SVF-derived extracellular vesicles carry characteristic miRNAs in lipedema

Eleni Priglinger^{1,2*}, Karin Strohmeier^{1,2,4}, Moritz Weigl^{2,3}, Carolin Lindner^{1,2}, Daniela Auer^{2,5,6}, Mario Gimona^{2,5,6}, Martin Barsch⁷, Jaroslaw Jacak^{2,4}, Heinz Redl^{1,2}, Johannes Grillari^{1,2,8}, Matthias Sandhofer⁷, Matthias Hackl^{2,3#}, Susanne Wolbank^{1,2#}

[#]These authors contributed equally

¹Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria
²Austrian Cluster for Tissue Regeneration, Vienna, Austria
³TAmiRNA GmbH, Vienna, Austria
⁴School of Medical Engineering and Applied Social Science, University of Applied Sciences Upper Austria, Linz, Austria
⁵Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Salzburg, Austria
⁶GMP Laboratory, Paracelsus Medical University, Salzburg, Austria
⁷Austrian Center for Lipedema, Linz/Vienna, Austria
⁸Institute of Molecular Biotechnology, Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences

*Corresponding Author:

Dr. Eleni Priglinger Eleni.Priglinger@trauma.lbg.ac.at Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA trauma research center, Austrian Cluster for Tissue Regeneration. Donaueschingenstrasse 13 A-1200 Vienna, Austria

RNA concentration in unconditioned medium and cell conditioned medium. Assessment of RNA concentration via nanodrop analysis of total RNA concentration and subsequent analysis with the HS RNA Kit in small extracellular vesicle (sEV) fraction of unconditioned medium (a) and conditioned medium after 24 h of secretion (b), isolated via ultracentrifugation respectively. Nucleotide lengths of respective peaks are indicated as well as the signal derived from the lower marker (LM). RNA concentration in raw secretion medium (0.09 ng/µl) was negligible in comparison to RNA concentration observed in cell conditioned medium after 24 h of secretion (6.73 ng/µl).

Supplementary Figure S2

Quality control of RT-qPCR data. Data quality for all concentrated conditioned medium (cCM) and small extracellular vesicles (sEVs) samples from control (co) and lipedema (lip) was assessed using spike-in controls to determine RNA extraction efficiency, enzymatic inhibition, and overall variability. a) Cq-values for three distinct RNA spike-in controls with 100x (UniSp2), 1x (UniSp4), and 0.01x (UniSp5) concentration are shown. b) Cq-values for the spike-ins added during cDNA synthesis (cel-miR-39) and PCR amplification (UniSp3) are shown. All spike-in controls (a,b) showed homogenous values across all 12 samples with low variability.

replicate 1 (y-axis) vs. replicate 3 (x-axis). High reproducibility of miRNA levels between technical replicates after 24 h of secretion was observed.

Supplementary Figure S4

Nanoparticle tracking analysis of conditioned medium (CM), concentrated CM (cCM) and small extracellular vesicles (sEVs). a) Particle count of CM and cCM. b) cCM was fractionated by size exclusion chromatography. Particle count and protein measurement, obtained by absorbance at 280 nm, of obtained fractions. c) Size distribution of cCM and d) sEVs (exemplarily shown by fraction 9).

Supplementary Figure S5

Surface marker analysis of small extracellular vesicles (sEVs) from healthy individuals and lipedema patients analyzed by multiplex bead-based flow cytometry assay. EV samples from healthy individuals (control) and lipedema patients

showed no significant differences in the surface marker profile. MFI=median fluorescence intensity. N=3.

Supplementary Table 1

No.	miRNA of EVs	Signal	No.	miRNA of EVs	Signal
1	hsa-miR-144-3p	122%	68	hsa-miR-93-5p	8%
2	hsa-miR-144-5p	92%	69	hsa-miR-152-3p	8%
3	hsa-miR-190a-5p	91%	70	hsa-miR-324-5p	8%
4	hsa-miR-142-3p	80%	71	hsa-miR-423-3p	7%
5	hsa-miR-454-3p	69%	72	hsa-miR-155-5p	7%
6	hsa-let-7a-5p	64%	73	hsa-miR-324-3p	7%
7	hsa-let-7d-5p	55%	74	hsa-miR-150-5p	7%
8	hsa-miR-331-3p	54%	75	hsa-miR-191-5p	7%
9	hsa-miR-103a-3p	53%	76	hsa-miR-484	7%
10	hsa-miR-107	47%	77	hsa-miR-140-3p	7%
11	hsa-let-7f-5n	42%	78	hsa-miR-154-5p	7%
12	hsa-miR-186-5n	37%	70	hsa-miR-328-3n	6%
12	hsa let 7c 5n	36%	80	hsa miR 105 5p	6%
1/	hsa miP 330 5n	32%	81	hsa miR 223 3p	6%
15	hsa lot 70 50	32%	01	hsa miP 221 2n	6%
10	haa miD 451a	32/0	02	haa lat 7d 2n	69/
10	hsa-miR-451a	20%	03	hsa-let-7u-sp	0%
17	hsa-miR-1990-op	20%	04	haa lat Zh En	6%
18	nsa-miR-100-5p	25%	85	nsa-let-7b-5p	6%
19	hsa-miR-99a-5p	25%	86	nsa-miR-29b-3p	6%
20	hsa-miR-31-5p	24%	87	hsa-miR-502-3p	6%
21	hsa-miR-22-3p	22%	88	hsa-miR-106a-5p	6%
22	hsa-miR-136-5p	20%	89	hsa-miR-24-3p	5%
23	hsa-miR-26a-5p	20%	90	hsa-miR-23b-3p	5%
24	hsa-miR-125b-5p	19%	91	hsa-miR-660-5p	5%
25	hsa-miR-196b-5p	19%	92	hsa-let-7b-3p	5%
26	hsa-miR-218-5p	19%	93	hsa-miR-30e-5p	5%
27	hsa-miR-98-5p	19%	94	hsa-miR-194-5p	5%
28	hsa-miR-301a-3p	19%	95	hsa-miR-320c	5%
29	hsa-miR-199a-5p	18%	96	hsa-miR-320b	5%
30	hsa-miR-127-3p	18%	97	hsa-miR-222-3p	5%
31	hsa-miR-590-3p	17%	98	hsa-miR-320a	5%
32	hsa-miR-148a-3p	16%	99	hsa-miR-20a-5p	5%
33	hsa-miR-26b-5p	15%	100	hsa-miR-21-5p	5%
34	hsa-miR-365a-3p	15%	101	hsa-miR-101-3p	5%
35	hsa-miR-18a-5p	14%	102	hsa-miR-185-5p	4%
36	hsa-miR-146b-5p	14%	103	hsa-miR-30e-3p	4%
37	hsa-miR-214-3n	14%	104	hsa-miR-23a-3n	4%
38	hsa-miR-140-5p	13%	105	hsa-miR-25-3n	4%
30	hsa-miR-30h-5n	12%	106	hsa-miR-361-5n	476
40	hsa-miR-15h-5n	12%	107	hsa-miR-122-5p	1% 1%
40	hsa miP 37/a 5n	12%	107	hsa miR 10h 5p	475
41	hsa lot 7a 5p	1270	100	hsa miP 27a 2p	478
42	hsa-iei-7y-5p	1270	1109	hsa miP 102 5p	4 /8
43	haa miR 20a En	12/0	110	haa miD 425 2p	4 /8
44	haa miD 105a En	1170	111	haa miD 40h 2n	470
45	haa miD 00h En	1170	112	haa miD 16 Fr	470
40	haa miD 105 57	11%	113	haa miD 100 5-	4%
4/	haa miD 24a 5	11%	114	haa miD 200-1	4%
48	nsa-miR-34a-5p		115	haa miD 40- 0	4%
49	nsa-miR-15a-5p		116	haa miD 400 0	4%
50	nsa-miR-92a-3p			nsa-miK-130a-3p	4%
51	nsa-miR-382-5p	10%	118	nsa-mik-421	4%
52	nsa-miR-652-3p	10%	119	nsa-mik-342-3p	3%
53	nsa-miR-29a-3p	10%	120	nsa-miR-145-5p	3%
54	hsa-miR-425-5p	10%	121	hsa-miR-132-3p	3%
55	hsa-miR-376c-3p	10%	122	hsa-miR-215-5p	3%
56	hsa-miR-29c-3p	10%	123	hsa-miR-532-5p	3%
57	hsa-miR-126-3p	9%	124	hsa-miR-27b-3p	3%
58	hsa-miR-376a-3p	9%	125	hsa-miR-181a-5p	3%
59	hsa-miR-497-5p	9%	126	hsa-miR-590-5p	3%
60	hsa-miR-17-5p	9%	127	hsa-miR-146a-5p	3%
61	hsa-miR-374b-5p	9%	128	hsa-miR-145-3p	3%
62	hsa-miR-423-5p	9%	129	hsa-miR-143-3p	2%
63	hsa-miR-532-3p	9%	130	hsa-miR-30d-5p	2%
64	hsa-miR-424-5p	8%	131	hsa-miR-30a-5p	2%
65	hsa-miR-874-3p	8%	132	hsa-miR-378a-3p	2%
66	hsa-miR-193b-3p	8%	133	hsa-miR-181b-5p	2%
67	hsa-let-7i-5p	8%			
-					

Analysis of microRNA (miRNA) signal origin from miRNAs in small extracellular vesicles (EVs). miRNAs signals obtained from all 133 miRNAs insEVs were compared against the total miRNA signal in concentrated conditioned medium (cCM) and expressed as %. For three miRNAs more than 90% of the signal in cCM originated from the sEV fraction, and for 6 further miRNAs >50% of the signal was derived from the sEV fraction. For 83 out of 133 miRNAs <10% of the total signal was obtained from the sEV fraction.

Supplementary Table 2

GeneID	hsa-let-7c-5p	hsa-mir-130a-3p	hsa-mir-144-5p	hsa-mir-16-5p	hsa-mir-188-5p	hsa-mir-24-3p	hsa-mir-29a-3p	hsa-mir-454-3p	Sum
DICER1	1	1		1			1	1	5
JARID2	1	1		1		1		1	5
MYC	1	1		1		1	1		5
NARS		1		1	1	1		1	5
TAOK1		1	1	1		1		1	5
ATP6V0E1		1		1		1		1	4
CCNA2		1				1	1	1	4
CCND1	1			1		1	1		4
CCND2		1		1			1	1	4
CDK4		1				1	1	1	4
DDX6		1		1			1	1	4
EREG		1				1	1	1	4
FAM217B		1	1			1		1	4
IGF2R		1		1		1		1	4
MAP3K9		1			1	1		1	4
MSANTD4		1		1		1		1	4
PAFAH1B2		1		1		1		1	4
POLR2D	1	1				1		1	4
PPP6R3		1		1	1			1	4
QKI	1	1					1	1	4
RAB11FIP1		1				1	1	1	4
RAN		1		1			1	1	4
RPRD2		1		1		1		1	4
SLC35E2B		1		1		1		1	4
TSC22D2	1			1	1	1			4
ACBD5		1		1				1	3
ACP6		1				1		1	3
ACVR1		2						1	3
ADARB2		1	1					1	3
AGO3		1				1		1	3
ANKRD9		1				1		1	3
ARHGAP12		1		1				1	3
ARL17B		1				1		1	3
ARL6IP1	1	1						1	3
ATG9A	1			1			1		3
ATP6V1B2		1		1				1	3
BCL7A				1		1	1		3

BTBD3		1				1		1	3
BZW1	1			1		1			3
C11orf57	1	1						1	3
CBX6	1			1			1		3
CCNT2	1			1			1		3
CDADC1		1		1				1	3
CDCA4		1		1				1	3
CEP55		1		1				1	3
CFL2		1		1				1	3
CHERP		1		1				1	3
CHIC1		1		1				1	3
		1		-		1		1	3
COX20		1				1		1	3
	1	1				T		1	2
	T	1		1				1	2 2
		1		T		1		1	2 2
		T				T		T	3
DCAF7	1			1		1			3
DEPDC1		1				1		1	3
DIABLO	1	-		1			1	-	3
DLC1		1		1				1	3
EDN1	1	1						1	3
ENPP4		1		1				1	3
FOXQ1		1				1		1	3
FZD6		1		1				1	3
GMFB		1				1		1	3
GPR82		1				1		1	3
GPRC5A		1		1				1	3
HBP1		1					1	1	3
HSPA8		1		1				1	3
IER3IP1		1		1				1	3
IFNLR1	1	1						1	3
KI HI 15	_	_		1		1		1	3
KREMEN1	1	1		-		-		1	3
	1	1						1	3
	-	1		1				1	2
		1		T		1		1	2
		1			1	T		1	3
		T	4		T	4		T	3
	1		1			1			3
METAP2	1	-		1		1		-	3
MLEC		1				1		1	3
MREG		1	1					1	3
NCAPD2		1		1				1	3
NFE2L1		1				1		1	3
NIPA1		1				1		1	3
NOM1	1	1						1	3
NPTX1	1	1						1	3
PDLIM5	1			1		1			3
PDP2	1	1						1	3
PEX13		1		1				1	3
PIGA		1	1					1	3
PLAG1				1	1		1		3
		1		-	-	1	-	1	3
POGZ		1				1		1	2
		1				1		1	2
		1		1		1		1	2
		T		1		1	1	T	2 2
				Т		T	T		3
PPP1R15B	1	1						1	3
PRKAA1		1		1				1	3
PRNP		1		1				1	3
PRRG4		1				1		1	3
PSMB5		1		1				1	3
RAB34	1	1						1	3
RAB5B	1	1						1	3
RACGAP1		1		1				1	3
RAP2C				1		1		1	3

REL				1	1		1		3
RFC2	1	1						1	3
RFT1		1		1				1	3
RNF11		1				1		1	3
RNF149		1		1				1	3
RPS6KA5		1				1		1	3
S1PR2		1				1		1	3
SALL3	1	1						1	3
SIK1		1		1				1	3
SLC10A3	1	1						1	3
SLC11A2	1			1		1			3
SLC12A7	1	1						1	3
SLC38A2		1		1				1	3
SMAD4		1	1					1	3
SMTNL2		1				1		1	3
SNTB1		1				1		1	3
SNTB2		1		1				1	3
SPATA5				1	1	1			3
STX16		1				1		1	3
TMTC1		1			1			1	3
TMTC3	1			1			1		3
TNFRSF10B	1	1						1	3
TNRC6B		1		1				1	3
TP53				1		1		1	3
TRIM4		1		1				1	3
TRIM71	1	1						1	3
TSPAN3		1		1				1	3
TUBB2A	1			1			1		3
TXNIP		1		1				1	3
UBC		1				1		1	3
UBN2		1		1				1	3
WASL	1	1						1	3
WNK3		1		1				1	3
XIAP		1				1		1	3
ZBTB5	1			1			1		3
ZFYVE9		1				1		1	3
ZMAT3		1		1				1	3
ZNF107		1				1		1	3
ZNF317		1				1		1	3
ZNF417	1	1						1	3
ZNF529		1	1					1	3
ZNF620		1		1				1	3

List of genes that were found by mirnet to interact with at least 2 of the differentially regulated microRNAs.