
Reviewers' comments: 
 
Reviewer #1 (Remarks to the Author): 
 
The manuscript describes the application of a relaxed optimal transport algorithm to integrate 
scRNAseq with spatial imaging data to study cellular dynamics in a tissue context. The spatial 
tissue dynamics addressed in this manuscript include cell-cell communications and intercellular 
gene-gene regulatory relationships. A key step of the approach is the construction of a spatial 
metric with an optimal transport plan. The authors use partial information decomposition to 
understand indirect genes-genes interactions by quantifying the unique information provided by 
one gene to another gene across different cell types. Thorough application of the method for four 
pairs of scRNA-seq and spatial gene expression datasets was performed. Overall, this is a high-
quality manuscript, reporting novel algorithms well implemented in a Python package. The 
manuscript was well-written with a clear description of concepts and algorithms, a comprehensive 
document describing the algorithms implemented in the SpaOTsc package is available and the 
software is well-documented. I believe the work has broad applications and will benefit the 
research community. 
 
Some of my comments and questions are below: 
 
The number of interactions detected using this method is very high. It should be more useful if the 
authors provide discussions and options for prioritising connections. 
 
What are potential effects of different data normalisation and processing to the result of the 
SpaOTsc analysis pipeline? 
 
How well the method can be applied for data from different experimental spatial technologies like 
Slide-seq, MERFISH, SeqFISH, which have different data characteristics? In this manuscript, the 
authors tested in situ hybridization data and STARmap data, but more recent and popular methods 
are Slide-seq, MERFISH, and SeqFISH. 
 
In the SpaOTsc analysis reported in this manuscript, to asess the effect of the number of genes to 
the overall results, the author tested 10, 20 and 50 genes in Drosophila dataset. The authors claim 
that a moderate size of 50 genes is enough to capture the key features. However, this is a very 
small number of genes compared to the whole-genome coverage of over 32K genes in human or 
mouse genome. The authors may add discussions on the scalability of the methods when more 
genes and more cells are included. Preferably, a similar analysis to the Figs 15-17 but for the 
mouse visual cortex dataset should be added. 
 
Supp Figure 11: Why with the additional spatial distance cutoff, new conenctions emerge? For 
example, comparing panel b to panel a, new connections between 4.1 and 5 in Wg signalling and 
4.2 to 2.1 in the Dpp signalling. 
 
Supp Figures 12 and 13: Plotting cells on tSNE to demonstrate effects of spatial distance cutoff to 
cell-cell connections is not a good way. The plots may have problems with reproducibility of the 
representation and potential confusion in intepreting tSNE distance and physical distance. tSNE 
plots donot accurately represent cell-cell distance in gene expression or physical distance space, 
for example most connections to cells in 1 in the tSNE plots are actually to cells in 7. How 
reproducible the many connections are displaced in the tSNE plots? If UMAP plots are used, are the 
connection patterns between clusters similar compared to tSNE plots? 
 
What are colors in Supp Figures 11, 12, 13 represent? If the author use the colors to represent 
cluster labels, consistent colors and cluster number are required. 
 
Please add X and Y axis label in the Supp Fig 15 



 
 
 
 
 
 
 
Reviewer #2 (Remarks to the Author): 
 
Cang and Nie introduce a computational method for integrating spatial and single-cell 
transcriptomic data based on optimal transport (OT) theory. With SpaOTsc, the authors were able 
to integrate spatial level data to dissociation-based single-cell RNA-seq data, in order to infer 
spatial distance between cells and use this information to drive dimension-reduced embedding and 
clustering of scRNA-seq data. They can also generate gene networks from spatial expression and 
identify clusters of genes that correspond to regions of the spatial transcriptomic data. Moreover, 
optimal transport is used to identify intercellular signaling based on known ligand, receptor, and 
downstream effector genes, and probabilities of signaling interactions constrained by spatial 
distance are produced. This work seems timely and exciting due to the types of data being 
generated in the field of single-cell biology, and would evoke substantial enthusiasm. 
 
Given the enthusiasm, there is also some comments I would like to make about the paper. While 
SpaOTsc seems promising when benchmarked against DistMap, Achim, and Seurat V1, the utility 
of this tool for enhancing single-cell data using spatial transcriptomic methods has not been 
demonstrated. Primarily, it appears that the reconstructed spatial patterning of genes compared to 
experimental data only shows genes measured by the spatial methods themselves. I.e. the ability 
to predict spatial patterning of unmeasured genes was not sufficiently shown. This paper would be 
strengthened by an example of out-of-sample prediction of spatial expression of gene(s) not 
measured by FISH/STARmap using SpaOTsc mapping of scRNA-seq data. Results could be 
validated against known expression patterns within the sample/organism of interest (e.g. 6hpf 
zebrafish embryo expressing admp and ved at dorsal and ventral sites, respectively). 
 
• Low-dimensional embeddings of scRNA-seq datasets using native cell information and inferred 
spatial cell-cell distance from SpaOTsc seem very similar. What is the functional difference 
between them and what does this tell you? If clustering and embeddings are nearly the same from 
the two types of data, does this suggest that spatial information is inherently present in the 
scRNA-seq data? Can you draw ventral/dorsal/anterior/posterior axes on a t-SNE/UMAP generated 
from spatial cell-cell distances? Moreover, there should be examples that the authors can use 
where space does not equal function (thinking of scenarios in the adult situation where cells for the 
most part are intermixed) 
• How are gene sets for sender and receiver cells defined? Explanation of the reference database 
and/or the required information to run this signaling analysis de novo would be helpful. 
• Links to code and tutorials do not work 
• For the majority of the paper in both sets of data, the authors primarily focused on WNT and 
TGFB family signaling pathways. It leads the readers to think that this approach will only work for 
these pathways and not others (e.g. EGF signaling). It would be prudent to include examples of 
other pathway types that can be inferred 
• I am not understanding the difference between Figure 4A and B. While 4A shows an inverse 
relationship regarding receiver and sender to be inversely correlated between the 2 pathways, 
Figure 4B shows a direct correlation. Why the discrepancy? 



 
Response to Reviewer 1  

 

General comments: 

 

The manuscript describes the application of a relaxed optimal transport algorithm to 

integrate scRNAseq with spatial imaging data to study cellular dynamics in a tissue 

context. The spatial tissue dynamics addressed in this manuscript include cell-cell 

communications and intercellular gene-gene regulatory relationships. A key step of the 

approach is the construction of a spatial metric with an optimal transport plan. The 

authors use partial information decomposition to understand indirect genes-genes 

interactions by quantifying the unique information provided by one gene to another gene 

across different cell types. Thorough application of the method for four pairs of scRNA-

seq and spatial gene expression datasets was performed. Overall, this is a high-quality 

manuscript, reporting novel algorithms well implemented in a Python package. The 

manuscript was well-written with a clear description of concepts and algorithms, a 

comprehensive document describing the algorithms implemented in the SpaOTsc 

package is available and the software is well-documented. I believe the work has broad 

applications and will benefit the research community.  

 

Response: We thank the reviewer very much for the supportive comments and the 

following constructive specific comments.  

 

Specific comments: 

 

1. The number of interactions detected using this method is very high. It should be more 

useful if the authors provide discussions and options for prioritizing connections.  

 

Response: We thank the reviewer for pointing this out and the nice suggestion. The 

number of interactions for Wg in the drosophila dataset was high while the number of 



interactions for some other cases, such as the Wnt signaling in the zebrafish dataset, was 

relatively low in our study.  

 

To follow the reviewer’s suggestion of adding options for prioritizing connections, in the 

revision we have added a user-defined parameter to the package. When evaluating cell-

cell communications, the significance of each gene involved was measured by a weight 

function (Supplementary Methods Section 1.6) based on the expression level 

(Supplementary Methods Eq. 34 and 35). One typical option of the weight function could 

be an exponential weight function . The scaling parameter  can be 

used to measure if a gene is more biased to the “off” state or the “on” state. In the revision, 

this parameter now has been changed as an input of the package instead of a given 

parameter in the original version. In the revision, we have systematically examined the 

effect of this parameter on the number of interactions (new Supplementary Fig. 16), and 

found that when increasing this parameter, a smaller number of essential “signal sender” 

cells and “signal receiver” cells were identified. The parameter  shows a nice control of 

the number of interactions according to the user’s choices on the significance of the signal 

senders and signal receivers.   

 
In the revision, we have added a few sentences to describe this parameter and the 

outcomes of tuning this parameter at the end of the fifth paragraph of the Results section 

“Reconstruction of cell-cell communications in space”. 

 

2. What are potential effects of different data normalization and processing to the result 

of the SpaOTsc analysis pipeline? 

 

Response: Thanks for bringing up this good point. In the original publications containing 

the drosophila and zebrafish datasets, both the scRNA-seq and the spatial data were 

binarized first before being analyzed in the original study. We adapted the same approach 

in our original submission. In the revision we added studies of three other normalization 

procedures on the drosophila datasets including the default settings of Seurat and 

Monocle, and a normalized procedure used by the DREAM Single-Cell Transcriptomics 

φ(x) = exp(−(x /η)ν ) η

η



Challenge (Synapse ID: syn15665609), along with the original count matrix without any 

normalization.  

 

Similar to the processing procedures for numerical data in the original submission (Fig. 

2c), we used Spearman’s correlation to quantify the similarity between single cells and 

spatial locations. Very similar performance was observed across all five different 

normalization procedures with average AUC’s rounding up to 0.88 (Fig. 2b2 and new 

Supplementary Fig. 5).  

 

Another key component is how to measure gene expression similarity between cells in 

scRNA-seq data and locations in spatial data. Since the scRNA-seq data and spatial data 

can have very different characteristics, we chose the measurements such as Matthew’s 

correlation coefficient following the binarization of data (Fig. 2b2) and Spearman’s 

correlation coefficient for numerical data. These measurements are usually robust to 

scales as opposed to some other commonly used ones such as Pearson’s correlation 

coefficient. The robust prediction performance across different preprocessing procedures 

is likely due to these choices of similarity measurements. In the main figures, we used the 

processing steps of the original publications associated with the datasets because these 

processing procedures have shown proper characteristics of the corresponding biological 

systems. While we recommend using binarized data or ranking-based correlation 

coefficients on numerical data, we provide users with the flexibility to apply any of their 

own similarity measurements that they consider appropriate for the specific biological 

systems. 

 

In the revision, we have added a few sentences at the end of the second paragraph of 

the Results section “Performance of SpaOTsc mapping and comparison to other methods” 

to discuss this point.  

 

3. How well the method can be applied for data from different experimental spatial 

technologies like Slide-seq, MERFISH, SeqFISH, which have different data 

characteristics? In this manuscript, the authors tested in situ hybridization data and 



STARmap data, but more recent and popular methods are Slide-seq, MERFISH, and 

SeqFISH.  

 

Response: Thanks for bringing up this great point. In the revision we have added a study 

of two different spatial technologies for the mouse olfactory bulb (New Fig. 6, New 

Supplementary Fig. 30-35). In this analysis, we used two spatial datasets, a Slide-seq 

dataset (Rodriques, Samuel G., et al. Science 363.6434 (2019): 1463-1467) and an RNA 

seqFISH+ dataset (Eng, Chee-Huat Linus, et al. Nature 568.7751 (2019): 235) to study 

the cell-cell communication. In addition we used a ligand-receptor database (Ramilowski, 

Jordan A., et al. Nature communications 6 (2015): 7866) containing more than a thousand 

ligand-receptor pairs to systematically identify communication links.  

 

We carried out four signaling analyses: cell-cell communications based only on the two 

spatial datasets, and the cell-cell communications based on the scRNA-seq data with the 

two spatial datasets as the spatial reference. We found that the signal sending cells seem 

to have some spatial localization pattern while the signal receiving cells are relatively 

scattered over the space. The reconstructed spatial distributions of signal sending cells 

in the analysis of scRNA-seq data agree well with the signaling patterns based on only 

the spatial datasets.  

 

The scRNA-seq data in this study contains six samples under three physiological 

conditions: wild type, olfactory trained, and naris occluded. We then explored if the cell-

cell communication patterns under these different conditions are different. We found that 

while the wild type samples and the olfactory trained samples share similar 

communication patterns, the naris occluded samples show relatively different behavior.  

 

Our method can be directly applied to the modern spatial transcriptomics datasets. The 

integration utility for scRNA-seq data and spatial data, however, can still be useful in some 

cases. For example, in these signaling analyses, there are 1157 ligand-receptor pairs 

present in the scRNA-seq data compared to 989 and 758 pairs in the Slide-seq dataset 

and the RNA seqFISH+ dataset. So scRNA-seq data may provide additional ligand-



receptor information. This can be especially useful if some key genes of interest are not 

measured in spatial data but are available in scRNA-seq data. 

 

Moreover, one may encounter the situation for which scRNA-seq data of several samples 

are obtained under different physiological conditions. Using the integration utility of 

SpaOTsc, one can integrate the scRNA-seq data of each sample with a common spatial 

reference data annotating the locations of different cell states. Then, one will be able to 

study the difference in spatial activity between the scRNA-seq data of different samples. 

As an example, we studied the difference in spatial cell-cell communications across 

several olfactory bulbs under different physiological conditions using scRNA-seq data of 

several samples and one common spatial reference data. 

 

In the revision, we have added a new section (“Applications to spatial transcriptomics 

datasets” in the Results section), a new main figure (New Fig. 6), along with six 

supplementary figures (New Supplementary Fig. 30-35) on the analysis of mouse 

olfactory bulb using scRNA-seq data and modern spatial transcriptomics datasets. We 

have also discussed the potential application of our method on modern spatial 

transcriptomic data in the Discussion section with new references added.  

 

4. In the SpaOTsc analysis reported in this manuscript, to assess the effect of the 

number of genes to the overall results, the author tested 10, 20 and 50 genes in 

Drosophila dataset. The authors claim that a moderate size of 50 genes is enough to 

capture the key features. However, this is a very small number of genes compared to 

the whole-genome coverage of over 32K genes in human or mouse genome. The 

authors may add discussions on the scalability of the methods when more genes and 

more cells are included. Preferably, a similar analysis to the Figs 15-17 but for the 

mouse visual cortex dataset should be added.  

 

Response:  Thanks for the suggestions. In the revision we have systematically increased 

the number of background genes one at a time from 1 gene to 300 genes in the mouse 

visual cortex dataset containing 14249 high-quality cells (New Supplementary Fig. 28). 



We stopped at 300 genes for this case because only about 300 highly variable genes 

were selected in the Scanpy package for preprocessing. We have also carried out a 

similar study from 1 gene to 500 genes for the drosophila embryo dataset (New 

Supplementary Fig. 27).  

 

Pearson’s correlation coefficients for both datasets between the connections identified 

using 50/50 background genes and using 300/500 background genes were found to be 

greater than 0.9. At a higher number of background genes, the identified connections stay 

almost identical (from 200 to 300 background genes in mouse visual cortex example and 

from 300 to 500 background genes in drosophila embryo example). 

 

In the revision, we have added a paragraph at the end of the section “Identification of 

intercellular gene-gene regulatory information flows” to address this point. 

 

5. Supp Figure 11: Why with the additional spatial distance cutoff, new connections 

emerge? For example, comparing panel b to panel a, new connections between 4.1 and 

5 in Wg signaling and 4.2 to 2.1 in the Dpp signaling.  

 

Response: Thanks for this great point.  In our model, a signal sending cell has a fixed 

final amount “mass”, which describes the level of gene expression. If one cell receives 

more signals from a sending cell, the other cells will receive less from the same sending 

cells. So removing one connection using distance cut-off will increase the available gene 

expression for other potential receiving cells. As a result, new connections become 

possible when removing one connection using distance cut-off. This property is reflected 

in our objective function for constructing the cell-cell communication network: 1) a penalty 

for long-distance transportation of ligand and 2) a penalty for violating the conservation 

of mass. The newly merged connections are consequences of the competition between 

these two components.  

 

To make this point clear, in the revision we have added a simple example illustrating 

possible outcomes by adding a spatial constraint (New Supplementary Fig. 22). Besides 



showing the changes in the top connections (Supplementary Fig. 18), we have added a 

New Supplementary Fig. 21 to show the changes in all the identified connections due to 

the addition of the spatial constraint in the form of heatmaps. This result has been added 

to the last paragraph of the Method section “SpaOTsc model” in the revision.  

 

 

On the single-cell level, for illustration, we consider a simple system with three cells: a 

signal sender cell (cell 1) and two signal receiver cells (cell 2 and cell 3). Cell 3 is more 

likely a receiver cell than cell 2 (in other words, cell 3 has a greater mass than cell 2 as 

destinations in the optimal transport setup) but the distance between cell 3 and cell 1, 

d(cell 1, cell 3) is greater than d(cell 1, cell 2). Without the spatial constraint, we would 

identify a stronger connection between cell 1 and cell 3 than between cell 1 and cell 2 

due to the conservation of mass. If a spatial constraint that is between d(cell 1, cell 3) 

and d(cell 1, cell 2) is applied, we would observe no mass going from cell 1 to cell 3 

(thus the previous strong connection vanishes) but more mass going from cell 1 to cell 2 

(the emergence of a shorter connection). In the optimal transport formulation, the 

transportation cost (a large cost if moving much mass along long distance) and the 

mass conservation violation (a penalty for unbalanced mass transport) are the two 

penalty terms in the objective function to be minimized. When a spatial constraint is 

applied, a connection whose distance is longer than this constraint will induce a huge 

penalty in the transportation cost while the elimination of this connection might lead to 

the emergence of new short connections which only induces a moderate penalty in 

mass conservation violation. Therefore, we may observe new connections when a 

spatial constraint is applied. 

 

On the cluster level, there are also new connections of visually long distances when the 

spatial constraint is added (Supplementary Fig. 18). This is because we used a 

geometric average to represent the location of clusters. So there are clusters that are 

adjacent in space while their cluster centers are visually distant (e.g. cluster 4.1 and 

cluster 3.1 in Supplementary Fig. 18b). As a result, we may observe a new connection 



between clusters of visually long distance contributed by cell pairs of short distance 

located near the interfaces where the two clusters meet. 

 

 

 

6. Supp Figures 12 and 13: Plotting cells on tSNE to demonstrate effects of spatial 

distance cutoff to cell-cell connections is not a good way. The plots may have problems 

with reproducibility of the representation and potential confusion in intepreting tSNE 

distance and physical distance. tSNE plots donot accurately represent cell-cell distance 

in gene expression or physical distance space, for example most connections to cells in 

1 in the tSNE plots are actually to cells in 7. How reproducible the many connections 

are displaced in the tSNE plots? If UMAP plots are used, are the connection patterns 

between clusters similar compared to tSNE plots? 

 

Response: Thanks for this constructive suggestion. In the revision, we have changed all 

the tSNE visualization to UMAP visualization. The overall organization of cells is similar 

to the tSNE plots in the drosophila embryo dataset. The two visualizations are generally 

different in other datasets. Indeed, we found the new UMAP visualization generally better 

than the previous tSNE visualization in representing the global spatial arrangements. 

Especially for the mouse visual cortex dataset (New Supplementary Fig. 11), we used 

UMAP visualization while tSNE failed to reproduce the known global spatial organization.  

 

Despite the general difference between the tSNE and UMAP visualizations, for a specific 

dataset (the drosophila embryo dataset), the connection patterns between clusters and 

the visualized cell-cell communications from the new UMAP visualization and the old 

tSNE visualization are very similar. 

 

Regarding the question on the subset of cluster 7 cells located near cluster 1, we have 

found this spatial arrangement is still present in the new UMAP visualization. This is 

because the first level clustering (cluster 7 and cluster 1 are obtained from this first level 

clustering) was done with only single-cell RNA sequencing data. Though the drosophila 



embryo dataset shows a strong correlation between space and function, there are cases 

where a cell cluster can have spatially localized subclusters. For example, this is the case 

for cluster 7 where a part of it is spatially close to cluster 1 and the other part is spatially 

close to cluster 6.  

 

In the revision, we have added a sentence to the second paragraph of the Results section 

“Space-constrained visualization and clustering of cells and genes in scRNA-seq data” to 

clarify this point. 

 

7. What are colors in Supp Figures 11, 12, 13 represent? If the author use the colors to 

represent cluster labels, consistent colors and cluster number are required.  

 

Response: These colors represent the cluster/subcluster labels and are consistent with 

other plots on the drosophila embryo dataset in the paper. We have added descriptions 

to the figure captions. 

 

8. Please add X and Y axis label in the Supp Fig 15  

 

Response: We have added the X and Y axis labels. 

  



Response to Reviewer 2  
 
General comments: 

 

Cang and Nie introduce a computational method for integrating spatial and single-cell 

transcriptomic data based on optimal transport (OT) theory. With SpaOTsc, the authors 

were able to integrate spatial level data to dissociation-based single-cell RNA-seq data, 

in order to infer spatial distance between cells and use this information to drive 

dimension-reduced embedding and clustering of scRNA-seq data. They can also 

generate gene networks from spatial expression and identify clusters of genes that 

correspond to regions of the spatial transcriptomic data. Moreover, optimal transport is 

used to identify intercellular signaling based on known ligand, receptor, and 

downstream effector genes, and probabilities of signaling interactions constrained by 

spatial distance are produced. This work seems timely and exciting due to the types of 

data being generated in the field of single-cell biology, and would evoke substantial 

enthusiasm. 

 

Response: We appreciate the reviewer’s positive comments and the following 

constructive specific comments.  

 

Specific comments: 

 

1. Given the enthusiasm, there is also some comments I would like to make about the 

paper. While SpaOTsc seems promising when benchmarked against DistMap, Achim, 

and Seurat V1, the utility of this tool for enhancing single-cell data using spatial 

transcriptomic methods has not been demonstrated. Primarily, it appears that the 

reconstructed spatial patterning of genes compared to experimental data only shows 

genes measured by the spatial methods themselves. I.e. the ability to predict spatial 

patterning of unmeasured genes was not sufficiently shown. This paper would be 

strengthened by an example of out-of-sample prediction of spatial expression of gene(s) 

not measured by FISH/STARmap using SpaOTsc mapping of scRNA-seq data. Results 



could be validated against known expression patterns within the sample/organism of 

interest (e.g. 6hpf zebrafish embryo expressing admp and ved at dorsal and ventral 

sites, respectively). 

 

Response: We apologize for the confusion. In the original submission, all the methods 

including ours were validated in the same Leave-one-out cross-validation setting, that is, 

part of the spatial data after subtracting the predicting gene was used for the prediction. 

This procedure provides a way of measuring the accuracy of predicting spatially 

unmeasured genes. We have added a detailed description to clarify the prediction 

procedure in the revision (second paragraph of “Performance of SpaOTsc mapping and 

comparison to other methods”). 

 

Regarding the point that some additional blind prediction would be helpful where the test 

data is hidden from not only the model but also the researcher when developing the 

method, we gathered additional imaging data of 13 genes in drosophila embryo that were 

not in the spatial dataset in our original submission (new data taken from Supplementary 

Figure S4 of Karaikos, Niko, et al. Science 358.6360 (2017): 194-199.) showing various 

spatial patterns that are present in the scRNA-seq data but are absent in the spatial data. 

We observed that the predicted spatial patterns agree well with the added imaging data 

(New Supplementary Fig. 3). We have added this new result to the new Supplementary 

Figure 3.  

 

2. Low-dimensional embeddings of scRNA-seq datasets using native cell information 

and inferred spatial cell-cell distance from SpaOTsc seem very similar. What is the 

functional difference between them and what does this tell you? If clustering and 

embeddings are nearly the same from the two types of data, does this suggest that 

spatial information is inherently present in the scRNA-seq data? Can you draw 

ventral/dorsal/anterior/posterior axes on a t-SNE/UMAP generated from spatial cell-cell 

distances? Moreover, there should be examples that the authors can use where space 

does not equal function (thinking of scenarios in the adult situation where cells for the 



most part are intermixed) 

 

Response: Thanks for the good questions.  

 

For the datasets of early developing tissue (the drosophila embryo and the zebrafish 

embryo), the UMAP plot using the inferred spatial distance (spatial UMAP) and the UMAP 

plot using only the single-cell RNA sequencing data (scRNA-seq UMAP) are generally 

similar. However, the inferred spatial distance still provides some additional information. 

For example, the spatially localized subclusters, which are well separated in the spatial 

UMAP plot, are mixed in the scRNA-seq UMAP plot (e.g. cluster 7 has three spatially 

localized subclusters in Fig. 3b). Also, the relative distances between clusters in the 

spatial UMAP are more consistent with the geometric configuration (Supplementary Figs. 

6,8). It seems even in the tissues where space corresponds strongly to function, our 

method still identifies spatially localized subclusters and renders reasonable relative 

spatial arrangements between cell clusters that are not observed in scRNA-seq only 

UMAP plot.  

 

Regarding the point of tissue axes, the UMAP visualization using the cell-cell spatial 

distance can reproduce some spatial axes in the original tissue. For example, the ventral-

dorsal/posterior-anterior axis for the drosophila embryo (Fig. 3b), the 

ventral/dorsal/animal sides for the zebrafish embryo (Supplementary Fig. 8), and the 

L2/3-L6 region axis for the mouse visual cortex (Fig. 3a). 

 

In the revision, we also followed the reviewer’s suggestion to test on a tissue where the 

cells of different types are partially intermixed for the mouse visual cortex system. The 

UMAP visualization based on the spatial distance shows that some cell types are 

intermixed, agreeing well with prior knowledge (Fig. 3a). On the other hand, the UMAP 

visualization based only on scRNA-seq data exhibits well-separated cell clusters of 

different types, however, it failed to reconstruct the known spatial layout from region L2/3 

through L6 (New Supplementary Fig. 11). 

 



In the revision, we have added a New Supplementary Fig. 11 to show the difference in 

visualization between using the inferred spatial distance and using only the scRNA-seq 

data on a mature tissue (the mouse visual cortex). In addition, we have changed all the 

visualization using tSNE in the original submission to UMAP for consistency and 

reproducibility. We have also added annotation of tissue axes on the UMAP visualizations 

based on the spatial distance (Fig. 3a,b, Supplementary Fig. 8). 

 

3. How are gene sets for sender and receiver cells defined? Explanation of the 

reference database and/or the required information to run this signaling analysis de 

novo would be helpful. 

 

Response:  Thanks for the nice suggestion.  

 

The signaling analysis of zebrafish embryo and drosophila embryo are based on the 

known ligand, receptor, and downstream genes extracted from publications and 

published databases. In the revision, we have added this information to the Data sets and 

processing section of the main paper. The genes used together with the corresponding 

references are listed in Supplementary Methods Section 3.  

 

Due to the noisy behavior of scRNA-seq data, a single pair of ligand-receptor is often 

insufficient to depict the cell-cell communications, and inclusion of a few downstream 

genes in the ligand-receptor pathway is important to enable consistent inference. On the 

other hand, a large number of ligand-receptor pairs without including the downstream 

genes could be effective to infer the existence of cell-cell communication between cells 

or clusters. For example, in the revision, we added a ligand-receptor database 

(Ramilowski, Jordan A., et al. Nature communications 6 (2015): 7866.) of more than a 

thousand ligand-receptor pairs to infer the cell-cell communication in the added mouse 

olfactory bulb system.  

 

In the revision, the references for all the genes used and the details of using the ligand-

receptor database were added to Supplementary Methods. We have added a sentence 



to paragraph 1 in the Results section “Overview of SpaOTsc method-Inference of cell-cell 

communication and intercellular gene-gene regulatory information flow constrained by 

spatial metric” to present the needed inputs for genes when analyzing intercellular 

signaling. 

 

4. Links to code and tutorials do not work 

 

Response: We apologize for the oversight and inconvenience. In the original submission, 

we used UCI Github and google drive for the link to code and tutorials. We recently 

noticed non-UCI users need special access permissions. In the revision, we now use 

regular Github, and the package is now available at github.com/zcang/SpaOTsc. We 

have made the full tutorial file available for everyone with the link that is included in the 

manuscript. We will dump the finalized vesion into a more permanent location once the 

revision process has finished. 

 

5. For the majority of the paper in both sets of data, the authors primarily focused on 

WNT and TGFB family signaling pathways. It leads the readers to think that this 

approach will only work for these pathways and not others (e.g. EGF signaling). It would 

be prudent to include examples of other pathway types that can be inferred 

 

Response: Thanks for this excellent suggestion. In the revision, we have added an FGF 

signaling analysis for the zebrafish embryo (New supplementary Fig. 14) and an EGF 

signaling for the drosophila embryo (New supplementary Fig. 23). These two signaling 

pathways are related to the signal analyses in the original publications that produced the 

two datasets. In our new study, FGF signaling was found to be abundant at the dorsal 

side of zebrafish embryo and BMP signaling was found to be more active in the ventral 

side, a result consistent with the literature suggesting that FGF downregulates BMP in 

early zebrafish embryo development (Fürthauer, Maximilian, et al. Development 131.12 

(2004): 2853-2864). For the drosophila embryo, we analyzed EGF signaling which was 

known to regulate the dorsal-ventral patterning alongside Dpp signaling. We found that 

while Dpp signaling is more active at the anterior side, where Sog, a long-distance 



transporter of Dpp, is highly expressed, the dorsal-ventral components of the inferred 

EGF signaling were found to be more active in the posterior. 

 

In the revision, we have also added a study of the cell-cell communications in the mouse 

olfactory bulb (New Fig. 6, New Supplementary Fig. 30-35). In this example, we explored 

near a thousand ligand-receptor pairs across different signaling pathways. These ligand-

receptor pairs are obtained by selecting secreted ligands from a published ligand-receptor 

database (Ramilowski, Jordan A., et al. Nature communications 6 (2015): 7866.). 

 

6. I am not understanding the difference between Figure 4A and B. While 4A shows an 

inverse relationship regarding receiver and sender to be inversely correlated between 

the 2 pathways, Figure 4B shows a direct correlation. Why the discrepancy? 

 

Response: Sorry for the confusion. The reviewer is correct that there is a common 

signaling receiver cell cluster between the Wnt signaling and the BMP signaling (cluster 

9 located near the dorsal margin). For the BMP signaling, there are also other significant 

signal receiving clusters (located at the ventral side) in addition to cluster 9.  

 

To make this point clearer, in the revision we have added histograms summarizing the 

total signal sending and receiving activities for each cluster in Fig. 4b to better show the 

significant signal receiving clusters located on the ventral side, along with the observed 

difference in the spatial distributions of signal receiving cells (The color map in New Fig. 

4a). 



REVIEWERS' COMMENTS: 
 
Reviewer #1 (Remarks to the Author): 
 
The authors have sufficiently addressed my comments. 
 
 
Reviewer #2 (Remarks to the Author): 
 
The authors have addressed my comments. 
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