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Supplementary Figure 1. Long-term memory scores for wild-type and transgenic flies used during 

conditioning and image acquisition. A value of zero indicates a random decision of the fly between the 

paired and control odors. Bars represent standard error. Transgenic flies displayed normal LTM 

performances. 
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Supplementary Figure 2. Quantitative comparison of our spot detection method alone (without 

tracking) against two other state of the art spot detection methods on a range of examples. Our 

approach, called Smax here, is compared to the UDWT 38 and eMax 39 using 5 datasets to demonstrate 

that it is particularly efficient at adressing the case where nuclei are densely packed. The two other 

methods were promoted in a recent review on spot detection 37. They are considered efficient and only 

require a few parameters. Importantly, they are widely used. (A) A 3D stack of C. elegans with manual 

annotation of distinguishable nuclei. (B) A synthetic reproduction where ground truth is known. (C) A 

3D stack of a Drosophila mushroom body with a large quantity of manually annotated packed nuclei. 

(D) A synthetic reproduction where ground truth is known. (E) A set of manually annotated centrioles 

from ependymal cells. A volumetric reconstruction and an axial maximum intensity projection are shown 

for each 3D stack. In each row, the results box indicates (from left to right) the values of false positives 

(FP), true positives (TP), false negatives (FN; colored bars indicating the proportion for each case) and 

the Jaccard index (Jacc). TP+FN is either the ground truth count for synthetic data or is assessed 

manually for real 3D stack. FP+TP corresponds to the detected objects count. A detection is considered 

positive when it falls in a sphere the size of a nucleus, around any of the original nuclei positions. The 

sole parameter of Smax was set to the average nucleus diameter which can be easily estimated from 

the data. Parameters for the two other methods were chosen to be the best possible: a large range of 

parameters were tried automatically in order to choose the combination that produces the detections 

that best match the ground truth (best Jaccard index). Importantly, the ground truth must then be known 

https://paperpile.com/c/HZNvHx/bIxJ
https://paperpile.com/c/HZNvHx/vx1L
https://paperpile.com/c/HZNvHx/w3Fz
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to systematically scan for parameters and choose the best set, so in principle choosing the parameters 

of the two others method this way disadvantaged our own approach that does not require any parameter 

settings. We chose to scan parameter ranges such that the difference of results which looks large could 

not be blamed on missettings the other methods’ parameters: we objectively selected the best ones for 

the two other approaches. 

 

 

 

 

 
Supplementary Figure 3. Parameters estimation for the density-based algorithm DBSCAN. DBSCAN 

is a clustering algorithm that computes local density to identify clusters. This method is also able to 

handle noise by design, meaning that not every point in the dataset will necessarily be part of a given 

cluster in opposition to widely used algorithms such as k-means or Gaussian mixture models. These 

characteristics make this approach highly relevant to our problematic. The algorithm consists in an 

iterative process that uses two parameters to define density: ε (a distance measurement) and 

min_samples (a minimum amount of points). From our data, it was possible to estimate the best 

parameters for clustering. ε is directly related to the size of the nuclei, so we set it to the FWHM obtained 

from the average nucleus size at the detection step. On the other hand, the minimum number of points 

could not be directly estimated as the ε value, mainly because it depends on several uncontrolled factors 

such as the movement of the brain and the proportion of missing detections in a given time frames. We 

solved this problem through an iterative process. First, we assumed that the final number of detected 

clusters should be close to the median number of detections over time. This is a reasonable hypothesis 

since the number of neurons does not change through time. Then, the DBSCAN algorithm is iteratively 

applied for increasing values of  min_samples. The min_samples value that best match the median 

number of detections over time is chosen as parameter for DBSCAN (indicated by the pink dot in the 

figure example). 
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Supplementary Figure 4. Time information improves the quality of clusters. (A) A schematic 

representation of a case where the median number of time frames in a cluster is 2, meaning it contains 

2 trajectories. The cluster is then automatically split. (B) Real cluster where the median number of time 

frames is 1, meaning it contains only one trajectory. Then duplicates (the points connected by a dash 

line) are marked as noise (black dots on the right image) and the point closest to the centroid cluster is 

kept while the other is discarded from the trajectory. (C) Real cluster where the median number of time 

frames is 2, with the resulting split cluster (in blue and red).  

 



5 

 

Supplementary Figure 5. Synthetic 3D+time stacks of densely packed nuclei to evaluate the 

tracking performance against other methods. (A) Maximum intensity projection of a real 3D 

stack that provides a foreground region to generate synthetic somata, along the Z axis. (B) 

Maximum intensity projection of the same 3D stack along the Y axis. (C) 2000 generated 

trajectories in successive volumes over time (see online methods). (D) Detail of a central 

region of the generated trajectories. (E) Maximum intensity projection of a synthetic 3D+time 

sequence generated by convolution and noise addition from the generated trajectories, along 

the Z axis. (F) Maximum intensity projection of the same synthetic 3D stack along the Y axis. 

Scale bars are 10µm. Although synthetic 3D + time sequences are close to the real 3D + time 

sequences, they are of course not similar, but a great advantage over manual annotation is 

that the ground truth is known and all (2000) nuclei are then annotated. Therefore they enable 

to provide satisfactory quantitative comparisons between algorithms for detection and 

tracking. Importantly, they enable to quantify False Positive (Supplementary Figure 6). 
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Supplementary Figure 6. Validation of our tracking approach Memotrack against two other 

methods, ICY and TrackMate, using manual annotated and synthetic 3D+time sequences. A. 

Results obtained using manual annotations and considering only complete trajectories along 

the whole sequence. That is, if the duration of a trajectory provided by a software program 

was less than the length of the sequence, it was discarded. This is because the signal needs 

to be captured along the whole sequence, not during a subpart of it. TP is True Positive, FP 

is False Positive, FN is False Negative, Result is the output of a software and Ground is the 

ground truth. Note that False Positive are not available for manual annotation because it was 

impossible to annotate exhaustively all trajectories of a 3D+time sequence. Memotrack, our 

method, outperforms other methods with 18 out of the 19 annotated trajectory correctly 

retrieved. B. Results obtained using manual annotations and considering trajectories with 

length at least as long as half of the whole sequence. This relax in stringency increases the 

number of successfully tracked nuclei by other software. Those results would not be 

acceptable or even useful as such to monitor the signal all along the sequence but they enable 

to understand partly the weakness of the other approaches. Other approaches cannot track 

nuclei over a long time period without failing because of the low accuracy of spot detection. 

Our approach, that rely on the non rigid registration of the whole sequence is very robust to 

detection errors and actually tracks all nuclei that were successfully detected enough time to 

form a cluster. For the same reason, the length threshold cannot improve the result obtained 

by our approach as all trajectories retrieved  is the length of the full sequence. C. Results 

obtained using synthetic annotations and considering only complete trajectories along the 

whole sequence. Memotrack, our method, outperforms other methods. D. Results obtained 

using synthetic annotations and considering trajectories with length at least as long as half of 

the whole sequence. Interestingly, while unusable, we see here that this relax in stringency 

increases the number of tracked nuclei by other methods but also increases the number of 

false positive, indicating that even small trajectories provided by those software program are 

not necessarily correct. 
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Supplementary Figure 7. Visualization of manually annotated nuclei trajectories (in black, 

see online methods) and their corresponding trajectories obtained by the tracking software (in 

color). Top row: only complete trajectories that last the whole sequence were kept, it is the 

case we were interested in to monitor the single cell signal all along the sequence. We can 

see that, beyond the fact our method tracks correctly most manually annotated nuclei, the 

closest trajectories provided by ICY may in fact match other nuclei and be False Positives, an 

hypothesis that cannot be validated or unvalidated because it was impossible to manually 

annotate all trajectories in the sequence of 3D stacks. Bottom row: result when we allowed 

the length of the trajectories to be shorter but at least as long as half of the sequence. Again, 

those trajectories could not be used for the analysis as they are too short but underline the 

main limitation of other approaches: other approaches cannot track object stably over a long 

period of time due to the unreliability of the spot detection step. 
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Supplementary Figure 8. Comparison of response between different odors. (A) Schematic 

representation of two mean Jaccard index were collected from each fly to produce: 1) a similarity 

measure between two presentations of the same odor and 2) a similarity measure between two 

presentations of different odors. Neurons are represented by rows, and odor stimulation by columns 

labeled AIR, OCT or MCH and a digit 1 or 2 numbering the presentations. A green disk indicates that 

the neuron was detected as firing while a white disk indicates that it wasn’t. For each fly, the Jaccard 

indices between two presentations of the same odor (MCH1 vs MCH2 and OCT1 vs OCT2) and 

between presentation of two different odors (MCH1 vs OCT1, MCH2 vs OCT1 etc) were computed and 

separately averaged, producing 2 Jaccard indices per fly. The higher the Jaccard index value, the more 

similar the neuronal response between two presentations on the same fly. (B) Distribution of the two 

Jaccard indices on all flies that passed the quality filter (n=12 flies,  paired t-test with p-value 

0.0043707). This comparison shows that while some neurons respond to both odors, some neurons 

are odor specific and pull the Jaccard index to be significantly higher for two presentations of the same 

odor. (C) One example fly from the dataset for illustration, on which each trace corresponds to the signal 

of one individual neuron, and stimulus regions are marked with hatched bars. (D) Clustering of the 

signals from responsive neurons of the example fly in C using the cosine distance. This clearly shows 

that neuronal signal clusters per odor presentations and that single neurons responding exclusively to 

a given odor can be identified using our approach. 
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Supplementary Figure 9. Automated fly filter. In some acquisitions, the KCs didn’t show any response 

to the odor, while other acquisitions displayed a continuously erratic response. These are invalid 

acquisitions that were presumably caused by errors during the fly preparation. To avoid biases of a 

manual selection from the datasets, we developed an automated procedure to sort the flies. It consisted 

in comparing the distribution of responsive neurons within the window of octanol stimulation and the 

initial control window at the beginning of the sequence, using a Mann-Whitney rank test. Flies with a p-

value higher than 0.01 were excluded (“Fail”), the remaining flies were used for the analyses (“Pass”). 

This process guaranteed that the analysis was performed using flies that showed a biological response. 

Note that for the control experiment with several odor presentations in a row to the same fly, we kept 

only those flies that passed this filter test for all odor presentations. As this strategy increased drastically 

the stringency of the filter for these longer sequences, we excluded it from this plot that brings together 

regular samples with only one odor presentation. 
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Supplementary Figure 10. Visualization of a few examples of analyzed flies. The top group shows 

examples from the unpaired control, whereas the bottom group shows flies subjected to paired 

conditioning. The 3D scatterplot illustrates the tracked detections for each fly (comprising a projection 

of all time frames to the 3D space); each track is individually colored. The line plot directly under each 

scatterplot shows the normalized signal measured for each neuron. The three hashed bars indicate the 

control regions: the first is no stimulus, the second is air and the third is octanol. 
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Supplementary Figure 11. In this control, we rule out the possibility for the observed increase in neuron 

count to be an artefact due to an increase in neighboring neuron intensity by applying a “crosstalk filter”. 

From each group of closeby responsive neurons (defined as neurons closer than twice the diameter of 

the soma), only the neuron with the highest signal was kept. Thus the crosstalk filter discarded possibly 

suspectful neuron from the analysis, artificially ensuring that no neuron counted as responsive could be 

located close to one another. (A) Summary of the dataset, where each column corresponds to one fly. 

The light gray color shows the number of detected neurons, dark gray is the amount of responsive 

neurons (17.1% of total detections in average), and green represents only those neurons that passed 

the so called crosstalk filter, or in other words were kept (63% of the responsive neurons in average). 

(B) The same distributions as in Figure 3, after applying the crosstalk filter (and thus removing with high 

stringency nuclei that might be erroneously selected as responsive), show that the difference in count 

between the group trained with OCT and its control is conserved (p-value: 0.0014992), and that the 

difference in count remains non-significant for the control group with massed training (p-value: 

0.881899). A two sided Mann-Whitney test was performed in both cases.  (C)  Furthermore, mean 

signal intensities from responsive neurons still shows no statistically significant differences, both for the 

group trained with OCT (p-value: 0.712850) and for the massed control group (p-value: 0.958129). A 

two sided t-test was performed in both cases. The sample sizes from the 4 groups (from left to right) 

are 29, 27, 14 and 16. 
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Supplementary Figure 12. Responsive neurons of flies trained with MCH and tested with OCT. Left: 

There is no significant difference in the count of OCT-responding neurons between the group trained 

with MCH and its unpaired control (Mann-Whitney test two-sided, p-value: 0.363336). During the 

conditioning, flies that received MCH also received OCT (albeit without the presentation of shocks). 

Right: Response intensities do not differ significantly between the MCH-trained paired and unpaired 

group (Mean signal comparison t-test p-value: 0.067987). The sample sizes is 11 for the paired and 15 

for the unpaired group. 
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Supplementary Figure 13. The total number of detected neurons is stable before and after applying 

our quality control filter. (A) The total amount of soma detected using the Gal4-driver channel for all 

tested groups does not show any significant difference between the datasets (Kruskal-Wallis H-test p-

value: 0.303595). The sample sizes from the 9 groups (from left to right) are 23, 37, 44, 22, 23, 24 and 

22.  (B) The same distributions as in (A), but restricted to the flies that passed the automated quality 

control filter (Kruskal-Wallis H-test p-value: 0.1549522). The sample sizes from the 7 groups (from left 

to right) are 14, 30, 31, 12, 15, 16 and 17. 
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Supplementary Figure 14. Detection of 3D stack artifacts. A 3D volumetric reconstruction of the 

mCherry channel is shown for three consecutive time frames; the artifact of an anchored z position is 

noticeable in the middle time frame. To automatically detect the artifact, we made the following 

assumptions: 1) during a normal acquisition, the mushroom body center of mass (based on the set of 

detected nuclei) should only move slightly. 2) Since a considerable part of the MB was missing when 

this artifact arose, there should be drastic shift in the center of mass at this time frame. Thus, we 

measured the derivative of the centroid position through time, normalized to a range between 0 and 1. 

This quality measurement can then work as an indirect way to identify the time frames in which there 

was a microscope artifact. A threshold must still be set as the minimum quality level that can be used 

for the analysis; by visually comparing the quality measurement and the 3D stacks, the value was set 

at 80%. Time frames with lower values were thus removed, and the missing neuron positions 

interpolated in time. 
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Supplementary Videos 

 

 
Supplementary Video 1. Volumetric rendering of the raw acquired data. The videos on the left 

represent the nuclei of the mushroom body neurons, while the videos on the right portray the GCaMP 

activity of those neurons. The appearance of ‘OCT’ at the top right of each row corresponds to the time 

when flies received an octanol stimulation. 
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Supplementary Video 2.  Volumetric rendering of GCaMP activity together with tracked neurons. The 

top row shows the signal for three flies from the unpaired control group, while the bottom row shows 

three flies from the group that received the paired conditioning. Flies received the octanol stimulation 

starting at frame 90 (corresponding to the appearance of ‘OCT’ at the top right of each row). 
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Supplementary Video 3. Generation of synthetic sequence of 3D stacks. Left column shows the middle 

2D image (not a maximum intensity projection) from a real 3D stack, in XY (top) and XZ (bottom) views 

over time. Panels in the middle column shows the generated synthetic coordinates (see online methods) 

based on the real 3D stack on the left. The top panel shows an overview of all generated 3D positions 

overtime corresponding to the MB cell bodies on the left. The bottom panel shows a zoomed version 

inside the synthetic cloud and synthetic trajectories are drawn over time. Right column shows the middle 

image of the resulting synthetic sequence obtained by convolving the synthetic positions with the PSF 

of the microscope, adding noise and a similar subsampling to reproduce the anisotropy of the real 

sequence of 3D stacks, in XY (top) and XZ (bottom) views over time.  

 

 


