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DeLinker Implementation Details

Atom types.

There are 14 permitted atom types: carbon, nitrogen (N−, N, N+), oxygen (O−, O, O+),

fluorine, chlorine, bromine, iodine, and sulphur (maximum valence 2, 4, or 6).

Network architecture.

Following Liu et al. 1 , both the encoder and decoder are standard gated graph neural networks

(GGNN),2 which propagate messages for 7 steps, and have residual connections between odd

numbered time steps.

We implemented the function f , which maps the hidden state of a node to its atom type,

as a linear classifier with attention from the node’s hidden vector to one of the node types.

The attention mechanism is similar to Bahdanau et al. 3 and allows the label for a given

node to depend on the hidden states of the other expansion nodes.

Similarly, we augmented the edge selection and edge labelling step by adding attention

between the feature vectors for all candidate edges. This allows the score of a candidate edge

to depend on the other possible edges.

We trained the model with a learning rate of 0.001 for 10 epochs using the Adam opti-

miser.

Hyperparameter search.

We performed a limited hyperparameter search of the following parameters (final parameters

in bold):

• Learning rate: 0.01, 0.001, 0.0001

• Batch size: 8, 16

• Hidden state dimension: 16, 32, 50, 100
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• Encoding dimension: 2, 4, 8

• λKL: 0.1, 0.3, 0.6

The model was fairly robust to the choice of hyperparameters. Performance was measured

via the validation reconstruction loss and not generative performance.

Data curation

Fragment-molecule pairs for the ZINC4 and CASF5 sets were constructed as follows. First

all possible fragmentations of each molecule were produced by enumerating all double acyclic

single bond cuts.6 These we then filtered to remove trivial and unrealistic situations using

the following constraints: (i) minimum linker length: 3 atoms, (ii) minimum fragment size:

5 atoms, (iii) linker fewer heavy atoms than either fragment, (iv) minimum path length

between fragments: 2 atoms.

The remaining fragment-molecule pairs were filtered for several 2D properties: (i) the

synthetic accessibility (SA) score7 of the molecule must be lower than the fragments with

exit vectors represented by dummy atoms, (ii) the molecule must pass pan-assay interfer-

ence (PAINS)8 filters, and (iii) rings must either be saturated aliphatic or aromatic (accord-

ing to RDKit9 valency rules). PAINS filters were implemented by SMARTS substructure

searching with RDKit, using the RDKit version of the Saubern et al. 10 translation of the

original PAINS.8 as specified at https://github.com/rdkit/rdkit/blob/master/Data/

Pains/wehi_pains.csv (Accessed: 02/06/2019). Any molecules containing atom types out-

side of the permitted atom types were excluded.
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Training set composition

Table S1: Distribution of number of atoms contained in the original linkers in the datasets
utilised. The average linker length in the CASF set (5.9) is around one atom longer than
the ZINC training set (4.7), validation (4.7) and test set (4.9).

Linker ZINC CASF
Length Train Valid Test Test

3 28.7% 30.7% 26.2% 25.2%
4 21.6% 22.7% 17.7% 13.9%
5 19.5% 15.7% 22.0% 10.7%
6 17.8% 16.5% 21.0% 13.3%
7 7.7% 10.3% 7.3% 12.0%
8 3.1% 2.5% 3.5% 9.1%
9 1.3% 1.3% 2.0% 4.8%
10 0.3% 0.3% 0.3% 3.2%
11 0.0% - - 5.5%
≥12 0.0% - - 2.3%

Additional results
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Table S2: Ablation study for DeLinker, our deep generative method on the ZINC data
set. We show the effect on the 2D metrics of removing all of the structural information (“No
info”) and including only the distance information (“Distance”) compared to our full protocol
(“DeLinker”), the database baseline (“Database”), and a graph-based baseline1(“CGVAE”).
See Data curation for a description of the 2D property filters.

Metric Database CGVAE No Info Distance DeLinker
Valid 100.0% 88.9% 97.0% 98.6% 98.4%

Unique 38.8% 58.8% 51.2% 47.3% 44.2%
Novel 0.0% 51.0% 36.2% 37.6% 39.5%

Recovered 78.0% 65.8% 74.5% 78.3% 79.0%
Pass 2D filters 97.0% 85.9% 89.9% 90.2% 89.8%
Pass SA filter 97.8% 90.0% 95.1% 95.5% 95.3%
Pass ring filter 100.0% 93.2% 95.2% 94.5% 94.8%

Pass PAINS filter 99.2% 96.1% 97.8% 98.4% 97.9%

Table S3: Ablation study for DeLinker, our deep generative method, on the ZINC data set.
We show the effect on the 3D metrics of removing all of the structural information (“No
info”) and including only the distance information (“Distance”) compared to our full proto-
col (“DeLinker”) that includes both distance and angle information, the database baseline
(“Database”), and a graph-based baseline1(“CGVAE”). See Methods - Assessment metrics
for a description of the metrics.

Metric Database CGVAE No Info Distance DeLinker
SCRDKit Molecule

>0.7 35.5% 35.4% 37.6% 43.2% 47.1%
>0.8 8.5% 7.2% 9.2% 11.8% 14.2%
>0.9 1.3% 0.7% 1.1% 1.5% 1.8%

SCRDKit Fragments
>0.7 60.2% 64.1% 64.4% 69.1% 71.3%
>0.8 24.7% 26.3% 27.7% 33.4% 35.8%
>0.9 4.5% 4.2% 5.0% 7.0% 8.2%

RMSD Fragments
<1.00 46.9% 51.0% 50.9% 56.6% 58.6%
<0.75 20.5% 21.6% 22.4% 27.8% 30.0%
<0.50 5.7% 4.8% 5.6% 7.9% 9.3%
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Table S4: 2D and 3D metrics for molecules generated by DeLinker, our de novo deep gen-
erative model, compared to a Database baseline on the held-out ZINC test set. See Data
curation for a description of the 2D property filters and Methods - Assessment metrics for a
description of the 3D metrics.

ZINC ZINC ≥ 5 atoms
Metric Database DeLinker Database DeLinker
Valid 100.0% 98.4% 100.0% 98.1%

Unique 38.8% 44.2% 53.6% 61.0%
Novel 0.0% 39.5% 0.0% 49.4%

Recovered 78.0% 79.0% 67.0% 67.0%
Pass 2D filters 97.0% 89.8% 96.4% 84.1%

SCRDKit Molecule
>0.7 33.5% 47.1% 21.3% 37.1%
>0.8 8.5% 14.2% 3.5% 9.4%
>0.9 1.3% 1.8% 0.4% 1.0%

SCRDKit Fragments
>0.7 60.2% 71.3% 51.5% 66.7%
>0.8 24.7% 35.8% 16.8% 30.3%
>0.9 4.5% 8.2% 2.1% 6.0%

RMSD Fragments
<1.00Å 46.9% 58.6% 39.1% 55.1%
<0.75Å 20.5% 30.0% 14.2% 26.9%
<0.50Å 5.7% 9.3% 3.0% 6.9%

Table S5: Fragment linking case study. 2D and 3D Metrics for DeLinker and the Database
baseline.

Metric Database DeLinker
Valid 100.0% 98.7%

Unique 30.7% 56.4%
Novel 0.0% 58.5%

Recovered 100.0% 100.0%
Pass 2D filters 97.8% 74.0%

SCRDKit Fragments
>0.7 681 1115
>0.8 129 301
>0.9 6 18
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Table S6: Scaffold hopping case study. 2D and 3D metrics for DeLinker. Compounds with
SCRDKit Fragments>0.80 were docked with AutoDock Vina.11,12

Metric DeLinker
Valid 99.5%

Unique 63.7%
Novel 88.5%

Recovered 100.0%
Pass 2D filters 51.4%

SCRDKit Fragments
>0.70 1928
>0.75 699
>0.80 114
>0.85 9

Vina Score
<-7 105
<-8 69

<Aminopyrazole 33
<-9 26
<-10 3

<Indazole 0
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Table S7: PROTAC design case study. 2D and 3D metrics for DeLinker. Compounds with
SCRDKit Fragments>0.80 were docked with AutoDock Vina11,12

Metric DeLinker
Valid 96.0%

Unique 62.1%
Novel 95.9%

Recovered 0.0%
Pass 2D filters 61.8%

SCRDKit Fragments
>0.70 2930
>0.80 2930
>0.85 2150

Vina Score
<-12 2930

<PROTAC 1 2927
<-13 2845
<-14 1160

<PROTAC 2 536
<-15 34

Figure S1: A random sample of 50 novel linkers generated by DeLinker during testing on
the held-out ZINC data set.
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Figure S2: Fragment linking case study. The top 20 molecules generated by DeLinker
that met the 3D similarity threshold ranked by AutoDock Vina11,12 score. Labels are the
docking score from minimizing the aligned molecular conformer according to the Vina energy
function.
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Figure S3: Scaffold hopping case study. The top 20 molecules generated by DeLinker that
met the 3D similarity threshold ranked by AutoDock Vina11,12 score. Labels are the dock-
ing score from minimizing the aligned molecular conformer according to the Vina energy
function.
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Figure S4: PROTAC design case study. The top 20 molecules generated by DeLinker that
met the 3D similarity threshold ranked by AutoDock Vina11,12 score. Labels are the dock-
ing score from minimizing the aligned molecular conformer according to the Vina energy
function.
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