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Supplementary Figure S1: Relative mRNA levels of gadE in MG1655 and its 

derivative mutants at pH 8.0 or 5.5 

 

Relative mRNA levels of gadE in E. coli MG1655 (WT) and its derivative mutants 

grown at pH 8.0 or 5.5 were quantified using qRT-PCR. The gadE-mRNA levels were 

normalised to the reference gene transcript (16S rRNA) from the same RNA samples. 

Values are presented as means ± SEM from three independent experiments (n = 3) and 

were analysed using one-way ANOVA with Bonferroni post-hoc test (*p < 0.05, **p < 

0.01). 
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Supplementary Figure S2: A whole image of the northern blot of Fig. 3b. 

 

The photo was taken by a CCD camera and the image was not processed by any image 

processing softwares. 
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Supplementary Table S1: RPKM ratios of genes encoding core enzymes and 

regulators of the GAD system in MG1655 and its tolC mutant cells at pH 8.0 or 5.5. 
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Supplementary Table S2: RPKM ratios for representative RNA substrates of RNase 

E upon acid treatment in MG1655 cells. 

 

 

PTS, phosphoenolpyruvate: carbohydrate phosphotransferase system  
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Supplementary Table S3: RPKM ratios of genes encoding tna-operon regulators 

upon acid treatment in MG1655 and its tolC mutant cells. 
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Supplementary Table S4: Bacterial strains used in this study.  

 

 

Mutant strains were constructed by P1 phage-mediated transduction using MG1655 or 

its derivatives as acceptors and strains carrying the appropriate mutations as donors. 
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Supplementary Table S5: DNA primers used for qRT-PCR analysis. 
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