MALT1 MEDIATES IL-17 NEURAL SIGNALING TO REGULATE C. ELEGANS

BEHAVIOR, IMMUNITY AND LONGEVITY

Flynn et al.

Supplementary Information

Supplementary Figures

Supplementary Figure 1. Related to Figure 1. Knocking in epitope tags into endogenous *actl-1*, *pik-1*, *malt-1*, and *nfki-1* does not disrupt their function. A strain co-expressing *actl1-1-HA*, *pik-1-Myc*, *malt-1-HA* and *nfki-1-V5* in an *npr-1* background responds to 21% O₂ like *npr-1* controls. Arousal is abolished when these knock-in alleles are crossed into an *ilc-17.1(tm5218)* background. n = 69 animals (*npr-1*), n = 81 animals (*npr-1; actl-1-FLAG; pik-1-Myc; malt-1-*

HA; nfki-1-V5), n = 113 animals (npr-1; actl-1-FLAG; pik-1-Myc; malt-1-HA; nfki-1-V5; ilc-17.1) ***, P =

1.18e-27, Mann-Whitney U test.

Supplementary Figure 2. Related to Figure 1. MALT1.

a MALT1 paracaspase domain organization. Black arrows indicate the impact of *malt-1* mutations. DD, death domain; Ig, Immunoglobulin-like fold.

b Schematic of MALT1 signaling in mammalian B and T cells. BCR/TCR stimulation induces formation of the CARMA1-BCL10-MALT1 (CBM) signalosome via protein kinase C β (PKC β)/PKC θ -mediated phosphorylation of CARMA1. MALT1 recruits TRAF6, whose ubiquitin ligase activity leads to the recruitment and activation of the IKK complex. This culminates in IKK-mediated phosphorylation of IkB α , triggering its degradation and releasing NF-kB for nuclear translocation. MALT1 also promotes lymphocyte activation by cleaving negative regulators of NF-kB, and factors that regulate mRNA stability. Blast searches do not find nematode orthologs of BCL10 or CARMA.

Supplementary Figure 3. Related to Figure 1. The MALT-1-interacting proteome is enriched in factors

involved in RNA metabolism.

Gene ontology and biological pathway enrichment analysis of the 50 factors that specifically co-

immunoprecipitate with MALT-1 (Supplementary Data 1), performed with g:Profiler⁷⁹.

a malt-1 mutations isolated in a forward genetic screen for loss of aggregation behavior.
b The MALT-1 E464 residue mutated in AX3621 is conserved from *Ce* to human, and corresponds to E549 in human, which is known to be required for proteolytic activity. *Mm = Mus musculus, Hs = Homo sapiens*.
c The aggregation defect of AX3621 maps close to *malt-1*. Mapping used CloudMap (see Methods), which measures the relative levels of SNPs derived from two genetic backgrounds in aggregation-defective recombinants. N2 single nucleotide polymorphisms (SNPs) are derived from AX3621; Hawaiian SNPs are

derived from the AX288 (*lon-2 npr-1*) Hawaiian background strain. Aggregation-defective recombinants show an enrichment of N2 Bristol SNPs on chromosome II, flanking the physical location of the *malt-1* mutation at 6.9 Mb.

d The malt-1(db1194) allele, generated using CRISPR/Cas9 genome editing.

e *malt-1* mutants exhibit minor defects in thrashing rate. Data are presented as median (centre) and interquartile range (box; the lower and upper bounds of the box represent the 25th and 75th percentiles respectively). Whiskers represent $\pm 1.5x$ interquartile range. n = 48 animals. ***, P < 0.001, one-way ANOVA with Tukey's post hoc HSD.

f and **g** The aggregation phenotype (**f**) and arousal defect in 21% O₂ (**g**) of *malt-1(db1194)* mutants is rescued by expressing *malt-1* cDNA from the *npr-1* promoter, which drives expression in a broad subset of neurons including URX and RMG^{29,47}. (**f**) N = 5 assays (*npr-1*), N = 4 assays (*npr-1; malt-1*) and (*npr-1; malt-1; npr-1p::malt-1*), ***, P < 0.001, ANOVA with Tukey's post hoc HSD (**g**) n = 44 animals (*npr-1*), n = 84 animals (*npr-1; malt-1*), n = 77 animals (*npr-1; malt-1; npr-1p::malt-1*). ***, P = 5.33e-08, Mann-Whitney *U* test.

h *malt-1* RMG Ca²⁺ transients (reported by YC2.60) in freely moving animals are not further reduced by lossof-function mutations in *pik-1*. n = 20 animals (*npr-1*), n = 17 animals (*npr-1; malt-1*), n = 17 animals (*npr-1; malt-1; pik-1*). NS, P = 0.3, *, P < 0.05, two-sided Mann-Whitney *U* test.

Supplementary Figure 5. Related to Figure 2. MALT-1 is expressed in O₂-sensing neurons.

MALT-1::mCherry translational fusion, expressed from its endogenous promoter (4kb), is expressed in URX neurons in the head which are labelled with a *gcy-37p::gfp* reporter. Similar results were obtained in two experiments. Scale bars: 20µm.

Supplementary Figure 6. Related to Figure 5. Targeted disruption of the protease activity of MALT-1 and kinase activity of PIK-1/IRAK.

a *malt-1(syb296)* mutants expressing catalytically inactive MALT-1 C374A exhibit strong aggregation defects compared to *npr-1* animals. N = 5 assays, **, P = 0.0018, one-way ANOVA with Tukey's post hoc HSD. **b** PIK-1 ATP-binding may not be required for avoidance of 21% O₂. Single copy transgenes (MosSCI) expressing *pik-1* WT and *pik-1 K217A* cDNA rescue the O₂-response defect of *pik-1(tm2167)* mutants equally well. K217 corresponds to the lysine residue coordinating ATP binding in kinase active sites. n = 40 animals (*npr-1*), n = 69 animals (*npr-1; pik-1*), n = 70 animals (*npr-1; pik-1; mosSCI[pik-1 K217A]*), n = 56 animals (*npr-1; pik-1; mosSCI[pik-1 WT]*). Plots show average speed (line) and SEM (shaded regions). NS, P = 0.09, ***, P < 0.001, two-sided Mann-Whitney U test.

Supplementary Figure 7. Related to Figure 6. The elution profile MALT-1 and GAPDH proteins in *C. elegans* extract run on a Superose 6 Gel Filtration column and visualized by immunoblot. Unlike GAPDH control, MALT-1 is found in high-molecular weight fractions. This experiment was performed once.

Supplementary Figure 8. Related to Figure 8. P. aeruginosa PA14 small lawn assays.

a-d Mutants defective in *malt-1* and other IL-17 signaling components are resistant to *P. aeruginosa* PA14. The enhanced survival in PA14 small lawn assays of *malt-1* mutants compared to N2 controls is rescued by pan-neuronal expression of *malt-1* gDNA. $n \ge 74$ animals. *, P, < 0.05, **, P, < 0.01, ***, P, < 0.001, logrank test. Precise n numbers and P values are provided in Supplementary Table 2.

e The enhanced resistance of *malt-1* mutants to PA14 requires TIR-1. Like *tir-1* mutants, *malt-1; tir-1* double mutants are hypersensitive to PA14 infection. $n \ge 95$ animals. ***, P < 0.001, logrank test. Precise n numbers and P values are provided in Supplementary Table 2.

Supplementary Figure 9. Related to Figure 8. MALT-1 regulates innate immune response gene expression.

a Expression from *T24B8.5p::GFP*, a reporter of the innate immune response, is inhibited in *malt-1(db1194)*, *ilcr-1(tm5866)*, and *tir-1(tm3036)* mutants compared to N2. n = 44 animals (WT, *malt-1*, and *ilcr-1*), n = 42 animals (*tir-1*), n = 43 animals (*malt-1*; *ilcr-1*), n = 39 animals (*malt-1*; *tir-1*), n = 35 animals (*ilcr-1*; *tir-1*). *, P < 0.05, **, P < 0.01, ***, P < 0.001, one-way ANOVA with Tukey's post hoc HSD.

b *T24B8.5p::GFP* expression in *malt-1* mutants is restored by tissue-specific expression of WT *malt-1* cDNA in the intestine (*ges-1* promoter) or the nervous system (*rab-3* promoter). n = 42 animals (blue bars), n = 37 animals (black bars), n = 33 animals (purple bars), n = 24 animals (green and red bars). **, P < 0.01, ***, P < 0.001, one-way ANOVA with Tukey's post hoc HSD.

Fig. 6a

100

Supplementary Fig. 7 anti-GAPDH

anti-FLAG

Supplementary Figure 10. Uncropped Western blots (original scans).

anti-V5

Supplementary Tables

Supplementary Table 1 Related to Fig. 8. Summary of PA14 big lawn Survival data analysis of IL-17

pathway mutants.

Strain	Mean lifespan ±s.e.m. (hours)	Age in hours at 50% mortality	n (died/total)	Bonferroni <i>p</i> value vs. N2	
N2	48.47 ± 0.8	48	83/120		
malt-1(db1194)	56.95 ± 1.35	54	91/120	6.9e-7	
malt-1 (db1194); rab- 3p:: malt-1	45.25 ± 0.86	48	86/120	0.069 (0*)	
pmk-1 (km25)	36.91 ± 0.62	38	104/120	0	
malt-1(syb296)	62.16 ± 1.36	62	81/120	0	
ilcr-1 (tm5866)	57.82 ± 1.25	54	87/120	0	
nfki-1 (db1197)	57.72 ± 1.31	54	85/120	7.7e-8	
tir-1(tm3036)	41.1 ± 0.81	38	98/120	1.6e-7 (0*)	

				0.0319
malt-1(db1194); tir-	45.2 ± 1.48	38	98/120	(0.0000014*)
1(tm3036				(0.0004**)
				(0.2221***)

*p value against malt-1(db1194). ** p value against tir-1(tm3036).

Supplementary Table 2 Related to Fig. 8. Summary of PA14 small-lawn survival data analysis of IL-17 pathway mutants.

Strain	Mean lifespan ±s.e.m. (hours)	Age in hours at 50% mortality	n (died/total)	Bonferroni p value vs. N2	
N2	105.18 ± 2.31	110	95/120		
malt-1(db1194)	132.14 ± 3.67	120	96/120	0	
malt-1 (db1194); rab- 3p:: malt-1	101.31 ± 3.74	86	74/120	1 (1e-7*)	
pmk-1(km25)	61.73 ± 1.34	62	112/120	0	
malt-1(syb296)	132.92 ± 3.92	120	98/120	2.9e-8	
ilcr-1(tm5866)	127.20 ± 3.46	120	91/120	6.8e-7	
nfki-1(db1197)	129.17 ± 3.54	135	94/120	2.1e-7	
tir-1(tm3036)	73.82 ± 2.1	74	100/120	0 (0*)	
malt-1(db1194); tir-	62.19 ± 1.88	62	99/120	0	

1(tm3036		(0*)
		(0.0039**)

*p value against malt-1(db1194). ** p value against tir-1(tm3036).

Supplementary	Table 3 Related	to Fig. 8 Si	ummary of lifespar	of II -17 pathway	mutants on OP50
ouppiementary		10 1 19. 0. 0	unnary or mespar	roni⊑-n pauway	mutants on or so.

Strain	Mean lifespan ±s.e.m. (days)	Age in hours at 50% mortality	n (died/ total)	Bonferroni p value vs. N2	Independent replicate 1 (n; mean lifespan ±s.e.m. (days); Bonferroni <i>p</i> <i>value</i>)	Independent replicate 2 (n; mean lifespan ±s.e.m. (days); Bonferroni <i>p</i> <i>value</i>)	Independent replicate 3 (n; mean lifespan ±s.e.m. (days); Bonferroni <i>p</i> <i>value</i>)
N2	18.68 ± 0.31 (Figure 6i-I)	19	157/ 180		134/180; 17.32 ± 0.37	142/180; 18.7 ± 0.31; (Figure 6m)	143/180; 20.25 ± 0.54
malt-1 (db1194)	22.76 ± 0.41 (Figure 6j)	23	132/ 180	0	112/180; 20.84 ± 0.58; 2.9e-7	146/180; 21.29 ± 0.3; 1.3e-7 (Figure 6m)	155/180; 25.62 ± 0.63; 0
malt-1 (db1194); rab-3p:: malt-1	18.56 ± 0.38 (Figure 6j)	19	109/ 180	1 (0*)	146/180; 18.78 ± 0.46; 0.0105 (0.0115*)		
ilc-17.1 (tm5218)	20.72 ± 0.35 (Figure 6k)	21	140/ 180	0.0001	117/180; 19.00 ± 0.45; 0.0097		112/180; 24.06 ± 0.83;; 0.0001
illc-17.1 (tm5218); ilc-17.1p::	13.78 ± 0.25 (Figure 6k)	13	116/ 180	0 (0*)	104/180; 13.84 ± 0.31; 0 (0**)	96/180; 16.11 ± 0.32; 0.000006	105/180; 16.56 ± 0.5; 0.000004

ilc-17.1					(Figure 6m)	(0**)
ilc-17.1 (tm5218); malt-1 (db1194)	21.62 ± 0.41 (Figure 6l)	23	111/ 150	1.2e-7 (0.2044*) (0.3839**)		131/180; 23.95 ± 0.64; 0.0001 (0.1232*) (1**)
malt- 1(db1194); ilc-17.1p:: ilc-17.1					92/180; 21.48 ± 0.34; 4.5e-8 (1*) (0***) (Figure 6m)	116/180; 23.95 ± 0.71; 0.0002 (0.1847*) (0***)

p* value against *malt-1(db1194)*. *p* value against *ilc-17.1(tm5218)*.

***p value against *ilc-17.1(tm5218); ilc-17.1p:: ilc-17.1*

Supplementary Table 4 Knockin alleles used in this study.

>malt-1(syb296)

C374A

Synonymous mutation

>malt-1(syb573)

3XHA + Twin-Strep

Synonymous mutation

>pik-1(syb378)

linker-2XMyc

Synonymous mutation

AAAAGCATCCATTAATTGCTTCACATATCAAGGGAACACTTGCTTATCTTGCACCAGAATTCATTACATC AAAGATTCTTACCACAAAACTTGATGTCTATAGTTTTGGAATAGTACTTTTGGAAATTGCATCTGGTCAAC GGGCATATTCGGATTCTCGTGAAACTCGGGGGGCTCGTTGAATATTGTCAGGTTAATAAGGAATTGGCAG CACATCGGAAGATTCCAGTCAGAGAGATTTTTATTGATCGACGAGCGCCGCCACTTGTTGGTGATGAG GAAAAATCATTTTTGGATGCTCTGATTGAAGTTGGATTAGCTGGAGCGAATAACGATCGGAAAGTTCGA CCGACTATGTCACAAATTGTTGAATATCTTTGTAAAAATTCAATTCCGCCAGTTGTC GGAGCACAAAGTTGATATCCGAAGAGGACCTTTGAGCAGCAGAAGCTGGATAACGATCGGAA GAACAAAAGTTGATATCCGAAGAGGACCTTTGAGCAGAAGCTGATAAGTGAA GAAGACCTGTAAttaatactgtgtaccttgccatattcctcgaactcgaaatttgccattttgagtcaaaactacggtagcgggtctcgacac gaccgcctatagagattactgtagcaggggcttttttggcaaattttaatccggcaatttgcctatttgccggaaatttcaattctggcaatttgccaatttgcca gaaagtttcatttccqgcaattttccqgcaatttgccqatattqccqgaaattttatttctggcaa

>actl-1(syb412)

3XFLAG

Synonymous mutation

aatttccagattttattatacactaatgaaataaatcttacagaaggttc

>nkfi-1(syb617)

Synonymous mutation

V5

Supplementary Table 5 Strain list.

Strain	Genotype
N2	Wild-type Bristol strain
AX204	npr-1(ad609) X
PHX412	actl-1(syb-412) npr-1(ad609) X
AX7213	pik-1(syb-378) II; npr-1(ad609) X
AX6130	npr-1(ad609) nfki-1(db1198) X; dbls38[nfki-1p::nfki-1::GFP, ccRFP]
AX6145	npr-1(ad609) X; dbIs38[nfki-1p::GFP, ccRFP]
AX6969	malt-1(db1194) II;
	1(gDNA)::GFP, ccRFP]
AX288	[lon-2(e678) npr-1(ad609)]
AX5877	malt-1(db1194) II; npr-1(ad609) X
AX6742	malt-1(db1194) II;
	1(cDNA)::SL2mCherry, ccGFP]
AX6392	malt-1(db1194) II;
	1(gDNA)::GFP, ccRFP]
AX7502	dbEx1097[malt-1p(4kb)::malt-1(gDNA)::GFP, ccRFP]
AX7591	ynIs49[flp-5::GFP]; dbEx1119[malt-1p::(4kb)::malt-1(gDNA)::GFP,
	rol-6(su1006)]
AX6740	malt-1(db1194) II;
	1(cDNA)::SL2mKate, ccGFP]
AX7109	malt-1(db1194) II;
	1(cDNA):SL2mKate, ccRFP]

AX7132	malt-1(db1194) II;
	1(cDNA)::SL2mKate, ccGFP];
	1(cDNA):SL2mKate, ccRFP]
AX5995	malt-1(db1194) II;
	ccRFP]
AX6836	malt-1(db1194) II;
	ccRFP]; dbEx996[npr-1p::malt-1::SL2mCherry, ccRFP]
AX5989	malt-1(db1194) II;
	ccRFP]
AX5797	npr-1(ad609) ilc-17.1(tm5218) X; dbEx614[gcy-37p::YC2.60,
	ccRFP]
AX5811	npr-1(ad609) ilc-17.1(tm5218) X; dbEx614[RMGp::YC2.60, ccRFP]
AX6984	malt-1(db1194) II;
	dbEx614[RMGp::YC2.60, ccRFP]
AX5689	npr-1(ad609) ilc-17.1(tm5218) X
AX6727	malt-1(db1194) II;
	::SL2mCherry, ccRFP]
AX7149	malt-1(syb296) II; npr-1(ad609) X
AX7221	malt-1(syb296) II;
	1(cDNA)::SL2mKate, ccRFP]
AX6415	malt-1(db1194) II;
	1(C374A)::SL2mCherry, ccRFP]

AX6991	malt-1(db1194) II; npr-1(ad609) X; dbEx1026[rab-3p::malt-1(C374A
	gDNA)::GFP, ccRFP]
AX7006	malt-1(db1194) II;
	gDNA)::GFP, ccRFP]
AX7462	malt-1(syb573) II; pik-1(syb378) IV; npr-1(ad609) actl-1(syb412)
	nfki-1(syb617) X
AX7464	malt-1(syb573) II; pik-1(syb378) IV; npr-1(ad609) actl-1(syb412) ilc-
	17.1(tm5218) nfki-1(syb617) X
AX7229	pik-1(syb378) IV;
PHX617	nfki-1(syb617) X
AX6250	malt-1(db1194) II; npr-1(ad609) nfki-1(db1198) X; dbls38[nfki-
	1p::nfki-1::GFP, ccRFP]
AX6142	pik-1(tm2167) IV;
	1p::nfki-1::GFP, ccRFP]
AX7849	npr-1(ad609) ilc-17.1(tm5218) X;
	1(gDNA)::GFP, ccRFP]
AX5663	ilcr-1(tm5866) IV; npr-1(ad609) X
AX7850	ilcr-1(tm5866) IV;
	1(gDNA)::GFP, ccRFP]
AX6008	npr-1(ad609) actl-1(db1203) X
AX7040	npr-1(ad609) actl-1(db1203) X; dbls16[rab-3p::malt-1(gDNA)::GFP,
	ccRFP]
AX5909	pik-1(tm2167) IV;

AX7637	pik-1(tm2167) IV;
	1(gDNA)::GFP, ccRFP]
AX7235	npr-1(ad609)
	ccRFP]
AX6010	npr-1(ad609) nfki-1(db1197) X
AX7586	ilc-17.1(tm5218) X
AX7450	ilc-17.1(tm5218) X;
AX7585	malt-1(db1194) II
AX7449	malt-1(db1194) II; dbIs16[rab-3p::malt-1(gDNA)::GFP, ccRFP]
KU25	pmk-1(km25) IV
PHX296	malt-1(syb296) II
AX5949	<i>ilcr-1(tm5866)</i> IV
AX7587	nfki-1(db1197) X
TM3036	<i>tir-1(tm3036)</i> III
AX7649	malt-1(db1194) II; tir-1(tm3036) III
AX7847	malt-1(db1194) II;
AX7848	malt-1(db1194) II; ilc-17.1(tm5218)
AX6859	malt-1(db1194) II;
	1(cDNA)::SL2mCherry, ccRFP]
AX6134	malt-1(db1194) II;
	dbEx637[RMGp::YC2.60, ccRFP]
AX7185	ttTi5605 II; unc-119(ed3) III; pik-1(tm2167) IV; npr-1(ad609) X;
	MosSCI[unc-119(+);

AX6666	ttTi5605 II; unc-119(ed3) III; npr-1(ad609); pik-1(tm2167);
	MosSCI[unc-119(+);
AX6829	malt-1(db1195); npr-1(ad609); <i>ials25[gcy-37p::GFP(+) unc-119(+)]</i>
	dbEx979[malt-1p(4kb)::malt-1(gDNA)::mCherry, ccGFP]
AX7479	agls219[T24B8.5p::GFP::unc-54-3' UTR + ttx-3p::GFP::unc-54-3'
	UTRJ III
AX7480	malt-1(db1194) II; agls219[T24B8.5p::GFP::unc-54-3' UTR + ttx-
	3p::GFP::unc-54-3' UTR]
AX7852	ilcr-1(tm5866) IV;
	3p::GFP::unc-54-3' UTR] III
AX7595	<i>tir-1(tm3036)</i> III; agls219[T24B8.5p::GFP::unc-54-3' UTR + ttx-
	3p::GFP::unc-54-3' UTR]
AX7871	malt-1(db1194) II; ilcr-1(tm5866) IV; agIs219[T24B8.5p::GFP::unc-
	54-3' UTR + ttx-3p::GFP::unc-54-3' UTR] III
AX7872	malt-1(db1194) II; tir-1(tm3036) III; agls219[T24B8.5p::GFP::unc-
	54-3' UTR + ttx-3p::GFP::unc-54-3' UTR] III
AX7854	tir-1(tm3036) III; ilcr-1(tm5866) IV; agIs219[T24B8.5p::GFP::unc-
	54-3' UTR + ttx-3p::GFP::unc-54-3' UTR] III
AX7572	malt-1(db1194) II; agls219[T24B8.5p::GFP::unc-54-3' UTR + ttx-
	3p::GFP::unc-54-3' UTR] III; dbEx110[rab-3p::malt-1::SL2mCherry,
	ccRFP]

AX7573 malt-1(db1194) II; agIs219[T24B8.5p::GFP::unc-54-3' UTR + ttx-3p::GFP::unc-54-3' UTR] III; dbEx111[ges-1p::malt-1::SL2mCherry, ccRFP] Supplementary Table 6 Primers used in this study.

Primers for cloning *malt-1* promoter, cDNA and gDNA:

malt-1 promoter F ggggACAACTTTGTATAGAAAAGTTGctgccggtggattccaacatattg

- malt-1 promoter R ggggACTGCTTTTTGTACAAACTTGtctgaaattggggttcaagaaatttatttttgatttttaaaata
- malt-1 ORF F ggggACAAGTTTGTACAAAAAGCAGGCTtttcagaaaaatgaacacaaacttggcggagtt
- malt-1 ORF R ggggACCACTTTGTACAAGAAAGCTGGGTATTACTGTAGACAT
- malt-1(C374A) F TCTTGATGTCgcCAGAAAATTTGTTCCATATG
- malt-1(C374A) R gcgcgtcaagttgtGCCTGACGACGAGTTGTGCTGTTTTAGAGCTAGAA

Oligos for generating sgRNA expression plasmid used to make *db1194*:

malt-1 sgRNA EcoRI 1	gcgcgtcaagttgtGgatcaggtatccaccgtagGTTTTAGAGCTAGAA
----------------------	---

malt-1 sgRNA EcoRI 2 TTCTAGCTCTAAAACctacggtggatacctgatcCacaacttgacgcgc

Primers for cloning with E. coli expression plasmids:

- MALT-1-HA F ATATATGCTCTTCTAGTAACACAAACTTGGCGGAGTTACCTG
- MALT-1-HA R TATATAGCTCTTCATGCAGCATAATCTGGTACGTCGTATGGGTATCCTCCTC CCTGTAGACATTTGATTCTTGTAATCAAAATATGACC
- ACTL-1-FLAG F ATATATGCTCTTCTAGTACTAAGATGAAAATGGACGTAACAATTGAGTTGG
- ACTL-1-FLAG R TATATAGCTCTTCATGCCTTGTCATCGTCGTCCTTGTAATCTCCTCCTC-CTTGTGTAATACTGTAGTTCATGGAATCCTCG
- NFKI-1-V5 F ATATATGCTCTTCTAGTGCAACCGTTGCCCCCAAGGGAAACTGC
- NFKI-1-V5 R TATATAGCTCTTCATGCCGTAGAATCGAGACCGAGGAGAGGGGTTAG-GGATAGGCTTACCTCCTCCCAGCTCTCGACTTGTTCGGGACTGC

Primers for cloning with S. cerevisiae Y2H plasmids:

NFKI-1(full) EcoRI/BamHI 1	GCGAATTCATGGCAACCGTTGCCCC
NFKI-1(full) EcoRI/BamHI 2	GCGGATCCTCAAGCTCTCGACTTGTTCGG
NFKI-1(1-374) EcoRI/BamHI 1	GCGAATTCATGGCAACCGTTGCCCC
NFKI-1(1-374) EcoRI/BamHI 2	GCGGATCCTCATGCATCGCGGTTAGTAAG
MALT-1(full) Xmal/Xhol 1	GTTCCCGGGGATGAACACAAACTTGGCGG
MALT-1(full) Xmal/Xhol 2	CGGCTCGAGTTACTGTAGACATTTGATTCTTGT
MALT-1(1-81) Xmal/Xhol 1	GTTCCCGGGgATGAACACAAACTTGGCGG
MALT-1(1-81) Xmal/Xhol 2	CGGCTCGAGTTATCTTGAAAGAAACTGCAATCT
MALT-1(248-639) Xmal/Xhol 1	GTTCCCGGGgCGAGCAGCAGATAAAGTTG
MALT-1(248-639) Xmal/Xhol 1	CGGCTCGAGTTACTGTAGACATTTGATTCTTGT