## Supplementary material to:

# Standardised comparison of limonene-derived monoterpenes identifies structural determinants of anti-inflammatory activity

Cátia Sousa<sup>a,b,c</sup>, Alcino Jorge Leitão<sup>a,b,c</sup>, Bruno Miguel Neves<sup>d</sup>, Fernando Judas<sup>a,c,e</sup>, Carlos Cavaleiro<sup>b,f</sup>, Alexandrina Ferreira Mendes<sup>a,b,c \*</sup>

## Affiliations:

<sup>a</sup>Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
<sup>b</sup>Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
<sup>c</sup>Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
<sup>d</sup>Department of Medical Sciences and Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
<sup>e</sup>Orthopaedics Department and Bone Bank, University and Hospital Center of Coimbra, Coimbra, Portugal
<sup>f</sup>Chemical Process Engineering and Engest Products Research Centre Chemical Engineering

<sup>f</sup>Chemical Process Engineering and Forest Products Research Centre, Chemical Engineering Department, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal

Figure S1









**Figure S1**. Evaluation of the cytotoxicity of the test compounds. Raw 264.7 cells were treated with the indicated concentrations of the each compound or with the vehicle (0.1% DMSO, control, Ctrl) for 18 h. Each column represents the mean  $\pm$  SEM of, at least, three independent experiments.  $^{\#}p \le 0.05$ ,  $^{\#}p \le 0.01$ ,  $^{\#\#\#}p \le 0.001$  and  $^{\#\#\#}p \le 0.0001$  relative to Ctrl. The dotted line represents the threshold (70% of maximal viability) below which cytotoxicity is recognized, in agreement with standard ISO 10993-5.

Figure S2







**Figure S2.** Evaluation of the cytotoxicity of the test compounds in the presence of bacterial lipopolysaccharide (LPS). Raw 264.7 cells were treated with LPS, 1 µg/mL, for 18 h, following pretreatment for 1 h with the indicated concentrations of the test compounds or with vehicle (0.1% DMSO, Ctrl). Each column represents the mean ± SEM of ,at least, three independent experiments. \*p  $\leq$  0.05, \*\*p  $\leq$  0.01, \*\*\*p  $\leq$  0.001 and \*\*\*\*p  $\leq$  0.0001 relative to LPS-treated cells. \*p  $\leq$  0.05, \*\*p  $\leq$  0.001 relative to Ctrl. The dotted line represents the threshold (70% of maximal viability) below which cytotoxicity is recognized, in agreement with standard ISO 10993-5.

Figure S3



Uncropped blots shown in Figure 2b

The membranes were cut at  $\approx 100$  kDa so that the upper piece was incubated with anti-NOS2 antibody and the lower one with the anti- $\beta$ -Tubulin I antibody.

### (S)-(+)-carvone (4)

#### Uncropped blots shown in Figure 3b





This membrane was also incubated with anti-COX2 antibody and the corresponding band appears near the 75 kDa molecular weight marker.



Uncropped blots shown in Figure 4b





The membranes were cut at  $\approx 75$  kDa so that the upper piece was incubated with anti-NOS2 antibody and the lower one with the anti- $\beta$ -Tubulin I antibody.





The membrane was cut between 100-75 kDa and 48 kDa so that the upper piece was incubated with anti-NOS2 antibody, the middle piece with anti- $\beta$ -Tubulin I antibody and the lower one with the anti-IL-1 $\beta$  antibody.

Figure S3: Uncropped images of the blots shown in figures 2-5.

| Nº | Trivial name                         | IUPAC name of major<br>isomer                                                                                      | Purity<br>(%)*  | Isomer<br>composition                                                                           | Catalog #,<br>Vendor              |
|----|--------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------|-----------------------------------|
| 1  | (S)-(-)-limonene                     | (4S)-1-methyl-4-prop-1-en-<br>2-ylclyclohexene                                                                     | ≥95%**          | Purum                                                                                           | #62130,<br>Sigma-<br>Aldrich Co.  |
| 2  | (R)-(+)-limonene                     | (4R)-1-methyl-4-prop-1-en-<br>2-yl-cyclohexene                                                                     | ≥99%            | Purum                                                                                           | #62118,<br>Sigma-<br>Aldrich Co.  |
| 3  | (1S,2S,4R)-(+)-<br>limonene-1,2-diol | (1S,2S,4R)-1-methyl-4-<br>prop-1-en-2-ylcyclohexane-<br>1,2-diol                                                   | ≥97%            | Purum                                                                                           | #669768,<br>Sigma-<br>Aldrich Co. |
| 4  | (S)-(+)-carvone                      | (5S)-2-methyl-4-prop-1-en-<br>2-ylcyclohex-2-en-1-one                                                              | ≥96% <b>*</b> * | Purum                                                                                           | #435759,<br>Sigma-<br>Aldrich Co. |
| 5  | (R)-(-)-carvone                      | (5R)-2-methyl-4-prop-1-en-<br>2-ylcyclohex-2-en-1-one                                                              | 98%             | Purum                                                                                           | #124931,<br>Sigma-<br>Aldrich Co. |
| 6  | (-)-carveol                          | (1R,5R)-2-methyl-5-prop-1-<br>en-2-ylcyclohex-2-en-1-ol<br>(1S,5R)-2-methyl-5-prop-1-<br>en-2-ylcyclohex-2-en-1-ol | ≥98%            | Mixture of isomers                                                                              | #61370,<br>Sigma-<br>Aldrich Co.  |
| 7  | (+)-dihydrocarvone                   | (2R,5R)-2-methyl-5-prop-1-<br>en-2-ylcyclohexan-1-one<br>(2S,5R)-2-methyl-5-prop-1-<br>en-2-ylcyclohexan-1-one     | ≥98%            | Mixture of isomers                                                                              | #09164,<br>Sigma-<br>Aldrich Co.  |
| 8  | (+)-dihydrocarveol                   | (1S,2S,5S)- 2-methyl-5-<br>prop-1-en-2-ylcyclohexan-1-<br>ol                                                       | ≥95%            | Mixture of<br>isomers –<br>composition:<br>n, ~ 75%<br>iso, ~ 6%<br>neo, ~ 3%<br>neoiso, ~ 1.3% | #37277,<br>Sigma-<br>Aldrich Co.  |
| 9  | (-)-dihydrocarveol                   | (1R,2R,5R)- 2-methyl-5-<br>prop-1-en-2-ylcyclohexan-1-<br>ol                                                       | ≥95%            | Mixture of<br>isomers –<br>composition:<br>n, ~ 75%<br>iso, ~ 6%<br>neo, ~ 3%<br>neoiso, ~ 1.3% | #37278,<br>Sigma-<br>Aldrich Co.  |

| 10 | (+)-isopulegol   | (1S,2R,5S)-5-methyl-2-prop-<br>1-en-2-ylcyclohexan-1-ol | ≥99%       | Purum | #59765,<br>Sigma-<br>Aldrich Co.  |
|----|------------------|---------------------------------------------------------|------------|-------|-----------------------------------|
| 11 | (-)-isopulegol   | (1R,2S,5R)-5-methyl-2-prop-<br>1-en-2-ylcyclohexan-1-ol | ≥99%       | Purum | #59770,<br>Sigma-<br>Aldrich Co.  |
| 12 | (R)-(+)-pulegone | (5R)-5-methyl-2-propan-2-<br>ylidienecyclohexan-1-one   | ≥98.5%     | Purum | #82569,<br>Sigma-<br>Aldrich Co.  |
| 13 | (S)-(-)-pulegone | (5S)-5-methyl-2-propan-2-<br>ylidienecyclohexan-1-one   | 98%        | Purum | #328847,<br>Sigma-<br>Aldrich Co. |
| 14 | (-)-menthone     | (2S,5R)-5-methyl-2-propan-<br>2-ylcyclohexan-1-one      | ≥99%       | Purum | #63677,<br>Sigma-<br>Aldrich Co.  |
| 15 | (-)-menthol      | (1R,2S,5R)-5-methyl-2-<br>propan-2-ylcyclohexan-1-ol    | ≥99%       | Purum | #63660,<br>Sigma-<br>Aldrich Co.  |
| 16 | β-myrcene        | 7-methyl-3-methylideneocta-<br>1,6-diene                | $\ge 90\%$ | Purum | #64643,<br>Sigma-<br>Aldrich Co.  |
| 17 | <i>p</i> -cymene | 1-methyl-4-propan-<br>2ylbenzene                        | ≥99.5%     | Purum | #30039,<br>Sigma-<br>Aldrich Co.  |
| 18 | carvacrol        | 2-methyl-5-propan-2ylphenol                             | ≥97%       | Purum | #22051,<br>Sigma-<br>Aldrich Co.  |
| 19 | thymol           | 5-methyl-2-propan-2ylphenol                             | 98%        | Purum | #30433,<br>BDH                    |

\*Purity relative to sum of enantiomers determined by gas chromatography

\*\*The purities of (1) (96.9%) and (4) (96.8%), which were in stock at our lab for over a year, were confirmed by

GC-MS prior to starting the experiments and found to be within the limits defined by the manufacturer.