

Supporting Information

for

Efficient synthesis of piperazinyl amides of 18β-glycyrrhetinic acid

Dong Cai, ZhiHua Zhang, Yufan Meng, KaiLi Zhu, LiYi Chen, ChangXiang Yu, ChangWei Yu, ZiYi Fu, DianShen Yang and YiXia Gong

Beilstein J. Org. Chem. 2020, 16, 798–808. doi:10.3762/bjoc.16.73

Preparation procedures and analytical data of compounds 1, 4–9, 11, 13, 15–18

Table of contents

Synthetic procedures
¹ H and ¹³ C NMR and HRMS of compound (1)S19
¹ H and ¹³ C NMR and HRMS of compound (8)
¹ H and ¹³ C NMR and HRMS of compound (12)S22
¹ H and ¹³ C NMR and HRMS of compound (6)
¹ H and ¹³ C NMR and HRMS of compound (7)S25
¹ H and ¹³ C NMR and HRMS of compound (9)S26
¹ H and ¹³ C NMR and HRMS of compound (14)S28
¹ H and ¹³ C NMR and HRMS of compound (11)S29
¹ H and ¹³ C NMR and HRMS of compound (15)S31
¹ H and ¹³ C NMR and HRMS of compound (13)S32
¹ H and ¹³ C NMR and HRMS of compound (16)S34
¹ H and ¹³ C NMR and HRMS of compound (4)S35
HRMS of compound (5)
¹ H and ¹³ C NMR and HRMS of compound (17)S37
¹ H and ¹³ C NMR and HRMS of compound (18)S38

Experimental

Materials and methods

Unless otherwise required, all reagents used in the experiment were purchased as commercial analytical grade and used without further purification. Melting points were obtained in open capillary tubes with a WRS-1B melting point apparatus and were uncorrected (Shen Guang Electric Appliances Co., Ltd., Shanghai, CHN). The structures of the synthetic compounds were confirmed by ¹H NMR and ¹³C NMR spectra on 400/54Premium Shielded NMR Magnet System (Agilent Technologies, Santa Clara, CA, USA) with tetramethylsilane (TMS) as an internal standard. HRMS spectral data were collected from an Agilent 6200 Series TOF and 6500 Series Q-TOF LC/MS System B.05.01. (B5125) and Thermo Scientific LTQ-Orbitrap XL in positive ion modes (Agilent Technologies, Santa Clara, CA, USA). X-ray single-crystal structure determinations were carried out on a Bruker SMART APEX II CCD diffractometer (Bruker AXS GMBH, Karlsruhe, GER).

Synthesis of 18β–GA analogs

3β -Acetoxy-11-oxo-18 β -olean-12-en-30-oic acid (2)

18β-Glycyrrhetinic acid (0.47 g, 1.0 mmol) was heated at 130 °C with acetic anhydride (2.04 g, 20 mmol) for 1 h. Then, H₂O was added to the cool solution. The product was filtered off and washed with cold H₂O.

A white solid; yield, 99.2%; m.p. 304.4.0-306.1 °C (literature [1]: 312.0-313.0 °C); ¹H NMR (400 MHz, Chloroform-*d*) δ 5.69 (d, *J* = 1.7 Hz, 1H, CH-12), 4.50 (dt, *J* = 11.7, 2.8 Hz, 1H, CH-3), 2.77 (dd, *J* = 14.0, 4.0 Hz, 1H, CH-1), 2.35 (s, 1H, CH-9), 2.03 (s, 2H, acetyloxy CH₃), 1.35 (m, 3H, CH₃-27), 1.21 (s, 3H, CH₃-25), 1.14 (s, 3H, CH₃-26), 1.10 (s, 3H, CH₃-29), 0.86 (s, 6H, CH₃-23/24), 0.85 (s, 3H, CH₃-28), 0.77 (m, 1H, CH-5); ¹³C NMR (101 MHz, Chloroform-*d*) δ 200.41 (C11), 181.77 (30), 171.08 (acetyloxy C=O), 169.55 (C13), 128.37 (C12), 80.61 (C3), 61.66 (C9), 54.97 (C5), 48.21 (C18), 45.44 (C14), 43.79 (C20), 43.17 (C8), 40.78 (C19), 38.73 (C1), 38.02 (C4), 37.67 (C22), 36.89 (C10), 32.66 (C7), 31.84 (C17), 30.86 (C21), 28.52 (C29), 28.44 (C28), 28.02 (C23), 26.43 (C2), 26.35 (C15), 23.54 (C16), 23.32 (C27), 21.32 (acetyloxy CH₃), 18.64 (C26), 17.33 (C6), 16.67 (C25), 16.39 (C24). HRMS (*m/z*): [M + H]⁺ calcd. for C₃₂H₄₉O₅: 513.3580, found: 513.3580.

General procedure for the preparation of compounds (4) and (5)

The compound **3** (0.44 g, 0.90 mmol) was dissolved in CH_2Cl_2 (30 mL) at 0 °C under stirring, then triethylamine (0.3 g, 3.00 mmol) and anhydrous piperazine (0.23 g, 2.70 mmol) were added. The reaction was stirred at 0 °C for 30 min. After reaction, the mixture was removed, and the residue was subjected to column chromatography (silica gel, CH_2Cl_2 -methanol, 5:1) to yield compounds (**4**) and (**5**).

3β-Acetoxy-11-oxo-18β-olean-12-en-30-carbonyl piperazine (**4**) A white solid; yield, 36.1%; m.p. 237.2-239.0 °C (literature [2]: 160 °C-decomp.); ¹H NMR (400

MHz, Chloroform-d) δ 5.67 (s, 1H, CH-12), 4.49 (dd, J = 11.7, 4.8 Hz, 1H, CH-3), 3.61 (q, J = 4.7 Hz, 4H, piperazine CH₂×2), 2.85 (t, J = 5.0 Hz, 4H, piperazine CH₂×2), 2.77 (dt, J = 13.7, 3.6 Hz, 1H, CH-1), 2.33 (s, 1H, CH-9), 2.29 – 2.23 (m, 1H, CH-16), 2.16 (s, 3H, acetyloxy CH₃), 1.33 (s, 3H, CH₃-27), 1.20 (s, 3H, CH₃-25), 1.13 (s, 3H, CH₃-26), 1.10 (s, 3H, CH₃-29), 0.85 (s, 6H, CH₃-23/24), 0.79 (s, 3H, CH₃-28), 0.76 (m, 1H, CH-5); ¹³C NMR (101 MHz, Chloroform-d) δ 200.01 (C11), 173.86 (C30), 171.03 (acetyloxy C=O), 169.67 (C13), 128.46 (C12), 80.59 (C3), 61.67 (C9), 54.99 (C5), 48.21(C18), 46.13 (piperazine C×2), 45.27 (C14), 43.77 (C20), 43.71 (C8), 43.26 (piperazine C×2), 38.78 (C19), 38.01 (C1/4), 37.73 (C22), 36.91 (C10), 33.38 (C7), 32.72 (C17), 31.76 (C21), 28.41 (C29), 28.02 (C28), 27.02 (C23), 26.69 (C2), 26.41 (C15), 23.54 (C16), 23.07 (C27), 21.32 (acetyloxy CH₃), 18.65 (C26), 17.35 (C6), 16.66 (C25), 16.41 (C24); HRMS (m/z): $[M + H]^+$ calcd. for C₃₆H₅₇N₂O₄: 581.4318, found: 581.4316. Bisamide (5) A white solid; yield, 64.6%; m.p. 211.4-212.0 °C. HRMS (m/z): [M + Na] ⁺ calcd. for C₆₈H₁₀₂N₂NaO₈: 1097.7534, found: 1097.7535.

3β-Acetyloxy -11-oxo-18β-olean-12-en-30-carbonyl piperazine (**4**)

Compound **8** (0.68 g, 1.0 mmol) was dissolved in CH_2Cl_2 (10 mL) at 0 °C under stirring. Trifluoroacetic acid (5 mL) was added, and the reaction was stirred at 0 °C for 3 h. After reaction, the mixture was made basic with a saturated Na_2CO_3 solution. This mixture was extracted with CH_2Cl_2 , dried over Na_2SO_4 , and concentrated to give the desired product.

A white solid; yield, 94.1%; the chemical structures were characterized as above.

1H-Benzo[d][1,2,3]*triazol-1-yl-3β-acetoxy-11-oxo-olean-12-en-30-oate* (**6**) Compound **2** (0.51 g, 1.0 mmol) was dissolved in acetonitrile (20 mL), then EDCI (0.23 g, 1.2 mmol), triethylamine (0.13 g, 1.2 mmol) and HOBt (0.16 g, 1.2 mmol) were added. The mixture was stirred at room temperature for 1 h. The solvent was removed under vacuum to give a residue which was treated with a mixture of ethanol and water. The solution was stirred at room temperature for 30 min, and a solid was obtained by filtration while washing with H₂O.

A white solid; yield, 97.8%; m.p. 208.7 °C - decomp. (literature [3]: 192-195 °C, decomp.); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.08 (d, *J* = 8.4 Hz, 1H, phenyl), 7.56 (t, *J* = 7.6 Hz, 1H, phenyl), 7.44 (t, *J* = 7.7 Hz, 1H, phenyl), 7.34 (d, *J* = 8.3 Hz, 1H, phenyl), 5.71 (s, 1H, CH-12), 3.22 (dd, *J* = 10.7, 5.5 Hz, 1H, OH-3), 2.77 (dt, *J* = 13.5, 3.6 Hz, 1H, CH-1), 2.39 – 2.23 (m, 2H, CH-9/16), 1.41 (s, 3H, CH₃-27), 1.15 (s, 3H, CH₃-25), 1.13 (s, 3H, CH₃-26), 1.00 (s, 3H, CH₃-29), 0.93 (s, 3H, CH₃-23), 0.80 (s, 3H, CH₃-24), 0.72 (d, *J* = 11.6 Hz, 1H, CH-5); ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.91 (C11), 172.51 (C30), 167.60 (C13), 143.54 (phenyl), 129.02 (phenyl), 128.83 (phenyl), 128.54 (C12), 124.82 (phenyl), 120.66, (phenyl) 107.81 (phenyl), 78.70 (C3), 61.83 (C9), 54.89 (C5), 48.20 (C18), 45.36 (C20), 44.36(C8), 43.15(C19), 40.85 (C1), 39.11 (C4), 37.75 (C22), 37.06 (C10), 32.72 (C7), 31.97 (C17),

31.16 (C21), 28.54 (C29), 28.08 (C28), 28.02 (C23), 27.25 (C2), 26.34 (C15/16), 23.48 (C27), 18.67 (C26), 17.45 (C6), 16.34 (C25), 15.57 (C24); HRMS (*m*/*z*): [M + H]⁺ calcd. for C₃₆H₅₀N₃O₄: 588.3801, found: 588.3801. *1H-Benzo[d]*[1,2,3]triazol-1-yl-3β-hydroxy-11-oxo-olean-12-en-30-oate (**7**)

 18β -Glycyrrhetinic acid (0.47 g, 1.0 mmol) was dissolved in acetonitrile (20 mL), then EDCI (0.23 g, 1.2 mmol), triethylamine (0.13 g, 1.2 mmol) and HOBt (0.16 g, 1.2 mmol) were added. The mixture was stirred at room temperature for 1 h. The solvent was removed under vacuum to give a residue which was treated with a mixture of ethanol and water. The solution was stirred at room temperature for 30 min, and a solid was obtained by filtration while washing with H₂O.

A white solid; yield, 97.2%; m.p. 263.4-264.4 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09 (d, *J* = 8.4 Hz, 1H, phenyl), 7.57 (t, *J* = 7.6 Hz, 1H, phenyl), 7.44 (t, *J* = 7.7 Hz, 1H, phenyl), 7.35 (d, *J* = 8.3 Hz, 1H, phenyl), 5.72 (s, 1H, CH-12), 4.52 (dd, *J* = 11.6, 4.8 Hz, 1H, CH-3), 2.78 (dt, *J* = 13.8, 3.7 Hz, 1H, CH-1), 2.37 (s, 1H, CH-9), 2.05 (s, 3H, acetyloxy CH₃), 1.41 (s, 3H, CH₃-27), 1.21 (s, 3H, CH₃-25), 1.16 (s, 6H, CH₃-26/29), 0.94 (s, 3H, CH₃-23), 0.88 (s, 6H, CH₃-24/28), 0.80 (m, 1H, CH-5); ¹³C NMR (101 MHz, Chloroform*d*) δ 199.76 (C11), 172.51 (30), 171.01 (acetyloxy C=O), 167.60 (C13), 143.55 (phenyl), 128.99 (phenyl), 128.81 (phenyl), 128.54 (C12), 124.80 (phenyl), 120.67 (phenyl), 107.80 (phenyl), 80.53 (C3), 61.74 (C9), 54.98 (C5), 48.19 (C18), 45.37 (C14), 44.35 (C20), 43.14 (C8), 40.84 (C19), 38.74 (C1), 38.02 (C4), 37.74 (C22), 36.91 (C10), 32.67 (C7), 31.97 (C17), 31.17 (C21), 28.53 (C29), 28.02 (C28/23), 26.33 (C2/15), 23.52 (C16), 23.42 (C27), 21.32 (acetyloxy CH₃), 18.67 (C26), 17.34 (C6), 16.66 (C25), 16.38 (C24); HRMS (m/z): (M + H⁺) calcd. for C₃₈H₅₂N₃O₅: 630.3907, found: 630.3904.

tert-Butyl 4-(3β-acetoxy-11-oxo-18β-olean-12-en-30-carbonyl)piperazine-1carboxylate (**8**)

Method A: Compound **2** (0.51 g, 1.0 mmol) was dissolved in acetonitrile (20 mL), then EDCI (0.23 g, 1.2 mmol), triethylamine (0.13 g, 1.2 mmol) and HOBt (0.16 g, 1.2 mmol) were added. The mixture was stirred at room temperature for 20 min. The 1-Boc-piperazine (0.46 g, 2.5 mmol) was added, and the mixture was stirred under reflux for 10 h. The solvent was removed under vacuum to give a residue which was treated with a mixture of ethanol and water. The solution was stirred at room temperature for 30 min, and a solid was obtained by filtration while washing with H₂O.

Method B: Compound **9** (0.64 g, 1.0 mmol) was heated at 130 °C with acetic anhydride (2.04 g, 20 mmol) for 1 h. Then, H₂O was added to the cool solution. The product was filtered off and washed with cold H₂O.

A white solid; yield, 95.7%; m.p. 221.6-223.0 °C; ¹H NMR (400 MHz, Chloroformd) δ 5.66 (s, 1H, CH-12), 4.50 (dd, J = 11.7, 4.7 Hz, 1H, CH-3), 3.66 – 3.50 (m, 4H, piperazine CH₂×2), 3.40 (d, J = 5.1 Hz, 4H, piperazine CH₂×2), 2.79-2.74 (m, 1H, CH-1), 2.33 (s, 1H, CH-9), 2.30 – 2.22 (m, 1H, CH-16), 2.03 (s, 3H, acetyloxy CH₃), 1.45 (s, 9H, tert-butyl CH₃×3), 1.33 (s, 3H, CH₃-27), 1.20 (s, 3H, CH₃-25), 1.14 (s, 3H, CH₃-26), 1.09 (s, 3H, CH₃-29), 0.85 (s, 6H, CH₃-23/24), 0.79 (s, 3H, CH₃-28), 0.76 (m, 1H, CH-5); ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.95 (C11), 174.12 (C30), 171.03 (acetyloxy C=O), 169.46 (C13), 154.52 (Boc C=O), 128.50 (C12), 80.58 (tert-butyl C), 80.24 (C3), 61.67 (C9), 54.99 (C5), 48.12 (C18), 45.27 (C14), 43.87 (piperazine C×2), 43.75 (C20), 43.25 (C8/19), 38.77 (C1/C4), 38.01 (piperazine C×2), 37.70 (C22), 36.90 (C10), 33.22 (C7), 32.72 (C17), 31.75 (C21), 28.40 (C29), 28.35 (tert-butyl CH₃×3), 28.02 (C28), 27.05 (C23), 26.68 (C2), 26.38 (C15), 23.54 (C16), 23.08 (C27), 21.31 (acetyloxy CH₃), 18.65 (C26), 17.35 (C6), 16.66 (C25), 16.40 (C24); HRMS (*m*/*z*): [M + H] ⁺ calcd. for C₄₁H₆₅N₂O₆: 681.4843, found: 681.4841.

tert-Butyl 4-(3β-hydroxyl-11-oxo-18β-olean-12-en-30-carbonyl)piperazine-1carboxylate (**9**)

 18β -Glycyrrhetinic acid (0.47 g, 1.0 mmol) was dissolved in acetonitrile (20 mL), then EDCI (0.23 g, 1.2 mmol), triethylamine (0.13 g, 1.2 mmol) and HOBt (0.16 g, 1.2 mmol) were added. The mixture was stirred at room temperature for 20 min. The 1-Boc-piperazine (0.46 g, 2.5 mmol) was added, and the mixture was stirred under reflux for 10 h. The solvent was removed under vacuum to give a residue which was treated with a mixture of ethanol and water. The solution was stirred at room temperature for 30 min, and a solid was obtained by filtration while washing with H₂O.

A white solid; yield, 94.3%; m.p. 224.3-225.7 °C; ¹H NMR (400 MHz, Chloroformd) δ 5.66 (s, 1H, CH-12), 3.63-3.52 (m, 4H, piperazine CH₂×2), 3.39 (t, *J* = 5.2

Hz, 4H, piperazine CH₂×2), 3.22-3.18 (m, 1H, OH-3), 2.79-2.74 (m, 1H, CH-1), 2.31 (s, 1H, CH-9), 2.30-2.23 (m, 1H, CH-16), 1.45 (s, 9H, tert-butyl CH₃×3), 1.34 (s, 3H, CH₃-27), 1.20 (s, 3H, CH₃-25), 1.11 (s, 3H, CH₃-26), 1.10 (s, 3H, CH₃-29), 0.98 (s, 3H, CH₃-23), 0.79 (s, 3H, CH₃-24), 0.78 (s, 3H, CH₃-28), 0.68 (d, J = 11.6 Hz, 1H, CH-5); ¹³C NMR (101 MHz, Chloroform-d) δ 200.10 (C11), 174.13 (C30), 169.40 (C13), 154.53 (Boc C=O), 128.56 (C12), 80.25 (C3), 78.75 (tert-butyl C), 61.77 (C9), 54.92 (C5), 48.08 (C18), 45.26 (C14), 43.88 (C20), 43.82 (piperazine C×2), 43.26 (C8/C19), 39.12 (C1/C4), 39.10 (piperazine C×2), 37.70 (C22), 37.06 (C10), 33.16 (C7), 32.79 (C17), 31.75 (C21), 28.40 (C29), 28.36 (tert-butyl CH₃×3), 28.07 (C28), 27.28 (C23), 27.05 (C2), 26.69 (C15), 26.39 (C16), 23.14 (C27), 18.66 (C26), 17.46 (C6), 16.36 (C25), 15.56 (C24); HRMS (*m*/*z*): [M + H] ⁺ calcd. For C₃₉H₆₃N₂O₅: 639.4737, found: 639.4736. *N-(2-chloroacetyl) piperazinyl 3β-(2-chloroacetoxy)-11-oxo-18β-olean-12-en-*29-amide (**11**)

Compound **9** (0.64 g, 1.0 mmol) was heated at 130 °C with chloroacetic anhydride (3.42 g, 20 mmol) for 1 h. Then, H₂O was added to the cool solution. The product was filtered, washed with cold H₂O and dried.

A white solid; yield, 99%; m.p. 177.4-175.7 °C; ¹H NMR (400 MHz,

Chloroform-*d*) δ 5.67 (s, 1H, CH-12), 4.60 (dd, J = 11.8, 4.7 Hz, 1H, CH-3),

4.14 – 3.99 (m, 4H, piperazine CH₂×2), 3.73 – 3.66 (m, 4H, piperazine

CH₂×2), 3.66 – 3.55 (m, 2H, CH₂-Cl), 3.53 (d, *J* = 5.4 Hz, 2H, CH₂-Cl), 2.81

(dt, J = 13.8, 3.7 Hz, 1H, CH-1), 2.35 (s, 1H, CH-9), 2.30 (dd, J = 13.4, 3.8 Hz,

1H, CH-16), 1.35 (m, 3H, CH₃-27), 1.23 (s, 3H, CH₃-25), 1.15 (s, 3H, CH₃-26), 1.11 (s, 3H, CH₃-29), 0.89 (s, 6H, CH₃-23/24), 0.81 (s, 3H, CH₃-28), 0.79 (m, 1H, CH-5); ¹³C NMR (101 MHz, chloroform-*d*) $\overline{0}$ 199.81 (C11), 174.25 (C30), 169.44 (C13), 167.12 (chloroacetoxy C=O), 165.32 (chloroacetoxy C=O), 128.50 (C12), 82.97 (C3), 61.60 (C9), 54.93 (C5), 48.04 (C18), 46.27 (C14), 45.25 (piperazine C), 43.92 (piperazine C), 43.83 (C20), 43.26 (C8), 42.20 (C19), 41.24 (C1), 40.67 (C-Cl), 38.66 (C4), 38.21 (piperazine C×2), 37.67 (C22), 36.86 (C10), 32.98 (C7), 32.66 (C17), 31.75 (C21), 28.39 (C29), 28.00 (C28), 27.02 (C23), 26.63 (C2), 26.34 (C15), 23.39 (C16), 23.10 (C27), 22.63, 18.64 (C26), 17.30 (C6), 16.60 (C25), 16.40 (C24); HRMS (*m*/*z*): [M + H] + calcd. for C₃₈H₅₇Cl₂N₂O₅: 691.3645, found: 691.3641.

3β -(2-Chloroacetoxy)-11-oxo-18 β -olean-12-en-30-oic acid (**12**)

18β-Glycyrrhetinic acid (0.47 g, 1.0 mmol) was heated at 130 °C with chloroacetic anhydride (3.42 g, 20 mmol) for 1 h. Then, H₂O was added to the cool solution. The product was filtered off and washed with cold H₂O. A white solid; yield, 98.0%; m.p. 259.0 °C - decomp. (literature [1]: 260.8–261.8 °C); ¹H NMR (400 MHz, Chloroform-*d*) δ 5.70 (s, 1H, CH-12), 4.59 (dd, *J* = 11.8, 4.8 Hz, 1H, CH-3), 4.05 (d, *J* = 2.3 Hz, 2H, CH₂-Cl), 2.81 (m, 1H, CH-1), 2.35 (s, 1H, CH-9), 2.17 (dd, *J* = 13.6, 4.1 Hz, 1H, CH-16), 1.36 (m, 3H, CH₃-27), 1.21 (s, 3H, CH₃-25), 1.15 (s, 3H, CH₃-26), 1.11 (s, 3H, CH₃-29), 0.88 (s, 6H, CH₃-23/24), 0.82 (s, 3H, CH₃-28) , 0.78 (m, 1H, CH-5); ¹³C NMR (101 MHz, Chloroform-*d*) δ 200.26 (C11), 181.51(C30), 169.59 (C13), 167.12 (acetyloxy

C=O), 128.37 (C12), 83.00 (C3), 61.60 (C9), 54.94 (C5), 48.21 (C18), 45.43 (C14), 43.78 (C20), 43.18 (C8), 41.24 (C19), 40.80 (C-CI), 38.64 (C1), 38.23 (C4), 37.67 (C22), 36.87 (C10), 32.62 (C7), 31.84 (C17), 30.87 (C21), 28.52 (C29), 28.43 (C28), 28.00 (C23), 26.43 (C2), 26.34 (C15), 23.41 (C16), 23.35 (C27), 18.64 (C26), 17.30 (C6), 16.61 (C25), 16.39 (C24); HRMS (*m/z*): [M + H] ⁺ calcd. for C₃₂H₄₈ClO₅: 547.3190, found: 547.3188.

3β -(2-Morpholinoacetoxy)-11-oxo-olean-12-ene-30-oic acid (13)

Compound **12** (0.55 g, 1.0 mmol), morpholine (0.13 g, 1.5 mmol), K_2CO_3 (0.69 g, 5.0 mmol) and a catalytic amount of I_2 in absolute ethanol (15 mL) was stirred under reflux for 12 h. The reaction mixture was evaporated under reduced pressure and the residue was dissolved in ethanol/H₂O mixture and the white precipitate was collected by filtration.

A white solid; yield, 92.0%; m.p.275.3-276.4 °C; ¹H NMR (400 MHz, Chloroform*d*) δ 5.72 (t, *J* = 3.0 Hz, 1H, CH-12), 4.60 (dd, *J* = 11.2, 5.5 Hz, 1H, CH-3), 3.76 (d, *J* = 4.9 Hz, 4H, morpholine), 3.26 – 3.20 (m, 2H, CH₂), 2.80 (d, *J* = 12.9 Hz, 1H, CH-1), 2.63 (s, 4H, morpholine), 2.37 (t, *J* = 3.0 Hz, 1H, CH-9), 2.19 (d, *J* = 13.5 Hz, 1H, CH-16), 2.05 – 1.01 (m, 17H), 1.37 (s, 3H, CH₃-27), 1.27 (s, 3H, CH₃-25), 1.16 (s, 3H, CH₃-26), 1.13 (s, 3H, CH₃-29), 0.87 (s, 3H, CH₃-23/24), 0.83 (s, 3H, CH₃-28), 0.80 (s, 1H, CH-5); ¹³C NMR (101 MHz, Chloroform-*d*) δ 200.25 (C11), 181.03 (C30), 169.70 (C13), 169.51 (acetoxy, C=O), 128.40 (C12), 81.09 (C3), 66.67 (morpholine C×2), 61.64 (C9), 59.53 (acetoxy, CH₂), 54.93 (C5), 53.14 (morpholine C×2), 48.25 (C18), 45.43 (C14), 43.75 (C20), 43.19 (C8), 40.90 (C19), 38.68 (C1), 38.07 (C4), 37.70 (C22), 36.89 (C10), 32.65 (C7),
31.86 (C17), 30.93 (C21), 28.55 (C29), 28.44 (C28), 28.13 (C23), 26.46 (C2),
26.37 (C15), 23.66 (C16), 23.36 (C27), 18.66 (C26), 17.36 (C6), 16.78 (C25),
16.42 (C24); HRMS (*m/z*): [M + Na] ⁺ calcd. For C₃₆H₅₆NO₆: 598.4108, found:
598.4150.

tert-Butyl 4-(3β-(2-morpholinoacetoxy)-11-oxo-18β-olean-12-en-30-carbonyl)piperazine-1-carboxylate (**14**)

Compound **13** (0.60 g, 1.0 mmol) was dissolved in acetonitrile (20 mL), then EDCI (0.23 g, 1.2 mmol), triethylamine (0.13 g, 1.2 mmol) and HOBt (0.16 g, 1.2 mmol) were added. The mixture was stirred at room temperature for 20 min. The 1-Boc-piperazine (0.46 g, 2.5 mmol) was added, and the mixture was stirred under reflux for 10 h. The solvent was removed under vacuum to give a residue which was treated with a mixture of ethanol and water. The solution was stirred at room temperature for 30 min, and a solid was obtained by filtration while washing with H_2O .

A white solid; yield, 93.9%; m.p. 204.3-205.3 °C; ¹H NMR (400 MHz,

Chloroform-*d*) δ 5.72 (t, *J* = 3.4 Hz, 1H, CH-12), 4.69 – 4.58 (m, 1H, CH-3),

3.79 (dt, J = 6.5, 3.3 Hz, 4H, morpholine CH₂×2), 3.72 - 3.59 (m, 4H,

piperazine CH₂×2), 3.45 (d, J = 5.4 Hz, 4H, piperazine CH₂×2), 3.25 (q, J = 2.2 Hz, 2H, Morpholinoacetoxy CH₂), 2.84 (d, J = 13.6 Hz, 1H, CH-1), 2.64 (q, J = 5.1, 4.6 Hz, 4H, morpholine CH₂×2), 2.39 (d, J = 3.3 Hz, 1H, CH-9), 2.33 (d, J = 13.5 Hz, 1H, CH-16), 1.56 (s, 9H, tert-butyl CH₃×3),1.36 (s, 3H, CH₃-27),

1.27 (s, 3H, CH₃-25), 1.19 (s, 3H, CH₃-26), 1.15 (s, 3H, CH₃-29), 0.91 (s, 6H, CH₃-23/24), 0.84 (s, 3H, CH₃-28), 0.82(m, 1H, CH-5); ¹³C NMR (101 MHz, Chloroform-*d*) δ 199.88 (C11), 174.10 (C30), 169.96 (acetyloxy C=O), 169.49 (C13), 154.51 (Boc C=O), 128.49 (C12), 81.01 (tert-butyl C), 80.23 (C3), 66.80 (morpholine C×2), 61.63 (C9), 59.75 (acetoxy CH₂), 54.93 (C5), 53.27 (morpholine C×2), 48.10 (C18), 45.26 (C14), 43.86 (piperazine C×2), 43.78 (C20), 43.26 (C8/19), 38.71(C1/C4), 38.04 (piperazine C×2), 37.70 (C22), 36.88 (C10), 33.18 (C7), 32.70 (C17), 31.75 (C21), 28.40 (C29), 28.35 (tert-butyl CH₃×3), 28.12 (C28), 27.05 (C23), 26.67 (C2), 26.38 (C15), 23.65 (C16), 23.09 (C27), 18.65 (C26), 17.35 (C6), 16.75 (C25), 16.40 (C24); HRMS (*m*/*z*): [M + H] + calcd. for C₄₅H₇₂N₃O₇: 766.5370, found: 766.5301.

4-(3β-(2-Chloroacetoxy)-11-oxo-18β-olean-12-en-30-carbonyl)piperazine-1carboxylic acid (**15**)

Chloroacetic anhydride (1.37 g, 8.0 mmol) and K₂CO₃ (2.76 g, 20.0 mmol) was heated at 130 °C in toluene for 20 min with a constant water separator. Then, compound **9** (0.64 g, 1.0 mmol) was added to the hot stirred suspension and the reaction mixture was stirred for another 1 h at 130 °C. On removal of the toluene, the H₂O (50 ml) was added to the cool residue, After stirring for 1 h at room temperature, the white product was filtered, washed with cold H₂O and dried. A white solid; yield, 96.3%; m.p.205.7.0-206.6 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 5.66 (s, 1H, CH-12), 4.59 (dd, *J* = 11.8, 4.7 Hz, 1H, CH-3), 4.15

- 3.97 (m, 4H, piperazine CH₂×2), 3.65 (s, 4H, piperazine CH₂×2), 3.52 (s, 2H,

CH₂-Cl), 2.85 – 2.75 (m, 1H, CH-1), 2.34 (s, 1H, CH-9), 2.28 (d, J = 12.1 Hz, 1H, CH-16), 1.34 (m, 3H, CH₃-27), 1.22 (s, 3H, CH₃-25), 1.14 (s, 3H, CH₃-26), 1.10 (s, 3H, CH₃-29), 0.88 (s, 6H, CH₃-23/24), 0.80 (s, 3H, CH₃-28), 0.78 (m, 1H, CH-5); ¹³C NMR (101 MHz, chloroform-*d*) δ 199.83 (C11), 174.27 (C30), 169.43 (C13), 167.13 (chloroacetoxy C=O), 165.34 (-COOH), 128.51 (C12), 82.99 (C3), 61.62 (C9), 54.95 (C5), 48.06 (C18), 46.28 (C14), 45.26 (piperazine C), 43.93 (piperazine C), 43.83 (C20), 43.27 (C8), 42.21 (C19), 41.23 (C1), 40.65 (C-CI), 38.67(C4), 38.22 (piperazine C×2), 37.67(C22), 36.88 (C10), 33.01 (C7), 32.68 (C17), 31.76 (C21), 28.39 (C29), 28.00 (C28), 27.03 (C23), 26.65 (C2), 26.35 (C15), 23.40 (C16), 23.11 (C27), 18.65 (C26), 17.31 (C6), 16.60 (C25), 16.40 (C24); HRMS (*m*/*z*): [M + H] ⁺ calcd. for C₃₇H₅₆CIN₂O₆: 659.3827, found: 659.3873.

4-(3β-(2-Morpholinoacetoxy)-11-oxo-18β-olean-12-en-30-carbonyl)piperazine-1-carboxylic acid (**16**)

Compound **15** (0.66 g, 1.0 mmol), morpholine (0.13 g, 1.5 mmol), K_2CO_3 (0.69 g, 5.0 mmol) and a catalytic amount of I_2 in absolute ethanol (15 mL) was stirred under reflux for 12 h. The reaction mixture was evaporated under reduced pressure and the residue was dissolved in ethanol/H₂O mixture and the white precipitate was collected by filtration.

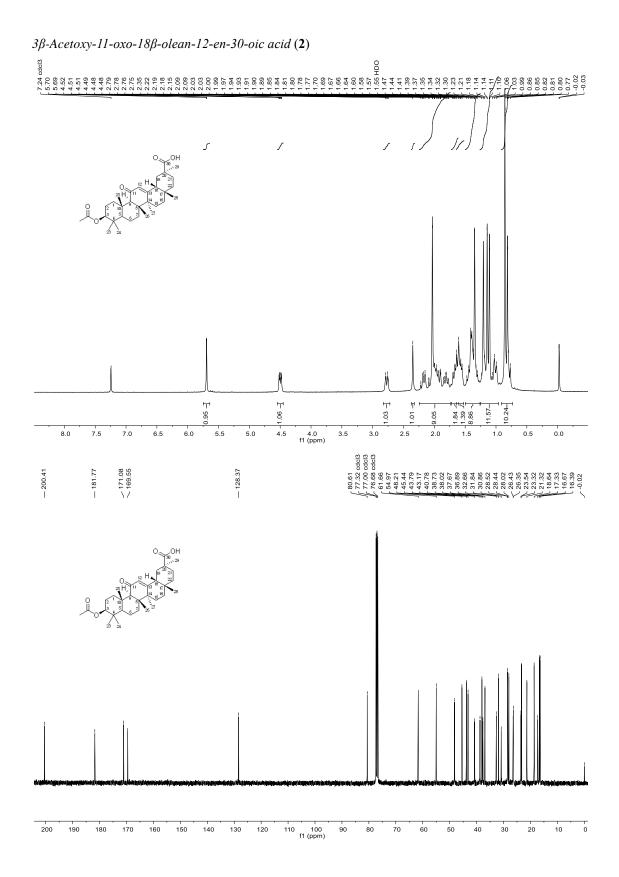
A white solid; yield, 91.2%; m.p. 196.0-196.9 °C; ¹H NMR (400 MHz, Chloroformd) δ 5.66 (d, J = 2.9 Hz, 1H, CH-12), 4.58 (dd, J = 11.7, 4.3 Hz, 1H, CH-3), 3.70 (t, J = 4.5 Hz, 4H, morpholine CH₂×2), 3.60 (s, 8H, piperazine CH₂×4), 3.26 – 3.16 (m, 2H, morpholinoacetoxy CH₂), 2.86 – 2.74 (m, 1H, CH-1), 2.52 (d, J = 5.2 Hz, 4H, morpholine CH₂×2), 2.33 (s, 1H, CH-9), 2.27 (d, J = 13.2 Hz, 1H, CH-16),1.34 (s, 3H, CH₃-27), 1.21 (s, 3H, CH₃-25), 1.14 (s, 3H, CH₃-26), 1.09 (s, 3H, CH₃-29), 0.87 (s, 6H, CH₃-23/24), 0.79 (s, 3H, CH₃-28), 0.77(m, 1H, CH-5); ¹³C NMR (101 MHz, Chloroform-d) δ 199.84 (C11), 174.27 (C30), 169.52 (C13), 167.71 (acetyloxy C=O), 167.13 (COOH), 128.48 (C12), 82.98 (C3), 66.76 (morpholine C×2), 61.62 (C9), 61.45 (acetoxy CH₂), 54.95 (C5), 53.44 (morpholine C×2), 48.10 (C18), 45.26 (C14), 43.91 (piperazine C×2), 43.79 (C20), 43.27 (C8), 41.86 (19), 41.23 (C1), 38.66 (C4), 38.22 (piperazine C×2), 37.68 (C22), 36.87 (C10), 33.09 (C7), 32.67 (C17), 31.76 (C21), 28.40 (C29), 28.00 (C28), 27.04 (C23), 26.66 (C2), 26.36 (C15), 23.40 (C16), 23.11 (C27), 18.64 (C26), 17.31 (C6), 16.60 (C25), 16.40 (C24); HRMS (Methanol as solvent, m/z): [M_{Methyl ester} + H]⁺ calcd. for C₄₂H₆₆N₃O₇: 724.4901, found: 724.9726.

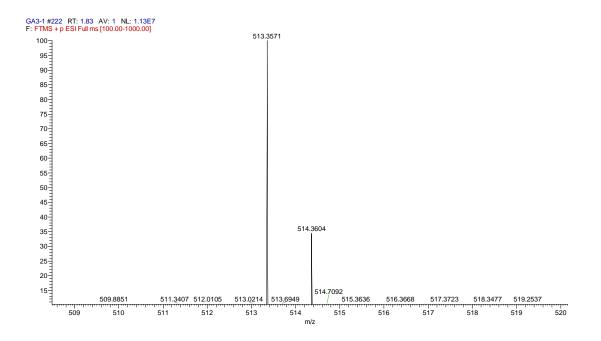
 3β -(2-Morpholinoacetoxy)-11-oxo-18 β -olean-12-en-30-carbonyl piperazine (**17**)

Compound **14** (0.77g, 1.0 mmol) or compound **16** (0.71 g, 1.0 mmol) was dissolved in CH₂Cl₂ (10 mL) at 0 °C under stirring. Trifluoroacetic acid (5 mL) was added, and the reaction was stirred at 0 °C for 3 h. After reaction, the mixture was made basic with a saturated Na₂CO₃ solution. This mixture was extracted with CH₂Cl₂, dried over Na₂SO₄, and concentrated to give the desired product. A white solid; yield, 91.7%; m.p. 215.9-216.7 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 5.70 (t, *J* = 3.2 Hz, 1H, CH-12), 4.60 (dt, *J* = 11.2, 4.7 Hz, 1H, CH-3), 3.76 (dt, *J* = 6.7, 3.3 Hz, 4H, morpholine CH₂×2), 3.62 (t, *J* = 5.5 Hz, 4H, piperazine

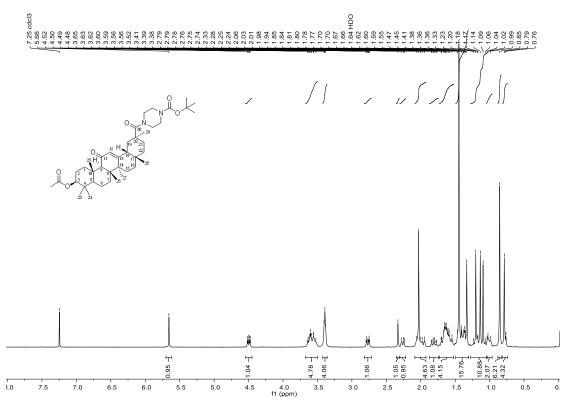
CH₂×2), 3.21 (dd, J = 4.5, 2.4 Hz, 2H, morpholinoacetoxy CH₂), 2.91 – 2.84 (m, 4H, piperazine CH₂×2), 2.81 (d, J = 13.0 Hz, 1H, CH-1), 2.60 (t, J = 5.2 Hz, 4H, morpholine CH₂×2), 2.36 (t, J = 3.3 Hz, 1H, CH-9), 2.30 (d, J = 13.5 Hz, 1H, CH-16), 1.36 (s, 3H, CH₃-27), 1.23 (s, 3H, CH₃-25), 1.16 (s, 3H, CH₃-26), 1.12 (s, 3H, CH₃-29), 0.88 (s, 6H, CH₃-23/24), 0.82 (s, 3H, CH₃-28), 0.79 (s, 1H, CH-5); ¹³C NMR (101 MHz, cdcl₃) δ 199.95 (C11), 173.84 (C30), 170.01 (acetyloxy C=O), 169.73 (C13), 128.47 (C12), 81.03 (C3), 66.83 (morpholine C×2), 61.65 (C9), 59.78 (morpholinoacetoxy CH₂), 54.95 (C5), 53.30 (morpholine C×2), 48.23(C18), 46.30 (piperazine C×2), 45.28 (C14), 43.79 (C20), 43.75 (C8), 43.28 (piperazine C×2), 38.75 (C19), 38.06 (C1/4), 37.75 (C22), 36.91 (C10), 33.40 (C7), 32.71 (C17), 31.77 (C21), 28.43 (C29), 28.13 (C28), 27.05 (C23), 26.71 (C2), 26.44 (C15), 23.66 (C16), 23.11 (C27), 18.67 (C26), 17.37 (C6), 16.77 (C25), 16.42 (C24) ; HRMS (*m*/*z*): [M + H] ⁺ calcd. for C40H₆₄N₃O₅: 666.4846, found: 666.4795.

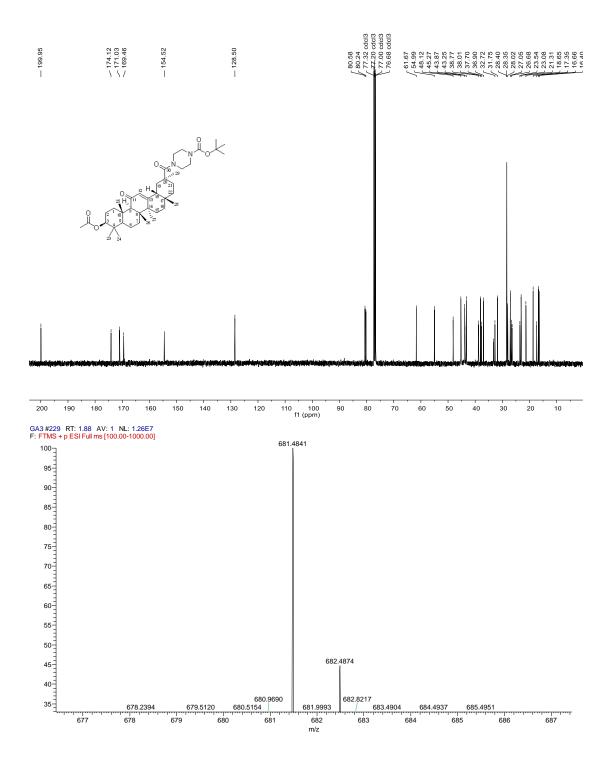
3β-Acetoxy-30-(4-(3-fluorobenzoyl)-1-piperazinyl)-olean-12-ene-11,30-dione (18)

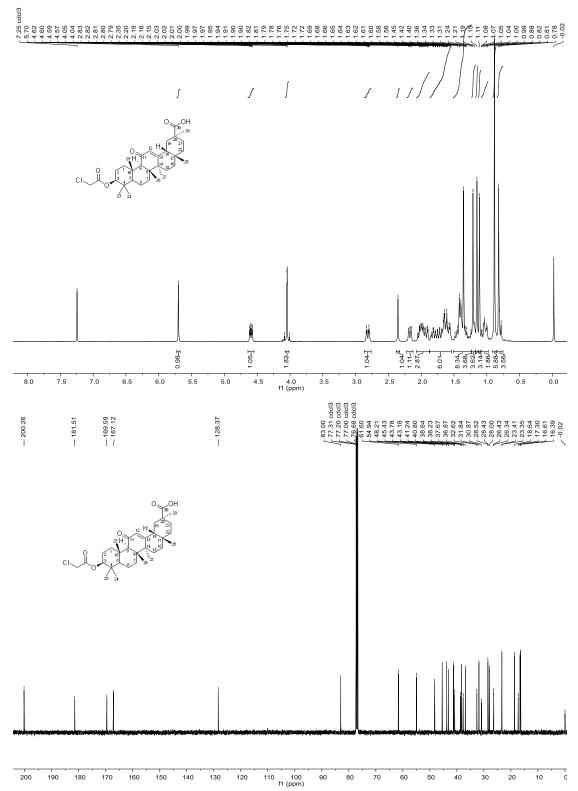

Compound **4** (0.58 g, 1.0 mmol) and triethylamine (0.13 g, 1.2 mmol) were dissolved in CH₂Cl₂ (20 mL) at 0 °C under stirring. 3-fluorobenzoyl chloride (0.158 g, 1.0 mmol) was added, and the reaction was stirred at room temperature for 3 h. After reaction, the mixture was washed twice with water. The organic layer was dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure. The crude product was then chromatographed on silica

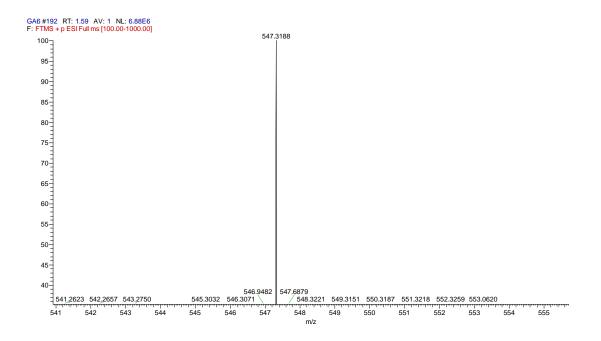

(DCM-methanol, 20:1).

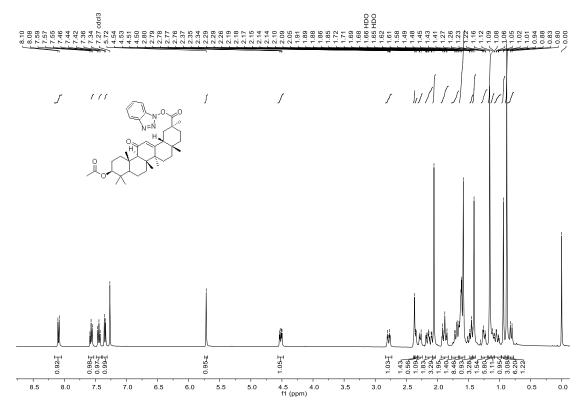
A white solid; yield, 88.2%; m.p. 234.1-225.9 °C; ¹H NMR (400 MHz, Chloroform-d) δ 7.41 (td, J = 7.8, 5.6 Hz, 1H, phenyl), 7.23 – 7.09 (m, 3H, phenyl), 5.68 (s, 1H, CH-12), 4.52 (dd, J = 11.6, 4.7 Hz, 1H, CH-3), 3.71 -3.45 (m, 8H, morpholine CH₂×4), 2.79 (dt, *J* = 13.5, 3.6 Hz, 1H, CH-1), 2.35 (s, 1H, CH-9), 2.32 – 2.23 (m, 1H, CH-16), 2.05 (s, 3H, acetyloxy CH₃), 1.35 (s, 3H, CH₃-27), 1.25 (s, 3H, CH₃-25), 1.24 (s, 3H, CH₃-26), 1.16 (s, 3H, CH₃-29), 1.12 (s, 3H, CH₃-23), 0.88 (s, 3H, CH₃-24), 0.82 (s, 3H, CH₃-28), 0.79 (m, 1H, CH-5); ¹³C NMR (101 MHz, Chloroform-d) δ 199.92 (C11), 174.25 (C30) acetyloxy C=O), 169.31 (C13), 169.06 (benzoyl), 169.04 (benzoyl), 163.78 (C-F), 161.31 (C-F), 137.17 (phenyl), 137.10 (phenyl), 130.52 (phenyl), 130.44 (phenyl), 128.53 (C12), 122.73 (phenyl), 122.70 (phenyl), 117.21 (phenyl), 117.01 (phenyl), 114.56 (phenyl), 114.33 (phenyl), 80.56 (C3), 61.69 (C9), 55.00 (C5), - (C18), 45.28 (C14), 43.91 (C20), 43.70 (morpholine), 43.26 (C8), 38.78 (C19), 38.02 (C1/4), 37.67 (C22), 36.91 (C10) – (C7), 32.72 (C17), 31.78 (C21), 28.39 (C29), 28.02 (C28), 27.04 (C23), 26.66 (C2), 26.37 (C15), 23.54 (C16), 23.08 (C27), 21.32 (acetoxy CH₃), 18.65 (C26), 17.35 (C6), 16.67 (C25), 16.41 (C24); HRMS (*m*/*z*): [M + H] + calcd. for C₄₃H₆₀FN₂O₅: 703.4486, found: 703.4486.

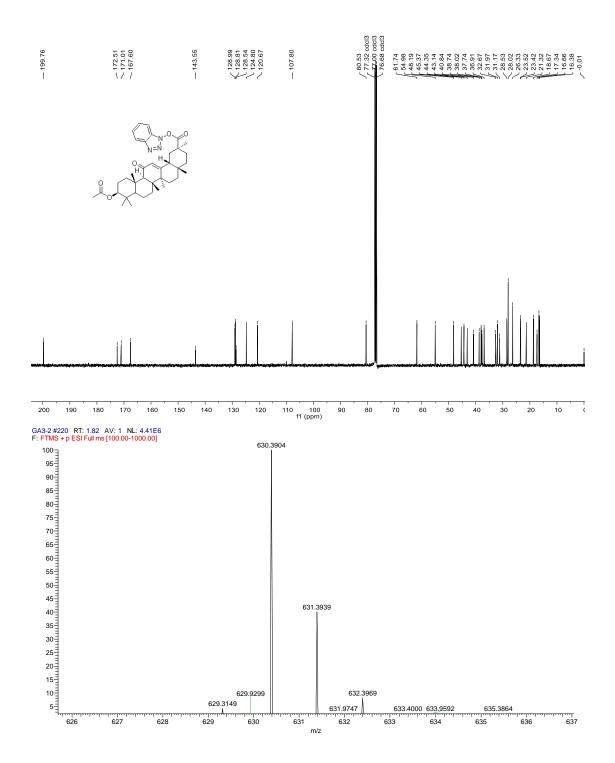

Crystal structure analysis of compound (18)


The single crystal X-ray diffraction data of compound **18** was collected on a Bruker SMART APEX II CCD detector employing graphitemonochromated Cu K α radiation (λ = 1.54178 Å) at 273 (2) K. The structures were solved by direct methods using SHELXL-97 and refined using full-matrix least-squares calculation on F2 using SHELXL-97. All non-hydrogen atoms were refined anisotropically. The hydrogen atom positions were geometrically idealized and allowed to ride on their parent atoms. Crystallographic data for compound **18** has been deposited at the Cambridge Crystallographic Data Centre. CCDC 1904891. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

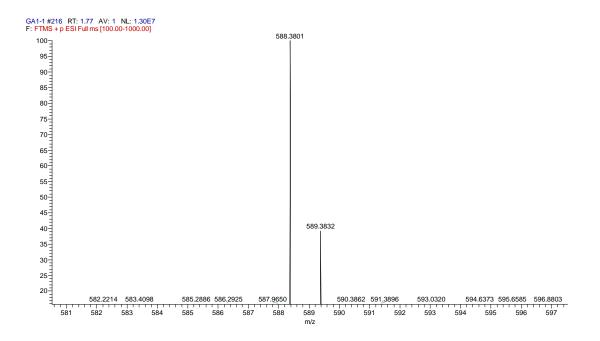


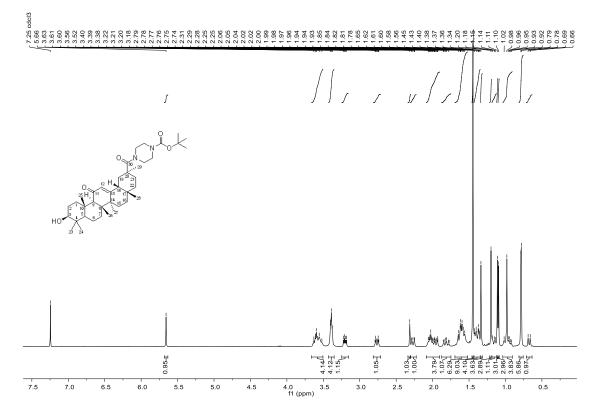

tert-Butyl 4-(3β-acetoxy-11-oxo-18β-olean-12-en-30-carbonyl)piperazine-1-carboxylate (8)

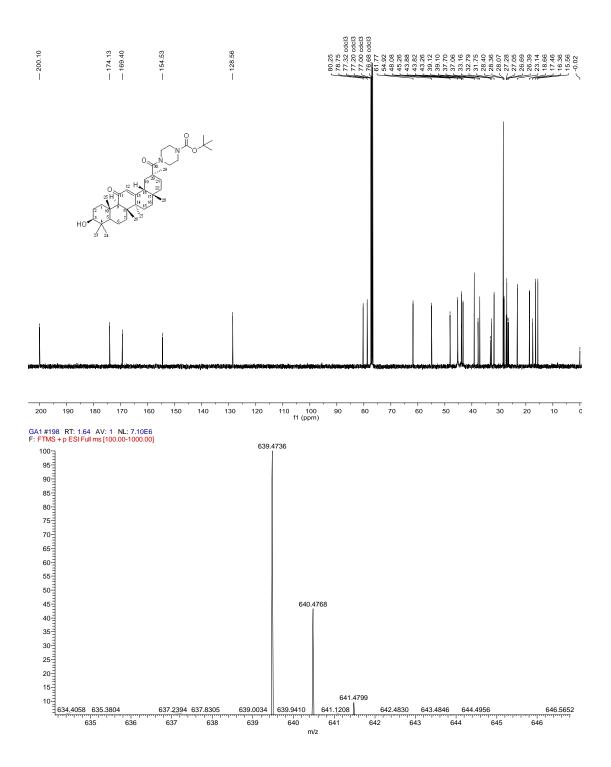


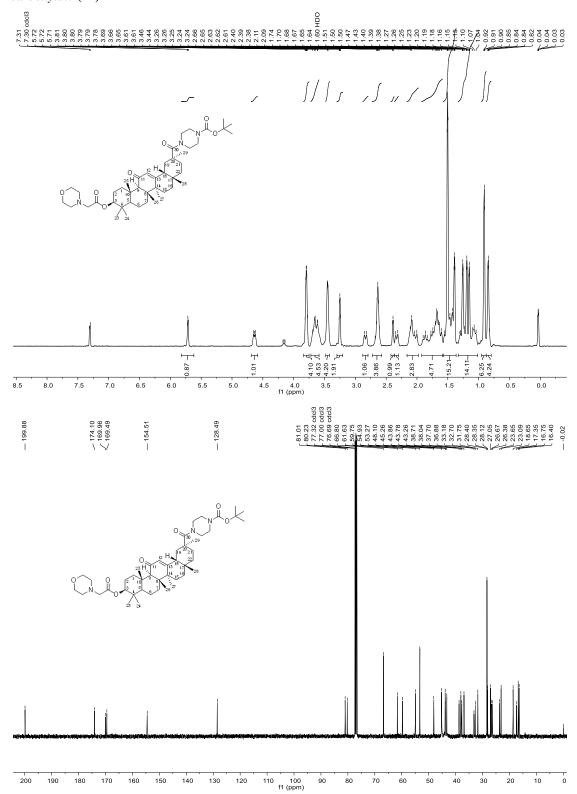


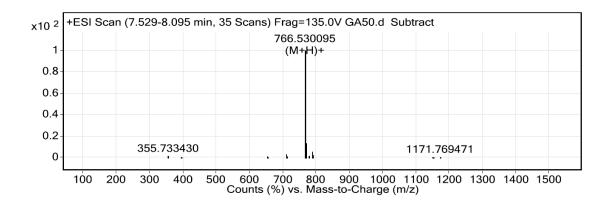
3β-(2-Chloroacetoxy)-11-oxo-18β-olean-12-en-30-oic acid (12)

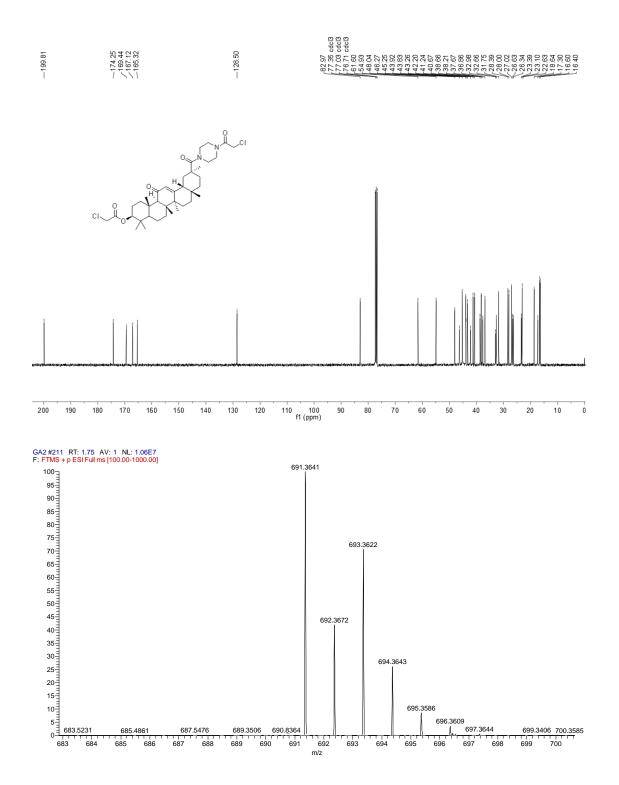

1H-Benzo[d][1,2,3]triazol-1-yl-3β-acetoxy-11-oxo-olean-12-en-30-oate (6)

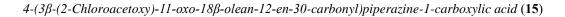


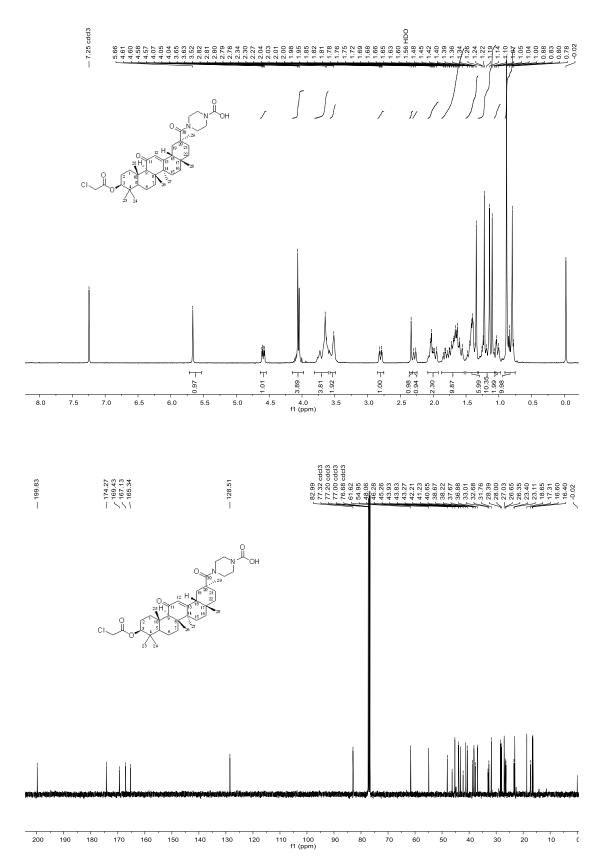


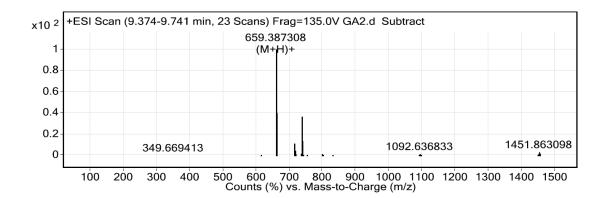

1H-Benzo[d][1,2,3]triazol-1-yl-3 β -hydroxy-11-oxo-olean-12-en-30-oate (7)

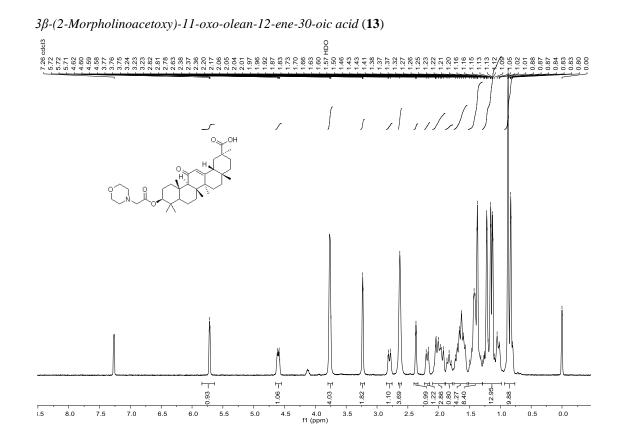

tert-Butyl 4-(3β-hydroxyl-11-oxo-18β-olean-12-en-30-carbonyl)piperazine-1-carboxylate (9)

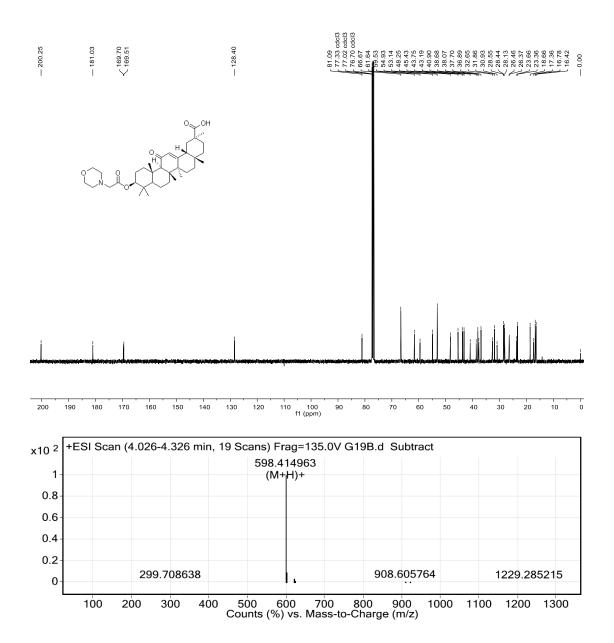


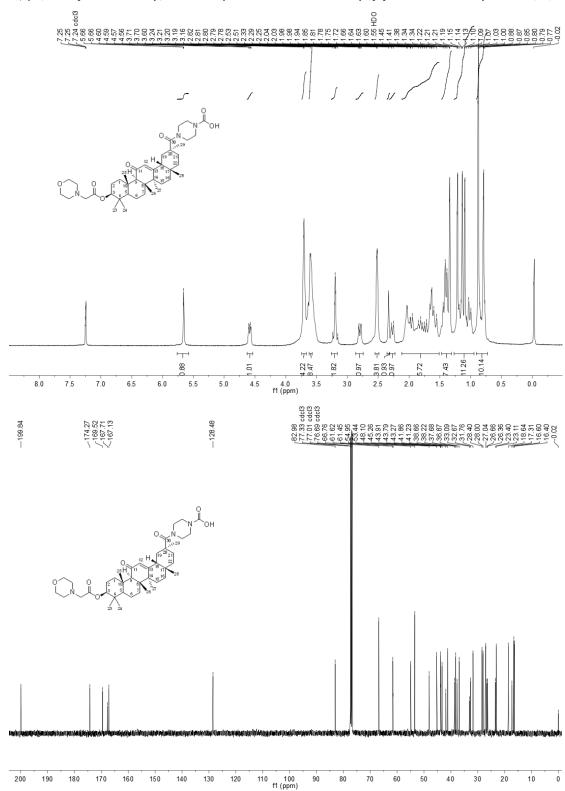

tert-Butyl 4-(3β- (2-morpholinoacetoxy)-11-oxo-18β-olean-12-en-30-carbonyl)piperazine-1carboxylate (**14**)

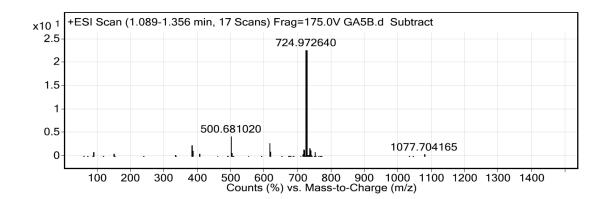


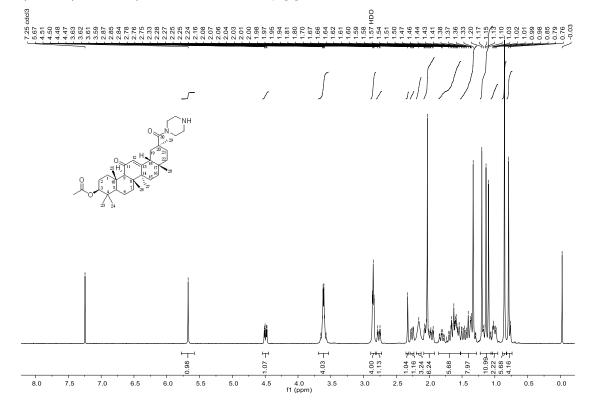

3.61 3.59 3.54 53 83 S Ja 1 ۲ F 66.0 0.98 -11.35-0.95 -2.99 4.03 -1.86 0.88 7.75 2.19 2.19 9.16 0.96 3.18 8.0 7.5 6.5 5.0 3.5 3.0 1.0 0.5 7.0 6.0 5.5 4.5 2.0 1.5 4.0 f1 (ppm) 2.5

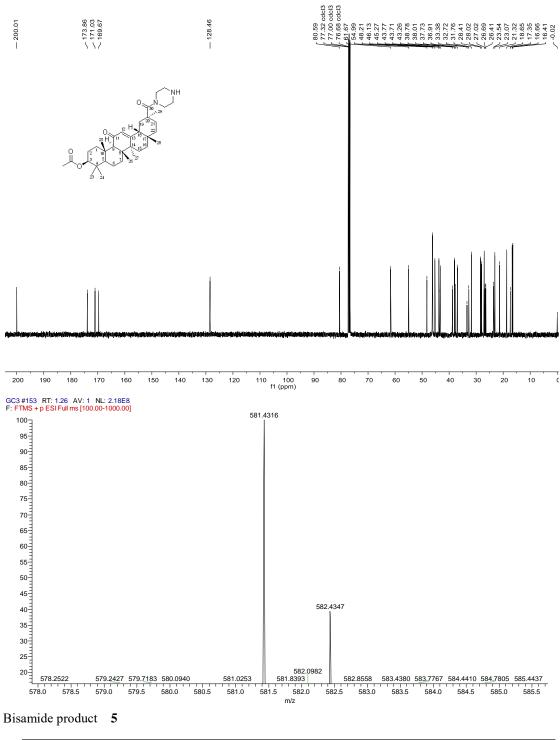

N-(2-Chloroacetyl)piperazinyl 3β-(2-chloroacetoxy)-11-oxo-18β-olean-12-en-30-amide (11)

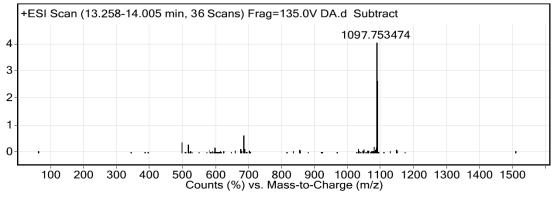


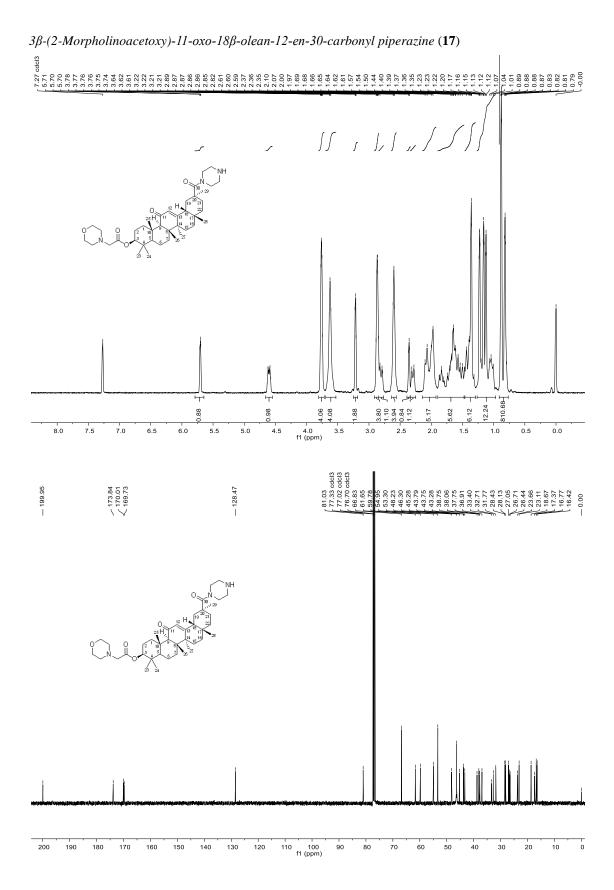


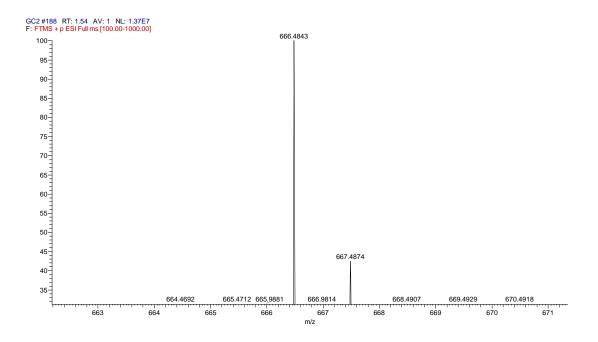


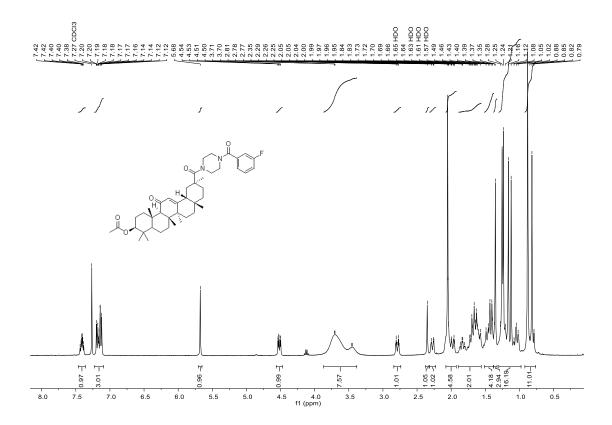


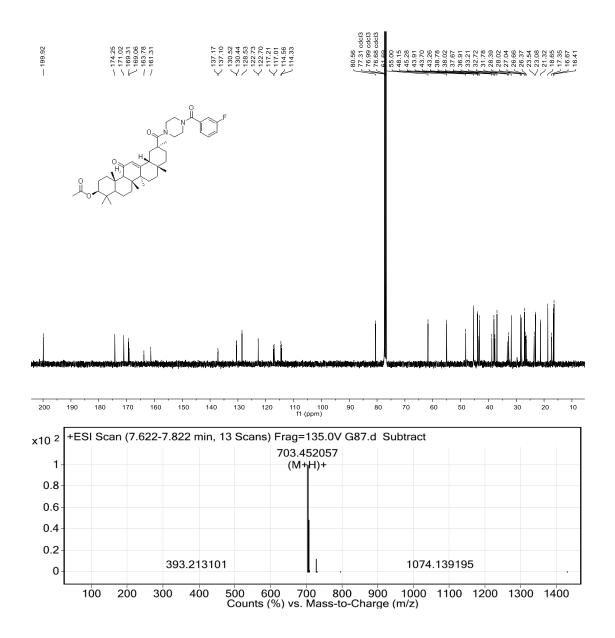



4-(3β-(2-Morpholinoacetoxy)-11-oxo-18β-olean-12-en-30-carbonyl)piperazine-1-carboxylic acid (**16**)




³β-Acetoxy-11-oxo-18β-olean-12-en-30-carbonyl piperazine (4)





3β-Acetoxy-30-(4-(3-fluorobenzoyl)-1-piperazinyl)-olean-12-ene-11,30-dione (18)

 Song, H.; Sun, Y.; Xu, G.; Hou, B.; Ao, G. Synthesis and biological evaluation of novel hydrogen sulfide releasing glycyrrhetic acid derivatives. *J. Enzyme Inhib. Med. Chem.* **2016**, *31* (6), 1457-1463.
 Sommerwerk, S.; Heller, L.; Kerzig, C.; Kramell, A. E.; Csuk, R. Rhodamine B conjugates of triterpenoic acids are cytotoxic mitocans even at nanomolar concentrations. *Eur. J. Med. Chem.* **2017**, *127*, 1-9.