposed cognitive processes underlying the 

reinstatement of learned CTD. Blue text indicates the figures where relevant results are 

shown. (B) Stronger hippocampal separation of contexts sharing the same CTD leads to 

more distinct neural coding of contexts (indicated by the distance between dots of the 

same color) and weaker facilitation (indicated by the thickness of the red arrows) from 

the other context to retrieve the associated CTD.
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Figure 4. Frontoparietal reinstatement of CTD. (A) Four examples (grouped by blue 

background) of how the CTD of context A (top row) and the required task and the CTD 

of a trial in context B (bottom row) define the experimental condition for testing the 

reinstatement of CTD (text label below the background). (B) Left: linear contrast testing 

the reinstatement of CTD. To account for different frequencies of trial types and to make 

the contrast orthogonal to main effects, the weight for Different CTD conditions was 

twice the weight for Same Context and Same CTD conditions. Right: Contrast used to 

test the modulation of CTD reinstatement on RT. (C-F) Frontoparietal ROIs showing 

significant reinstatement of CTD. From left to right: locations of ROI (marked in red), 

group mean (± MSE) of context-trial pattern similarity plotted as a function of 

experimental conditions, quintiles (x-axis) of group mean of log-transformed RT (± MSE) 

plotted as a function of task type and context-trial pattern similarity. The names of the 

ROIs are from the Human Connectome Project’s multi-modal cortical parcellation9. *: p < 

0.05; **: p < 0.01; ***: p < 0.001. con: congruent, inc: incongruent. 
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Figure 5. Hippocampal activity and pattern separation modulate cortical reinstatement of 

CTD. (A) Four examples (grouped by blue background) of how the CTDs of context A 

(top row) and context B (bottom row) define the experimental condition of context-

context pattern similarity (text label below the background). (B) Visualization of the 

hippocampus ROI (top, in red) and the group mean (± MSE) of the three conditions of 

hippocampal context-context pattern similarity (bottom). (C) Group mean (± MSE) of the 

modulation index of each of the four predictors and the ROI univariate activity on the 

CTD reinstatement in each of the four frontoparietal ROIs. (D) Quintiles (x-axis) of group 

mean of CTD reinstatement in BA 9-46d (± MSE) plotted as a function of hippocampal 
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context-context pattern similarity in the Same CTD condition (left panel) and 

hippocampal univariate activity (right panel). *: p < 0.05; **: p < 0.01.



**REVIEWERS' COMMENTS: 

Reviewer #1 (Remarks to the Author): 

I appreciate the authors have improved the manuscript extensively with additional analyses to clarify 

and strengthen the arguments. I have only a few minor points for further polishing. 

1. (Regarding Point 6 and the response) The model in Fig. 1 proposes that context-CTD association 

promotes pattern separations between the contexts which share the same CTD to prevent the context-

context interference from the context1-CTD-contex2 association. Because a stronger context-CTD 

association would be positively related to stronger CTD retrieval, stronger pattern separation would also 

lead to better CTD reinstatement. (If there is another dot in Fig. 1B for the CTD associated to the two 

contexts, the context-CTD association is stronger for Strong separation than Weak separation.) 

However, the authors hypothesized that Weaker context-context separation may facilitate CTD retrieval 

through recurrent process across context1-CTD-contex2 association loop (related to Fig. 1B and Fig. 5D). 

There is a gap in the argument as to why the association can be either interruptive or facilitative in the 

first place. The pattern separation of two same-CTD contexts may also cause the separation between 

the same CTD if the CTD retrieval includes related contextual reinstatement (note: It would be 

interesting to see if stronger context-context pattern separation predicts the CTD in the specific 

context). Weak separation may indicate more integration across context1-CTD-contex2 association 

rather than competition, which could support the authors’ prediction. Without more sound logic, this 

hypothesis seems too post-hoc. This argument may be more suitable in the discussion section rather 

than introduction as a hypothesis. 

2. I appreciate that the authors provided individual data in Supplementary Fig. 3 & 4. However, it would 

be more digestible if means and standard errors are plotted as well. 

Reviewer #2 (Remarks to the Author): 

I am overall satisfied with the authors' responses, but for one: 

#2a. The authors appear to agree that the directionality claims are unsupported by their data, but do 

not remove them from the manuscript - in the abstract, Figure 1, etc. You have enough results in here 

otherwise, it's not clear that you need to assert directionality beyond the ability to resolve such. 

Reviewer #3 (Remarks to the Author): 



The revision has clarified many of the issues in the previous submission. I have a few minor suggestions 

that relate to wording: 

-"Distinct from the pattern separation theory that different memory traces are encoded in sparse neural 

codes, this effect assumes partially overlapping neural codes for overlapping experiences." It does not 

make sense to draw a parallel between a theory and an experimental effect. It would make more sense 

to compare how the data relates to the theory. In this case, the authors would need to explicitly state 

that the data are not compatible with the theory, or if they believe otherwise, try to reconcile the data 

with the theory. It is also odd that the Nonmonotonic plasticity hypothesis is mentioned but not 

explicitly compared with the pattern separation account. I think the authors to need to take a stand as 

to where the theories line up, or to say that there are other possibilities, it isn't really enough to 

describe the data. 

-"direct modulation from the hippocampus to behavior". It isn't clear that the hippocampus modulates 

behavior, rather that there is a direct relationship between hippocampal PS and behavior (i.e., it is 

behaviorally relevant). 

-line 324: "effort" should be "effect". 

-"we leveraged computer-graphics techniques to create spatial contexts" It's sufficient to say that 

subjects performed the task in VR environments. 

-line 522: "We adopted an incidental learning paradigm, as this is typical in the literature of item-specific 

learning of cognitive control demand." This wording is awkward but also not really descriptive of the 

study. The authors themselves describe the task in terms of contextual task demands, so this isn't about 

item-specific learning. 

-Lines 524-526: "explicitly learned CTD will result in similar retrieval processes, given the importance of 

hippocampus in the retrieval of explicitly formed associations. For example, the hippocampal pattern 

differentiation findings (c.f., Fig. 5B) were first observed in studies 

exploring explicit associations..." 

->The authors appropriately state that their task did not necessarily involve implicit learning, but then 

this statement seems to contradict that assertion. I think it is useful to distinguish between incidental vs 

intentional learning (which is relevant to the current study) as compared to implicit vs explicit learning 

(which is irrelevant to the design or points made here). Unfortunately, many readers (including 

specialists) don't seem to understand that difference, and I think it's important to clarify the point if the 

authors are going to include this comment. 

Charan Ranganath (I sign all reviews) 
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Response to reviews 

We thank Dr. Ranganath and the two anonymous reviewers for their positive feedback and 
thoughtful comments, which will further strengthen the manuscript. We revised the manuscript 
accordingly, as described in the below point-by-point responses to the comments.   

Reviewer #1 

1). (Regarding Point 6 and the response) The model in Fig. 1 proposes that context-CTD 
association promotes pattern separations between the contexts which share the same CTD to 
prevent the context-context interference from the context1-CTD-contex2 association. Because a 
stronger context-CTD association would be positively related to stronger CTD retrieval, stronger 
pattern separation would also lead to better CTD reinstatement. (If there is another dot in Fig. 
1B for the CTD associated to the two contexts, the context-CTD association is stronger for 
Strong separation than Weak separation.) However, the authors hypothesized that Weaker 
context-context separation may facilitate CTD retrieval through recurrent process across 
context1-CTD-contex2 association loop (related to Fig. 1B and Fig. 5D). There is a gap in the 
argument as to why the association can be either interruptive or facilitative in the first place. The 
pattern separation of two same-CTD contexts may also cause the separation between the same 
CTD if the CTD retrieval includes related contextual reinstatement (note: It would be interesting 
to see if stronger context-context pattern separation predicts the CTD in the specific context). 
Weak separation may indicate more integration across context1-CTD-contex2 association rather 
than competition, which could support the authors’ prediction. Without more sound logic, this 
hypothesis seems too post-hoc. This argument may be more suitable in the discussion section 
rather than introduction as a hypothesis.

Response: We thank the reviewer for highlighting the need for further clarity here. Following the 
reviewer’s suggestion, we simplified the Introduction by moving the argument related to the 
negative effects of context-context separation on CTD reinstatement to the Discussion (see 
below). Concurrently, we modified Fig. 1 to better emphasize the hypothesis that when two 
contexts have overlapping features (i.e., similar CTDs), theory predicts that their representations 
in hippocampus should be pattern separated/differentiated. Here is the modified Fig. 1:  

Figure 1. Proposed neurocognitive processes underlying the reinstatement of 
learned CTD. Blue text indicates the figures where relevant results are shown.
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In our previous response, we intended to communicate that strong pattern separation can be 
disruptive or facilitative depending on the goal. For the goal of distinguishing between two 
contexts, weak separation is always detrimental as it introduces more interference. Importantly, 
and by contrast, in the case of retrieving the associated CTD, weak separation may be 
facilitative (either through integration or inference at retrieval). As noted above, we moved this 
argument to the Discussion and revised text for clarity: 

“In the present paradigm, we hypothesized that context-level differentiation may 

support achieving the goal of representing the particular context in which one is 

situated as well as the goal of remembering the probabilistically dominant task 

performed within the context. While a priori one might predict that hippocampal 

pattern separation would similarly benefit both goals, it is possible that the effects 

can differ. On the one hand, if the goal is to distinguish between two contexts, 

hippocampal coding of contexts within each pair may be separated to counter the 

interference between contexts caused by the shared CTD. On the other hand, 

pattern separation may be disruptive if the goal is to retrieve the associated CTD: 

Specifically, consider two pairs of contexts (dark and light dots in Fig. 6, each dot 

representing one context), each associated with one CTD. Relative to weaker 

hippocampal pattern separation (right panel of Fig. 6), when pattern separation is 

strong (left panel of Fig. 6) the cuing of one context is less likely to concurrently 

retrieve, or suffer interference from, the other context sharing the same CTD. 

However, while such strong pattern separation might keep the contexts more 

distinct, this may result in a failure to leverage the other context to boost retrieval 

and reinstatement of the shared CTD through recurrent retrieval1, 2. While 

speculative, the divergent effects on the two goals may explain why overlapping 

contexts and their shared CTD were, on average, not linked in a single memory 

trace through integrative encoding3 (which would have been evidenced by 

increased pattern similarity between contexts in the Same CTD condition). At the 

same time, we observed that dlPFC reinstatement of CTD positively scaled with 

the hippocampal pattern similarity between the two overlapping contexts (i.e., 

Same CTD condition, see Fig 5C-D). This observation is broadly consistent with 

models of hippocampal generalization1, 2, as weaker pattern separation may allow 

recurrent retrieval of the other context sharing the CTD, which would facilitate the 

retrieval and reinstatement of the associated CTD. Future research should explore 

whether and how recurrent or chained retrieval of associated task-sets and 

sensory information support prospective planning and flexible behavior in complex 

tasks4.” 
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Figure 6. Relationship between pattern separation of context representations and CTD 
retrieval. Stronger hippocampal separation of contexts sharing the same CTD may lead 
to more distinct neural coding of contexts (indicated by the distance between dots of the 
same color), but weaker facilitation from the other context in supporting retrieval of the 
associated CTD (indicated by the thickness of the red arrows).

Finally, we added clarifying language in two locations related to the non-monotonic hypothesis: 
a) We further clarify that within two partially overlapping associations, the relationship 

between association strength and the degree of separation is non-monotonic based 
on a recent theory (Ritvo et al., 2019): “… strong separation does not necessarily 
result from strong association strength: the relationship between the two can be non-
monotonic5.”

b) To account for the dynamics of pattern separation (e.g., separation can change after 
each retrieval), context-context pattern similarity was calculated at the block level (i.e., 
one similarity score for each context onset) when testing the relationship between 
hippocampal pattern separation and PFC reinstatement of CTD: “To account for the 
possible change in pattern separation after each encounter of a context, context-
context pattern similarity was calculated at the onset of the room for each block, again 
for Same Context, Same CTD, and Different CTD conditions (Fig. 5A)” 

2) I appreciate that the authors provided individual data in Supplementary Fig. 3 & 4. However, it 
would be more digestible if means and standard errors are plotted as well. 

Response: Following the reviewer’s suggestion, we also now plot means and standard errors in 
Supplementary Fig. 3 & 4. These revised figures are also presented here for ease of 
consideration: 
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Supplementary Figure 3. Individual (left panel) and mean ± SEM of (right panel)

context-context pattern similarity for Same Context and Different CTD conditions. 

Each line represents one participant. 
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Supplementary Figure 4. Individual (upper panels) and mean ± SEM of (lower 

panels) context-context pattern similarity, plotted as a function of experimental 

condition (Same Context and Different CTD) and time (run 1 and runs 2-6). Each 

line represents one participant. 
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Reviewer #2

1) The authors appear to agree that the directionality claims are unsupported by their data, but 
do not remove them from the manuscript - in the abstract, Figure 1, etc. You have enough 
results in here otherwise, it's not clear that you need to assert directionality beyond the ability to 
resolve such. 

Response: We thank the reviewer for noting the richness of the data we report, as well as for 
seeking further consideration of this issue. In our response to the previous round of review, we 
provided additional findings supporting the directionality of hippocampal modulation on CTD 
reinstatement in dlPFC (Supplementary Note 7). While not definitive, we believe the data lend 
support for this aspect of our directionality claims, which are also consistent with theories of 
hippocampal mechanisms being the drivers of event feature reinstatement in cortex. To further 
address this point, we modified the text to the following: 

a) To temper the prior causal language, when describing the findings in Fig. 5 (in 
the manuscript title, abstract, and main text), we replaced the words “mediate” and 
“modulate” with either “predict”, “correlate” or “co-vary”. 

b) We further note that: “Collectively, these results are consistent with theories of 
pattern completion that posit that the hippocampus drives restatement of 
associated event features (here the CTD) in cortex (here dlPFC/frontopolar). While 
fMRI data lack the temporal resolution to definitively demonstrate that the 
hippocampal effect precedes the CTD reinstatement in PFC, we performed 
additional control analyses to discount the possibility that the observed 
hippocampal-PFC relationship was due to a modulation from dlPFC/frontopolar 
cortex to the hippocampus or to a common modulator (Supplementary Note 7). 
Again, definitive evidence on this point awaits further experimentation.” 

Please note that we also changed Fig. 1 in response to a comment from R1. With respect to the 
prediction in Fig. 1 regarding the temporal relationship between CTD reinstatement and trial-
wise RTs, we note that this directly stems from the task design. Specifically, the former occurred 
at the onset of the context (i.e., at the beginning of each block), which was earlier than the trials 
that appeared within the block. 

Reviewer #3 

1) "Distinct from the pattern separation theory that different memory traces are encoded in 
sparse neural codes, this effect assumes partially overlapping neural codes for overlapping 
experiences." It does not make sense to draw a parallel between a theory and an experimental 
effect. It would make more sense to compare how the data relates to the theory. In this case, 
the authors would need to explicitly state that the data are not compatible with the theory, or if 
they believe otherwise, try to reconcile the data with the theory. It is also odd that the 
Nonmonotonic plasticity hypothesis is mentioned but not explicitly compared with the pattern 
separation account. I think the authors to need to take a stand as to where the theories line up, 
or to say that there are other possibilities, it isn't really enough to describe the data.
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Response: Following the reviewer’s suggestion, we revised the text to discuss this finding in 
relation to pattern separation theory and the nonmonotonic plasticity hypothesis. The text now 
reads: 

“As with the preceding studies, this finding might to be at odds with pattern 
separation theory, which posits that pattern separation drives the hippocampal 
representations of overlapping events to be distinct as would be expected by 
default for the representations of non-overlapping events. However, such hyper 
pattern distinctiveness for overlapping events may be explained as a secondary 
effect that follows initial pattern separation. Specifically, assuming that pattern 
separation generates initial orthogonal representations for events sharing the 
same feature, the nonmonotonic plasticity hypothesis proposes that pattern 
similarity between the events can decrease further through a pruning process that 
follows weak activation of the overlapping portion of the neural codes5. Indeed, 
analyses of the temporal profile of change in pattern similarity in the Same CTD 
condition lends support for this latter interpretation, as the hyper pattern 
distinctiveness (i.e., lower similarity in Same CTD than in Different CTD) emerged 
over time (Supplementary Note 6).” 

2) "direct modulation from the hippocampus to behavior". It isn't clear that the hippocampus 
modulates behavior, rather that there is a direct relationship between hippocampal PS and 
behavior (i.e., it is behaviorally relevant). 

Response: We thank the reviewer for this comment. Following the reviewer’s guidance, we 
changed the text to read: “The behavioral relevance of the present hippocampal pattern 
distinctiveness effect is supported by the observed relationship…”. 

3) line 324: "effort" should be "effect". 

Response: Thank you; fixed. 

4) "we leveraged computer-graphics techniques to create spatial contexts" It's sufficient to say 
that subjects performed the task in VR environments.

Response: The sentence now reads: “participants performed the task in a 3D virtual 
environment with spatial contexts (i.e., buildings and rooms).” 

5) line 522: "We adopted an incidental learning paradigm, as this is typical in the literature of 
item-specific learning of cognitive control demand." This wording is awkward but also not really 
descriptive of the study. The authors themselves describe the task in terms of contextual task 
demands, so this isn't about item-specific learning. 

Response: We appreciate the Reviewer highlighting the potential for confusion here. Our intent 
is to communicate that the experimental design was inspired by previous studies investigating 
item-specific learning of cognitive control demand. We changed the wording accordingly to: 
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“Inspired by the literature of item-cognitive control demand associations, we adopted an 
incidental learning paradigm.”

6) Lines 524-526: "explicitly learned CTD will result in similar retrieval processes, given the 
importance of hippocampus in the retrieval of explicitly formed associations. For example, the 
hippocampal pattern differentiation findings (c.f., Fig. 5B) were first observed in studies 
exploring explicit associations..." The authors appropriately state that their task did not 
necessarily involve implicit learning, but then this statement seems to contradict that assertion. I 
think it is useful to distinguish between incidental vs intentional learning (which is relevant to the 
current study) as compared to implicit vs explicit learning (which is irrelevant to the design or 
points made here). Unfortunately, many readers (including specialists) don't seem to understand 
that difference, and I think it's important to clarify the point if the authors are going to include this 
comment. 

Response: We thank the reviewer for raising this important conceptual issue. The flagged 
language was added to address Reviewer 1’s previous comment on explicit learning, and thus 
we believe it is important to retain. To stress the difference between learning type (explicit vs. 
implicit) and experimental manipulation (intentional vs. incidental), we added the following 
clarification: 

“We expect that explicitly learned CTD (which can result from intentional or incidental learning)
will result in similar retrieval processes, …”
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