

advances.sciencemag.org/cgi/content/full/6/18/eaba6112/DC1

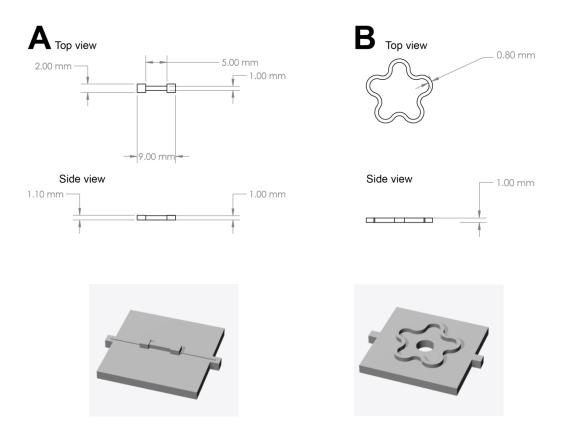
Supplementary Materials for

Cation-induced shape programming and morphing in protein-based hydrogels

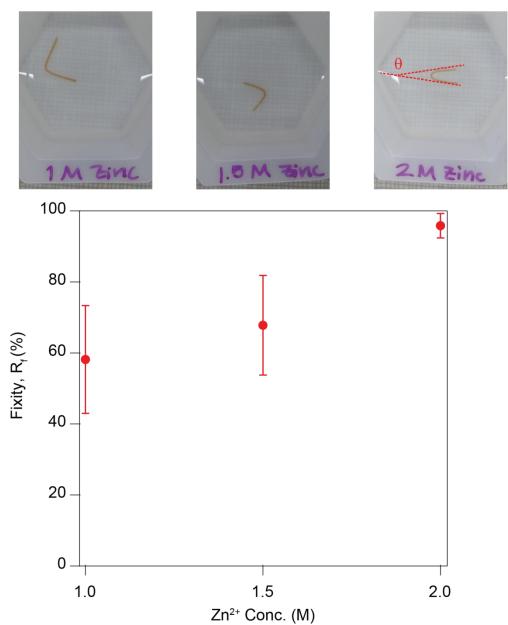
Luai R. Khoury*, Marina Slawinski, Daniel R. Collison, Ionel Popa*

*Corresponding author. Email: popa@uwm.edu (I.P.); khoury@uwm.edu (L.R.K.)

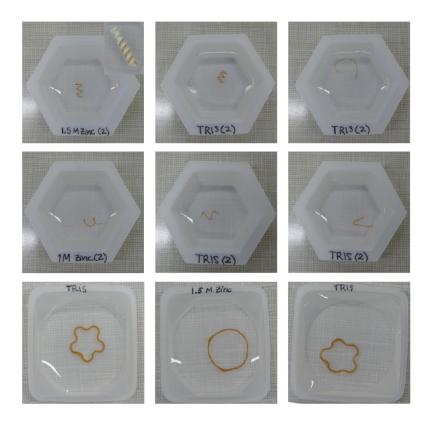
Published 29 April 2020, *Sci. Adv.* **6**, eaba6112 (2020) DOI: 10.1126/sciadv.aba6112


The PDF file includes:

Figs. S1 to S3 Legends for movies S1 to S3


Other Supplementary Material for this manuscript includes the following:

(available at advances.sciencemag.org/cgi/content/full/6/18/eaba6112/DC1)


Movies S1 to S3

Supplementary Figure 1. Schematics showing the two different shapes used in this study to synthetize hydrogels: (A) bone-like shape, (B) Flower-like shape.

Supplementary Figure 2. Changes in the measured fixity ratio of U-shape hydrogel as a function of Zn^{2+} concentration. The fixity represents the ratio between the bending angle following the programming step, when the hydrogel is taken out of the mold (θ) and the programmed angle (180 deg) of the mold. Inset: Pictures of the U-shape gels after being removed from the mold at different Zn^{2+} concentrations (photo credit: Luai R. Khoury, UWM; Marina Slawinski, UWM).

Supplementary Figure 3. Additional Examples of cation-induced shape morphing for protein hydrogels. BSA hydrogels were casted in cylindrical shape using PTFE tubes (top and middle left) and flower-like silicone rubber mold (bottom left). Then, they were programmed in a spring shape or ring shape, respectively, by immersion in 1.5 M Zn²⁺ solution (top and bottom) or 1 M Zn²⁺ (center) for 30 min. Afterwards, the programmed hydrogels were moved to TRIS buffer causing the hydrogels to recover to their casted shapes (photo credit: Luai R. Khoury, UWM; Marina Slawinski, UWM)

Supplementary Movie 1. Movie showing the morphing of a BSA-hydrogel casted as a ring and programmed into a flower in 2 M Zn^{2+} for 30 min and immersed in PBS buffer. As Zn^{2+} diffuses outside the hydrogel, the flower shape morphs into the initial ring shape.

Supplementary Movie 2. Movies showing the morphing of BSA-hydrogels casted as a cylinder and programmed as a spring shape in 2 M Zn²⁺.

Supplementary Movie 3. Movie showing the morphing of BSA-hydrogels casted as a cylinder and programmed in a U-shape in 2 M Zn²⁺.