

advances.sciencemag.org/cgi/content/full/6/18/eaaz8031/DC1

Supplementary Materials for

Small-molecule inhibitor targeting orphan nuclear receptor COUP-TFII for prostate cancer treatment

Leiming Wang, Chiang-Min Cheng, Jun Qin, Mafei Xu, Chung-Yang Kao, Jingjing Shi, Erli You, Wanchun Gong, Laura Pedro Rosa, Peter Chase, Louis Scampavia, Franck Madoux, Timothy Spicer, Peter Hodder, H. Eric Xu, Sophia Y. Tsai*, Ming-Jer Tsai*

*Corresponding author. Email: stsai@bcm.edu (S.Y.T.); mtsai@bcm.edu (M.-J.T.)

Published 29 April 2020, *Sci. Adv.* **6**, eaaz8031 (2020) DOI: 10.1126/sciadv.aaz8031

This PDF file includes:

Figs. S1 to S7 Tables S1 and S2

Fig. S1. Identification of COUP-TFII small molecule inhibitors. (A) Schematic of screening process. Each individual assay (AID) was deposited to the PubChem database. LC (**B**), HRMS (**C**), ¹H NMR (**D**) and ¹³C NMR (**E**) analysis of CIA1 and CIA2.

Fig. S2. Targeting COUP-TFII by the inhibitors. (A) RLU (relative luminescence unit) of luciferase assay in Fig. 1D. n=3 per group. t test. (B) 293T cells that transfected with NGFIA-Luc and COUP-TFII (CII) or shCOUP-TFII (shCII) were treated with CIA1 or CIA2 for 18 hours. Luciferase assay were performed. RUL of luciferase assay was shown in (C). n=3 per group. Two-way ANOVA. (D) Volcano plot of dysregulated genes in LNCaP cells that transfected with siCOUP-TFII for 72 hours, or treated with 1 μ M CIA1 for 18 hours. RNA sequencing was performed. (E) COUP-TFII repressed and induced gene signatures were generated by dysregulated genes after COUP-TFII knockdown. GSEA showed the top Hallmark pathways regulated by COUP-TFII (F) or CIA1 (G). *P<0.05, ***P<0.001.

Fig. S3. The direct interaction between the inhibitor and COUP-TFII protein. (A) Structure of biotinylated inhibitor. (B) Biotinylated inhibitor pulldown assay using overexpressed COUP-TFII in 293T cells. Different doses of CIA1 was used as competitor. (C) Biotinylated inhibitor pulldown assay using overexpressed COUP-TFII in 293T cells. 20 μ M different active CIA1 analogues were used as competitor. (D) LNCaP cells were transfected with siCOUP-TFII for 72 hours. Biotinylated inhibitor pulldown assay was performed using the cell lysate. (E) Biotinylated inhibitor pulldown assay using purified AR protein. 20 μ M CIA1 was used as competitor. qPCR analysis of indicated genes in LNCaP cells at 72 hours after siAR treatment (F) or siCOUP-TFI (siCI) treatment (G). n=3 per group. t test, ns=P>0.05, ***P<0.001.

Fig. S4. Screening of CIA1 and CIA2 analogues. (A) Modified position as shown on CIA2. a: on the thienopyrimidine ring; b: on the dimethoxybenzene ring; c: on the linker chain. (B) IC50 value distribution of compounds by luciferase assay. no: no modification (CIA1 and CIA2). 293T cells that transfected with COUP-TFII and NGFIA-Luc were treated with compound for 18 hours. Luciferase assay was performed to calculate IC50. Detailed structure and IC50 of test compounds with modification on the thienopyrimidine ring (C), the dimethoxybenzene ring (D), the linker chain (E) were shown.

Fig. S5. Related to Fig. 3. (A) PC3 cells were transfected with siCOUP-TFII for 24 hours, then treated with 1 μ M CIA1 or CIA2 for 48 hours. Invasion was measured by transwell assay. n=3 per group. One-way ANOVA. ns=P>0.05. Time course: No apparent changes in levels of COUP-TFII protein to 1 μ M CIA1 (B) or 1 μ M CIA2 (C) treatments in cells for indicated time periods as shown by western blot analysis of COUP-TFII. Dose response: No obvious changes in COUP-TFII protein levels upon treatments with indicated concentrations of CIA1 (D) or CIA2 (E) in cells for 4 days as shown by western blot analysis of COUP-TFII.

Fig. S6. CIA1 treatment in mice. (**A**) Treatment diagram for xenograft mice. The body weight of LNCaP xenograft bearing mice (**B**) and PDX mice (**C**) after CIA1 treatment. n=5 per group. Western blot analysis of COUP-TFII protein levels in prostate cancer cell lines (**D**) and xenograft tumors that treated with DMSO (**E**). (**F**) Western blot analysis of COUP-TFII protein levels in xenograft tumors after CIA1 treatment. (**G**) DMPK assay of CIA1 in mouse plasma after intraperitoneal injection. (**H**) Tissue distribution of CIA1 in mouse after intraperitoneal injection.

Fig. S7. Disrupted COUP-TFII binding to FOXA1 by CIA1. (A) LNCaP cells were treated with CIA1 for 18 hours. Western blot was performed. (B) Heatmap of CIA1 regulated COUP-TFII target genes as indicated in RNA sequencing. (C) LNCaP cells were treated with 4 μM CIA1 for 12 hours. ChIP-qPCR were performed. n=3 per group. Two-way ANOVA. (D) Western blot analysis of overexpressed miniturbo-COUP-TFII in LNCaP cells. (E) LNCaP/miniturbo-COUP-TFII cells were treated with 400 μM biotin for 4 hours. Western blot was performed with streptavidin-HRP antibody. (F) LNCaP/miniturbo-COUP-TFII cells were treated with 400 μM biotin for 4 hours. Western blot was performed with streptavidin-HRP antibody. (F) LNCaP/miniturbo-COUP-TFII cells were treated with 400 μM biotin for 4 hours. Western blot was performed with streptavidin for 4 hours. Cell lysate was immunoprecipitated with streptavidin beads. (G) Gene ontology (GO) analysis of CIA1 reduced COUP-TFII binding proteins. (H) Knockdown efficacy of siRNA in Fig. 6C. n=3 per group. t test. (I) FOXA1 purified protein was immunoprecipitated with biotinylated inhibitor. 20 μM CIA1 was used as competitor. (J) GSEA of FOXA1 specifically regulated signature with CIA1 regulated genes. FOXA1 specifically regulated genes were generated by removing COUP-TFII regulated genes from FOXA1 gene signature (GSE37314).

		negative control		DMSO		CIA1	
Gene ID	Gene Symbol	SAF	IBAQ	SAF	IBAQ	SAF	IBAQ
25873	RPL36	0	0	667	24	0	0
3169	FOXA1	0	0	357	15.8	0	0
90861	JPT2	0	0	333	11.9	0	0
6159	RPL29	0	0	250	10.2	0	0
10481	HOXB13	0	0	273	9.3	0	0
7707	ZNF148	0	0	179	6.1	0	0
65986	ZBTB10	0	0	116	4.8	0	0
3066	HDAC2	0	0	87	3.9	43.5	0.25
283431	GAS2L3	0	0	103	2.2	0	0
5173	PDYN	0	0	76.9	2.1	0	0
10726	NUDC	0	0	90.9	1.7	0	0
4781	NFIB	87	0	217	1.5	130	0
5335	PLCG1	0	0	14.5	1.4	0	0
8649	LAMTOR3	0	0	143	1.3	0	0
4129	MAOB	69	0	69	1.2	34.5	0
5304	PIP	0	0	111	1.2	0	0
80895	ILKAP	0	0	83.3	1	0	0
200010	SLC5A9	0	0	36.4	0.94	0	0
5987	TRIM27	0	0	35.7	0.84	0	0
4774	NFIA	79.2	0	317	0.82	119	0
202559	KHDRBS2	0	0	66.7	0.78	66.7	0
3936	LCP1	26.3	0	52.6	0.77	0	0
1108	CHD4	10.3	0.05	41.2	0.77	0	0
9667	SAFB2	0	0	97.6	0.65	73.2	0
3054	HCFC1	11.2	0	44.9	0.63	0	0
5621	PRNP	0	0	71.4	0.61	0	0
11091	WDR5	0	0	62.5	0.6	0	0
80347	COASY	0	0	42.7	0.57	0	0
6643	SNX2	0	0	35.7	0.56	0	0
5496	PPM1G	0	0	33.3	0.43	0	0
10009	ZBTB33	0	0	26.3	0.43	0	0
6015	RING1	0	0	55.6	0.37	0	0
6045	RNF2	0	0	55.6	0.37	0	0
58490	RPRD1B	0	0	58.8	0.36	0	0
84277	DNAJC30	0	0	83.3	0.31	0	0
84549	MAK16	0	0	66.7	0.31	0	0
79977	GRHL2	0	0	30.3	0.26	0	0
8841	HDAC3	0	0	38.5	0.24	0	0
6640	SNTA1	0	0	37	0.24	0	0

0

23011

RAB21

0

71.4

0.23

0

0

Table S1. Reduced COUP-TFII binding proteins by CIA1 treatment.

5770	PTPN1	0	0	34.5	0.21	0	0
6641	SNTB1	0	0	30.3	0.19	0	0
79009	DDX50	25.6	0	25.6	0.17	0	0
8971	H1-10	0	0	83.3	0.16	0	0
10250	SRRM1	0	0	23.8	0.14	0	0
5777	PTPN6	0	0	27.5	0.13	0	0
7874	USP7	0	0	14.9	0.13	0	0
4673	NAP1L1	0	0	62.5	0.12	0	0
1759	DNM1	21.1	0	21.1	0.12	0	0
2961	GTF2E2	0	0	55.6	0.11	0	0
1503	CTPS1	0	0	30.3	0.11	0	0
55746	NUP133	0	0	16.1	0.11	0	0
9945	GFPT2	0	0	23.3	0.1	23.3	0
254048	UBN2	0	0	15.6	0.09	0	0
64324	NSD1	0	0	7.2	0.06	0	0
7402	UTRN	0	0	5.5	0.03	0	0
63922	CHTF18	0	0	20.8	0.01	0	0

SAF: spectral abundance factor; IBAQ: intensity based absolute quantification.

Table S2. siRNAs and primers for qRT-PCR and ChIP-qPCR.

siRNA				
universal negative control siRNA: Sigma (SIC001)				
siCOUP-TFII-1: GGCCGUAUAUGGCAAUUCA				
siCOUP-TFII-2: GUACCUGUCCGGAUAUAUU				
siFOXA1-1: GAGAGAAAAAAUCAACAGC				
siFOXA1-2: CCAGACGGGUUUCAUUAUU				
siCOUP-TFI-1: CAAUCCAGGCCAGUACGCA				
siCOUP-TFI-2: CCAACAACAUUAUGGGCAU				
siAR-1: GACCUACCGAGGAGCUUUC				
siAR-2: UCAAGGAACUCGAUCGUAU				
siHOXB13: SASI Hs01 00032419 from Sigma				
siZNF148: SASI Hs01 00093930 from Sigma				
siZNF148: SASI Hs01 00093935 from Sigma				
siZBTB10: SASI Hs02 00324282 from Sigma				
siZBTB10: SASI Hs02 00324284 from Sigma				
siWDR5: SASI Hs01 00046875 from Sigma				
qRT-PCR primer				
ACTB-F: TGGCATTGCCGACAGGAT				
ACTB-R: GCTCAGGAGGAGCAATGATCT				
FOXM1-F: GGAGCAGCGACAGGTTAAGG				
FOXM1-R: GTTGATGGCGAATT GTATCATGG				
CDK1-F: GCGCGGATCTACCATACCC				
CDK1-R: CATGGCTAC CACTTGACCTGT				
CDKN1A-F: ACCTCCTCTAAGGTTGGGCA				
CDKN1A-R: TGCCTTCACAAGACAGAGGG				
FOXA1-F: CTACTACGCAGACACGCAGG				
FOXA1-R: CCGCTCGTAGTCATGGTGTT				
HOXB13-F: GCGAGCTGGGAGCGATTTA				
HOXB13-R: CTCCCAGCAAGCCTTCGATA				
ZNF148-F: GAAACGTAGTGGGAGTGCGA				
ZNF148-R: CTCAAGACTCCTCCACAGCC				
ZBTB10-F: GGGGAGCCCACATAGCATTA				
ZBTB10-R: TGGTCCCAATCATGACCCCT				
WDR5-F: TGTGAAGTTCTCCCCGAACG				
WDR5-R: GTGGCCAGTGTACGTCTTCA				
AR-F: CAGTGGATGGGCTGAAAAAT				
AR-R: GGAGCTTGGTGAGCTGGTAG				
COUP-TFI-F: ATCGTGCTGTTCACGTCAGAC				
COUP-TFI-R: TGGCTCCTCACGTACTCCTC				
ChIP-qPCR primer				
CII-FOXM1-F: CGACTGTGGCTGAGATGAAG				

CII-FOXM1-F: GTAAGATGGAGGCGGTGTTG
CII-CDK1-F: GGCGGTCTTTTGAGTTTTCCA
CII-CDK1-R: ACATCGAGATTCCATTACTTTCACT
CII-CDKN1A-F: GCTGTATGACTCAGGGGCAA
CII-CDKN1A-R: CTCACCCCACTGCTTGTGAT