Supplementary Information

Intron retention is a hallmark and spliceosome represents a therapeutic

vulnerability in aggressive prostate cancer
Dingxiao Zhang et al.

Summary of Supplementary Materials

Supplementary Note 1
Supplementary References
Supplementary Discussion

Supplementary Figures

Related to Fig. 1

Supplementary Fig. 1. Alterations in AS patterns accompany PCa development, progression and therapy
resistance.

Supplementary Fig. 2. Global splicing dysregulation impacts genes associated with cancer pathways.

Supplementary Fig. 3. Splicing alterations generate isoform switches during PCa progression.

Supplementary Fig. 4. Clinically relevant isoforms modulate PCa aggressiveness.

Related to Fig. 2

Supplementary Fig. 5. IR upregulation is a consistent hallmark of PCa development and progression and
associated with stemness and aggressiveness.

Supplementary Fig. 6. IR impacts PCa biology.

Related to Fig. 3
Supplementary Fig. 7. AR regulates PCa-associated AS globally, but not IR specifically.

Related to Fig. 4

Supplementary Fig. 8. Prominent SRG deletions in pri-PCa and correlation of SRG amplifications with
Gleason grade.

Supplementary Fig. 9. Prominent amplifications of SRGs in CRPC.

Supplementary Fig. 10. Genomic landscape of SRG alterations in PCa.

Related to Fig. 5
Supplementary Fig. 11. Copy number variations (CNVs) in SRGs correlate with gene expression.
Supplementary Fig. 12. Pervasive SRG dysregulation during PCa development and progression.

Related to Fig. 8
Supplementary Fig. 13. Aggressive PCa cells are susceptible to the spliceosome inhibitor E7107.
Supplementary Fig. 14. The E7107 compound inhibits PCa cells via targeting spliceosome.

Related to Fig. 9
Supplementary Fig. 15. E7107 inhibits CRPC in vivo.
Supplementary Fig. 16. E7107 impacts transcriptome of CRPC cells in vivo.

Supplementary Data

Supplementary Data 1. The mutational landscape of 274 SRGs in PCa

Supplementary Data 2. Summary of RNA-seq datasets used in this study for splicing analyses
Supplementary Data 3. Summary of statistically significant differentially spliced events (DSES)
Supplementary Data 4. Summary of SRG dysregulation

Supplementary Data 5. Summary of the prognostic association of differentially expressed SRGs
Supplementary Data 6. DSEs identified in PCa cells and xenografts treated with E7107
Supplementary Data 7. DEGs identified in PCa cells and xenografts treated with E7107
Supplementary Data 8. RBP motif analysis of IR

Supplementary Data 9. List of primers used in this study



Supplementary Note 1:

Global splicing dysregulation impacts PCa biology

Our systematic splicing mapping analysis revealed an association of increasing DSEs with the degree of
PCa malignancy and progression (Fig. 1). We next explored the potential impact of AS dysregulation on
PCa biology (Supplementary Fig. 2 and 3). By overlapping the splicing-affected genes (SAGs) and
differentially expressed genes (DEGSs), we observed only 9~20% of ‘overlapped’ genes (Supplementary
Fig. 2a), suggesting that the majority of AS events minimally changed the bulk gene expression but may
functionally tune transcriptomes™?. Gene ontology (GO) analysis (http://metascape.org) indicated that the
SAGs were enriched for many cancer-associated functional categories with both convergence (e.g.,
splicing, cell cycle and proliferation, cytoskeleton) and specificity identified at each PCa stage
(Supplementary Fig. 2b-d). For instance, GO terms linked to ‘muscle and ion transport’, ‘lipid metabolism’,
and ‘cell polarity’ were pri-PCa specific (Supplementary Fig. 2b) whereas GO terms ‘DNA damage’,
‘immunity’, and ‘nuclear pore’ were enriched in CRPC (Supplementary Fig. 2c), consistent with recent
reports®. Interestingly, and as expected, GO terms ‘SCs and development’ and ‘neuron and cell projection’
were greatly enriched in CRPC-NE (Supplementary Fig. 2d), in line with its stem-like and neural-like
properties.

We further evaluated the potential functional consequences of AS dysregulation on PCa
transcriptome by identifying transcript-level expression profiles using an isoform-specific alignment
algorithm®. As shown in Supplementary Fig. 3a, PCa at different stages exhibited distinct splice isoform
signatures. For instance, the widely studied ARv7 was only slightly upregulated in pri-PCa but, together
with several other AR variants, was dramatically overexpressed in CRPC-Ad (but not in CRPC-NE due to
loss of AR expression in NE tumors) (Supplementary Fig. 3b). CD44, a cancer stem cell (CSC) marker,
plays versatile roles in metastasis with CD44-standard (CD44s; CD44-201) suppressing and CD44
variants (CD44v) promoting cancer cell colonization®. Consistently, we observed a shift from no change in
pri-PCa (vs. N) to a specific dysregulation of CD44 isoforms in mCRPC, with CD44s being downregulated
in both CRPC-Ad and CRPC-NE and CD44v dramatically upregulated in CRPC-Ad (Supplementary Fig.
3c). The splicing program driving CRPC-NE emergence is scantly explored. Recently, an SE event leading
to unique upregulation of a MEAF6 isoform containing exon 6 (i.e., MEAF6-204), but not the bulk mRNA,
was reported in CRPC-NE°. We observed similar results (Supplementary Fig. 3d), thus validating our
approaches.

In addition to these well-annotated genes in impacting PCa biology and modulating PCa phenotypes,
many other differentially expressed isoforms (DEIs) may also play important roles in regulating stemness
and tumor progression, although the majority of them lacked functional characterization in cancers. In pri-
PCa (vs. N), a protein-coding isoform of ADAM2 (ENST00000265708.8) was significantly upregulated
(FC=16.86). Despite a lack of direct study of ADAM2 in PCa, information on ADAM family generally



supported a positive role of ADAM proteins in promoting cell adhesion, migration and invasion’. We also
observed 4 distinct protein-coding isoforms of SERPINA5 (ENST00000556775.5, ENST00000554866.5,
ENSTO00000329597.11, ENST00000554276.1) markedly down-regulated in pri-PCa. Loss of SERPINA5S
expression has been reported in advanced-stage serous ovarian tumor®. In CRPC (vs. pri-PCa), the level
of a transcript (ENST00000430799.7) encoding the long isoform of ARID1A protein (ARID1A-L) was
dramatically increased (FC>23602). ARID1A belongs to the ATP-dependent chromatin remodeling BAF
complex and the ARID1A-L is critical for Ewing sarcoma (ES) maintenance and for oncogenic
transformation®. Of interest, in CRPC-NE (vs. CRPC-Ad), multiple DLK1 splice variants
(ENST00000341267.8, ENST00000331224.10, ENST00000556051.1; Supplementary Fig. 3e) were found
significantly upregulated. These isoforms have been reported to be expressed at early mouse
embryogenesis' and DLK1* cells in human prostate have been shown to localize, preferentially, to the
basal cell layer close to the urethra and exhibit primitive SC properties'’, suggesting a functional link of
DLK isoforms with stemness. Experimentally, by using SYT7 as an example (Supplementary Fig. 4), we
demonstrated that knocking down clinically relevant isoforms of SYT7 in both PC3 and DU145 cells
modulated PCa cell biology. It should be noted that many of studies in this project focused on PC3 cells
because this model resembles CRPC both transcriptionally*®> and genomically (Supplementary Fig. 13a;
below).
Collectively, these analyses indicate that splicing abnormalities impact many genes enriched in

cancer-related pathways, and isoform switching of key genes may contribute to PCa aggressiveness and

progression.

Positive correlation of IR with stemness

The aggressive PCa subtypes (Fig. 1g-1j), prostatic basal/stem cells (Fig. 1k) and several other SC
systems (Supplementary Fig. 5a-c) all displayed a higher level of IR. To further reveal the potential role of
IR in stemness, we focused on IR-affected genes in CRPC-Ad (vs. pri-PCa), as more IR events were
identified in this comparison. We excluded the CRPC-NE from comparison because both CRPC-Ad and
CRPC-NE are CRPC subtypes. We have shown that basal/stem-specific AS profile is enriched in CRPC-
Ad (Supplementary Fig. 1f). Overlapping of CRPC- and basal/stem-IR genes revealed 53 shared genes
(Supplementary Fig. 5d), among which HMGN2 is highly expressed in ESCs and plays a key role in the
establishment and maintenance of cell identity’®. Overexpression of NRBP2 has been shown to increase
the stemness of hepatocellular carcinoma cells via AKT signaling. Comparison of IR genes in CRPC-Ad
vs. hESC (vs. differentiated Fibroblasts) demonstrated that 32.8% of CRPC-IR genes also displayed IR
events in hESC, directly suggesting a functional link of IR with stemness (Supplementary Fig. 5e). CENPT,
encoding a centromere protein, is one of these IR-affected genes, and a defect in CENPT causes a
syndrome of severe growth failure'®. KLF4, recently reported to be overexpressed in murine prostate SCs,

regulates their homeostasis and also controls the self-renewal of tumor-initiating cells'®. Similarly,



overlapping of IR genes in CRPC-Ad and CD4" T cells indicated that nearly 50% of the CRPC-IR genes
also harbored IR in stem-like resting CD4" T cells (Supplementary Fig. 5f). Among them was ING4, which
was previously proposed as a tumor suppressor in PCa with ability to inhibit stemness and promote
differentiation of basal epithelial cells into luminal cells'’. IR-affected genes in different PCa stages show
limited overlapping (Supplementary Fig. 5g), suggesting context specificity. This is expected as the cancer
transcriptome changes dramatically along with progression. Among the shared 8 genes (Supplementary
Fig. 5g), CCDC28B is associated with Bardet-Biedl syndrome (BBS) and participates in the development
of cilia. As a developmentally regulated gene, DRG2 is known to regulate cell growth and differentiation of
stem cells (information extracted from NCBI-Gene). An IR event of AP1G2 was also found in human
CD34" progenitor cells isolated from the myelodysplastic syndromes (MDS) patients'®. NME4 is recently
reported to behave as an oncogene promoting non- small cell lung cancer stemness and progression®.
These discussions suggest that IR represents a conserved phenomenon associated with development

and stemness with many IR-affected genes shared by different stem-like and cancer cell entities.

Potential functional role of IR

The average APSI values for upregulated IR in different PCa stages were moderately low (ranging from
0.14 to 0.18) (Supplementary Fig. 6g), consistent with recent reports?>?*. It is noteworthy, though, that
these IR events were indeed expressed in clinical samples as visualized by RNA-seq reads mapping to
intron regions (Supplementary Fig. 6g, bottom). To further establish the potential functional relevance of IR
in PCa biology, we analyzed the lengths of the retained introns and observed that ~30% of retained introns
were multiples of 3 in length cross all conditions (Supplementary Fig. 6h, upper), suggesting that these
introns might have the potential to encode peptides without disrupting the coding capability of the parent
genes. We also analyzed the features of the intron sequences by using ORF-Predictor®” to predict whether
the intron harbors a peptide-coding region (based on the presence of a start codon ‘ATG’ in a DNA
sequence minimal of >75nt in length). The results indicated that about 50~80% of IRs could potentially
encode micro-peptides (Supplementary Fig. 6h, lower). IR has been reported to serve as a source of

neoepitopes in melanoma®.
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Supplementary Discussion:

Studies of AR splice variants, ARv7 in particular, have implicated splicing dysregulation in PCa resistance
to ADT/Enza®*. Recently, splicing factor HNRNPL was identified as a dependency for LNCaP cells®®> and

1, An examination of race-

SFPQ (i.e., PSF) was reported to promote AR splicing and CRPC cell surviva
specific AS changes in PCa in African American (AA) vs. European American (EA) men discovered an
AA-enriched PIK3CD isoform that promotes tumor aggressiveness and drug resistance’. Globally,
splicing dysregulation in pri-PCa (vs. N) has been observed?*?®, While these studies implicate splicing
dysregulation in PCa pathogenesis, the global AS landscape unraveling the dynamic evolution of PCa has
not been reported and the impact of aberrant AS alterations on PCa progression, therapy resistance, and
patient outcome remains undefined.

Here, we provide a comprehensive annotated splicing map in PCa using clinical and experimental
RNA-seq data covering the entire spectrum of PCa development and progression. Strikingly, we have
observed increasing splicing dysregulation (i.e., DSES) in association with PCa progression, therapy
resistance, and lineage plasticity. Aberrantly spliced genes specific to different PCa stages are both
convergently and uniquely enriched in diverse GO terms and pathways linked to oncogenic processes,
which establishes aberrant splicing as a distinct mechanism (vs. gene expression regulation) driving PCa
progression and therapy resistance. We further identify IR as a hallmark of stemness and aggressiveness
during PCa progression. Recently, widespread IR, associated with somatic single-nucleotide variations in
six cancer types (excluding PCa), has been observed to be more enriched in TS genes leading to their
loss of expression®. Surprisingly, we did not observe a similar trend in PCa. Rather, our data reveals that
IR generally enhances gene expression and thus likely functions in PCa biology, suggesting different roles
of IR in distinct cancer types. Particularly, we find that IR in PCa impacts genes involved in stemness and
cancer-promoting functions (Supplementary Fig. 5 and 6), and that AR regulates a splicing program, but
not IR specifically, distinct from its transcriptional regulation, suggesting IR as a PCa-regulating
mechanism independent of AR axis. In fact, we have observed a generally negative association of AR
activity with IR level in multiple clinical datasets (Fig. 2 and 3). Together, our results establish IR as a
common mechanism of cellular stemness, as supported by studies in mouse ESCs®. The IR prevalent in
PCa is not associated strongly with cis-genomic features but seems to be regulated by trans-regulatory
mechanisms involving the combinatorial effects of multiple SRGs. In support, candidate RBPs modulate
not only the IR but also other splicing types as well (Fig. 2f). Alternatively, besides altered spliceosome
activity, IR might also be modulated by other molecular alterations. For example, loss-of-function
mutations in SETD2 (a H3K36 methyltransferase) and subsequent loss of H3K36 trimethylation at target
exons are associated with increased IR in renal cancers®. Our work expands the view of molecular

complexity underlying, and justifies further exploration on the role of IR in, PCa etiology and progression.



There are many ways by which RNA splicing can be dysregulated in cancer. Previously, recurrent
point mutations in core spliceosome genes (e.g., SF3B1, U2AF1, SRSF2, ZRSR2) have been reported to
drive splicing dysregulation in hematological cancers®’. Our genomic analyses of SRGs reveal CNVs as
the main driver of AS alterations in PCa, which alter the expression of affected SRGs and illustrate cancer
type-specific differences in mechanisms of splicing dysregulation. Remarkably, the majority of the top
altered SRGs are located in regions containing either TS genes or oncogenes (Supplementary Fig. 10a),
and have not been highlighted in previous large-scale DNA sequencing studies. This raises an interesting
guestion of whether these alterations are just passenger mutations or causally contribute to PCa
pathogenesis. Our experimental data supports the latter, as knocking down two amplified, clinically
relevant SRGs twists splicing landscape and inhibits PCa cell behavior (Fig. 7). The involvement of these
genes in other types of cancer has been reported®>**. Splicing dysregulation has been recently proposed
as a ‘driver’ of transformation independently of oncogenic processes®. Therefore, these mutated SRGs
may bear some of the ‘driver’ properties, and it would be interesting, in future studies, to dissect whether
deletion or amplification of CNV-associated SRGs with or without collateral alterations in RB1 or MYC loci,
or vice versa, could change cancer phenotypes.

Another potential mechanism that may cause splicing abnormality is the mutations in splice sites®.
However, mutations in splice sites constitute the minority of all somatic mutations (as low as ~0.6%) in
PCa*®; consequently, we reason that deregulation of SRGs is the main mechanism underpinning splicing
abnormalities. In support, the majority of SRGs are mis-expressed in various stages of PCa, consistent
with studies showing that altered expression of SRGs, even in the absence of mutations, promotes
oncogenesis®. Of clinical significance, our study has identified many SRGs that can be linked, individually
or in combination, to clinical features of advanced PCa, indicating a biomarker value. Almost all of these
identified prognostic SRGs and DSEs have not previously been implicated in PCa, warranting further
investigation. Notably, the unfavorable SRG signature that we developed herein correlates with poor
survival, predicts PCa progression, associates with twisted splicing landscape, and establishes splicing
misregulation as a promoter of PCa aggressiveness.

Multiple lines of evidence reveal a preferential dependency of aggressive PCa and CRPC on
aberrant spliceosome activity. First, the number of DSEs increases exponentially along the spectrum of
cancer progression, linking the severity of splicing dysregulation to PCa aggressiveness. Second,
amplifications of SRGs are predominantly observed, and CNVs of SRGs mainly impact global splicing, in
CRPC. Third, more SRGs are dysregulated in CRPC, highlighting a potentially critical role of SRG
misexpression in driving CRPC evolution. Fourth, the majority of altered SRGs are predictive of worse
patient outcome and the unfavorable SRG signature associates with high tumor grade and more
prominent disruption in the splicing landscape. Fifth, chemical castration and Enza, both of which target
AR signaling, reshape the splicing landscape in PCa cells, and the distorted splicing landscape likely

contributes to subsequent treatment failure and disease progression (Fig. 3), as documented in other



cancer types. Finally, of clinical significance, E7107, the spliceosome modulator, effectively inhibits the
growth of both Myc-driven autochthonous murine PCa as well as preclinical CRPC models in vivo (Fig. 8-
10). A phase-l study of E7107 in patients with advanced solid tumors (not including PCa) was terminated
due to side effects®® and we also observed certain toxicities of E7107 in animals (this study), suggesting
the need to define intricate treatment window and doses for E7107. Our results may point to a rational
strategy of administering E7107, or other splicing inhibitors, as we show that E7107 promotes PCa cell
differentiation and reprograms PCa cells from an androgen-insensitive to an androgen-sensitive state. We
thus envision a potential treatment regimen in which CRPC is first subject to a short-term splicing inhibition
(to avoid toxicity and also to reprogram aggressive PCa cells) followed by Enza treatment. Ongoing
studies are exploring the value of this sequential treatment protocol. Overall, our findings suggest that
there may be a therapeutic window for spliceosome modulators in the treatment of CRPC. Future studies
that aim to determine the origins and consequences of aberrant splicing in aggressive PCa could enhance

our understanding of disease pathogenesis and aid innovative drug development.



(o)

C

BN FDR<0.1 Il pri-PCa |FDR<0.1 Bl CRPC-Ad |FDR<0.1

o I pri-PCa A mCRPC o | EBCRPCNE CRPC-NE vs. -Ad Ratio

t N FDR<0.05 £ 15000, |2 Pri-PCa |FDR<0.05 € [C1CRPC-Ad |FDR<0.05

@ 250, B pri-PCa 2 10000{ [EH MCRPC 9 800, [ CRPC-NE 207 FDRO.1

0 20 @ 50001 I 0 60 I FDR0.05

£ 15 - €40 —> %15 '

8 10 I H § so0r g c

£ g [[Ni]] iIn e 6001 g 2 Nan- HAIIN 2.

S 40 s £ 100 o

2 8 40l - - k) S

o 9 4007 0 o

% 2 s % 50 L 05

2001
# #* #
0 0 0.0
\ N
AR SR R T oY & & @ PREde

™ 250 [ Normal 800 [ ADT-pre 4000 - I pri-PCa 800- I CRPC-Ad 800 [ Luminal LNCaP-AR

@ [ pri-PCa 600 [ ADT-post [ mCRPC 600 [ CRC-NE DSE 600 I Basal 20004 [ shNC
< 5200 TCGA, 2015 Rajan, 2014 3000 TCGA, 2015 400 Beltran, 2016 2950 Zhang, 2016 [ shRb/p53

2C, 201

ale DSE 400 = 2000 SU2C, 2015 400 DSE 10004 Mu, 2017

150 all 200 mill mM m m mill mm
o|s 1014 2004 4gs5 1000 mE psg 200d—m 2488 DSE
D S0 200 800 13239 100 180 400 7355
(ORE 200

2 50 50

*

0 0
L| A3 A5 MX SE IR A3 A5 MX SE IR

|A3 A5 MX SE IR

A3 A5 MX SE IR |A3 Al

5 MX SE IR A3 A5 MX SE IR,

PCa Development Therapy Resistance

CRPC & NEPC Progression

Lineage Plasticity

f

15000 4 DSES
7 B Down-regulated
10000 -| [ Up-regulated
£ 5000 4 m
g -
o | 2 3000 - E "
E | 5 £2 z3
< | € 2000 52 2% &
8 FZ g9 53¢ aa
=€ Fog3p U5 S& [
E T x O 0@l i o6
“|5120073_ 55 Fg ¢ —
= gz 3% <o %)
@ 600 o
e K
L TN TN ADT NHT CRPCCRPC NEPC 5
1 2 3 4 5 6 7 o
wn
—
r c
150001 Total DSEs Dat )
— 1. TCGA,2015 =
100007 2. TCGA, 2015 %
<|E | 3. Rajan, 2014 [S)
s 5000 | 4 Wyatt, 2014 c
o« i 5.SU2C, 2015 L
2| S 10007 6. Sowalsky, 2014
(7] S 7. Beltran, 2016
2 500 ADT- : Before ADT,
5 ADT+: After ADT
_41: 0-

Basal cell AS signatures g LNCaP-p53/Rb-KO AS
0.4 NES=1.66 04 NES=1.60 04 NESTT3s
5 f\ NN
(T TOMA \wmwum L1 | | WL
_ 0.4 T
A5 FDR=0002 | AS FDR=0.007 —_ ! A5 P;%Eg‘(m
0.0[ g_l) 0.0/ = 7
UWWWWW BLALDATIR 00 e i 11N ARRRAR M
0.2 NES=0.99 | 0.3 NES=1.23 Q (o4 NES=1.25
= =0, Q 2
0.0 / SE ::Dgyg?an 0.0 BE iD?ig:zOZ? 2 f! SE FD%E;E:MS
0.2 | No enrichmen -0.2 ;E; 00
-0.2
WWWWWW WWWWWW £ UL A
: <
NES=1.58 NES=1.29 [S}

'Rl P=0.001 RI P=0.077 = |08 NESS1.40
"WMHLMWNWMWWWM ML I o
03 NES=1.04 NES=0.95 N

M\x\ ES vy o] e NES=1.57
i, ! \\\ P=0.405 : 0.0\\ Y\g&zz;\m 0.4 JMX \Péﬂgﬁﬁf’ozs

bak enrichment 0.2, No enrichment N 0.0 NG

11 i ! 1NN
mCRPC PCa |CRPC NE  CRPC-Ad mCRPC PCa

Supplementary Figure 1



Supplementary Figure 1. Alterations in AS patterns accompany PCa development,
progression and therapy resistance.

(a-c) rIMATS-based AS mapping using APSI>0.1 and FDR< 0.1 vs. FDR<0.05 generates virtually identical
AS patterns and changes across disease progression. (a) TCGA pri-PCa (vs. N) dataset. (b) SU2C-
MCRPC (vs. pri-PCa) dataset. (c) CRPC-NE (vs. CRPC-Ad) dataset. The number (a-c) and ratio (c,
right) of differentially spliced events (DSEs) identified in the indicated contexts were plotted. See
also rMATS results using APSI>0.1 and FDR< 0.1 in Fig. 1c-I.

(d) The AS landscape during PCa development and progression. Shown is information for pairwise
comparisons of RNA-seq datasets and the number of DSEs identified by SUPPA.

(e) Comparison of the numbers of identified DSEs in the indicated datasets. Upper: the number of
significantly up- and down- regulated DSEs detected by rMATS. Lower: the total number of DSEs
detected by SUPPA.

(f and g) GSEA showing enrichment of splicing signatures specific to basal cells (f) and LNCaP cells
depleted of p53 and Rb1 (g) in aggressive stages of PCa indicated in specified comparisons. The
FDR for GSEA is the estimated probability that a gene set with a given NES (normalized enrichment
score) represents a false positive finding, and an FDR < 0.25 is considered to be statistically
significant.

A3, alternative 3’-splice sites; A5, alternative 5’-splice sites; MX, mutually exclusive exons; SE, exon
skipping; IR, intron retention.
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Supplementary Figure 2. Global splicing dysregulation impacts genes associated with
cancer pathways.

(a) Overlap between differentially expressed genes (DEGs) and genes showing significant SAGs (i.e.,
splicing-affected genes) identified in the indicated pair comparisons. The number in parentheses
denotes the percentage of overlapped genes proportional to all aberrantly spliced genes. Note
increased overlap in DSEs and DEGs in CRPC vs. pri-PCa (19.8%) compared to pri-PCa vs. N (9.1%).

(b-d) GO (Gene Ontogeny) analysis of aberrantly spliced genes (i.e., splicing-affected genes or SAGS)
reveals an impact of global splicing alterations on PCa biology by regulating genes associated with
cancer pathways. Genes showing DSEs in pri-PCa (vs. normal tissues) (b), CRPC (vs. pri-PCa) (c),
and CRPC-NE (vs. CRPC-Ad) (d) were used as input for Metascape analysis. Due to a large number
of MX events detected in CRPC and a limit of maximal 3,000 genes that could be used for Metascape,
we combined genes with A3, A5, SE and IR first and then used genes with top ranked MX to make up
a list of 3,000 genes. Terms with p-value <0.01, minimum count 3, and enrichment factor >1.5 (the ratio
between observed count and the count expected by chance) were considered significant. The terms
with similar descriptions and functions were grouped into different functional categories, and top
categories were schematically projected on the network of enriched terms. Categories specific to each
PCa stage were colored. Results indicate that cancer-stage-specific SAGs are enriched in GO terms
that are functionally connected into well-linked interaction networks, suggesting that splicing
dysregulation has a broad impact on PCa biology.
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Supplementary Figure 3. Splicing alterations generate isoform switches during PCa
progression.

(a) PCa at different stages exhibit distinct splice isoform signatures. Shown are splicing isoform heatmaps
of PCa progression generated using the top 50 differentially expressed isoforms identified in the
indicated comparisons.

(b) Significant changes in AR splicing accompanies PCa progression and therapy resistance. Shown are
the expression patterns and levels of human AR full-length (FL) and protein-coding variants (V, and
202, 203 etc) during different stages of PCa. Note that there was only a slight increase in AR-V7 in
pri-PCa (vs. N) but significantly elevated levels of AR-V7 and most other AR variants were observed
in mCRPC (vs. pri-PCa). Also note that, as expected, both AR-FL and AR variants were significantly
reduced in CRPC-NE (vs. CRPC-Ad). NTD: N-terminal domain; LBD, ligand-binding domain; ZF,
zinc finger domain.

(c) Significant changes in CD44 splicing accompanies PCa progression. Shown are the expression
patterns and levels of human CD44 and its variants (CD44-201 is the CD44s and others are CD44
splice variants) during PCa progression. Note that there was no change in CD44 splice variants in
pri-PCa (vs. N) but significantly elevated levels of CD44 splicing variants were observed in mCRPC
(vs. pri-PCa).

(d) An example of isoform switch during progression from CRPC-Ad to CRPC-NE. Shown is the isoform
switch of MEAF6 gene in CRPC-NE vs. CRPC-Ad samples as a result of exon 6 retention, without
changing the total gene expression level. There was a 2-fold increase in the MEAF6 isoform (i.e.,
MEAF-204) in CRPC-NE (right bottom).

(e) Significant increase in DLK1 splice variants in CRPC-NE. Shown are the expression patterns and levels
of DLK1 (i.e., DLK1-203) and its splicing isoforms in the three comparisons. Note significantly
increased DLK1 isoforms in CRPC-NE (vs. CRPC-Ad).

P values were calculated using two-tailed unpaired Student’s t-test (n.s, not significant).
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Supplementary Figure 4. Clinically relevant isoforms modulate PCa aggressiveness.

(a) Schematic illustrating the SE events in SYT7 transcripts detected in clinical CRPC-Ad (vs. pri-PCa)
samples (upper) and experimental design (bottom) employing siRNAs to specifically deplete
alternative exon-retaining isoforms for biological interrogation. The 4 exons impacted by SE (SE
exons) are indicated as 1-4 (boxed). Both DU145 and PC3 express multiple isoforms of SYT7 and
siRNAs specifically downregulated the isoforms harboring the indicated exons revealed by semi-
quantitative RT-PCR. The RT-PCR experiments were repeated two times independently with similar
results. F and R were primers located within the flanking exons of the 4 alternative exons to detect
isoforms with variable exons. 1F/1R and 3F/3R were primer pairs used to monitor the expression of
indicated exon 1 and 3, respectively. For the gel images in PC3 cells treated with siRNAs (lower
right), the sizes of 1F/R, 3F/R and GAPDH were about 112, 192 and 148 bp, respectively.

(b) Knocking down SE-bearing SYT7 isoforms inhibits clonal growth in PC3 and DU145 cells. Shown
are representative images of two repeat experiments (left) and quantification data (right). Error bars
represent the mean + S.D (n=3).

(c-e) Knocking down SE-bearing SYT7 isoforms inhibits proliferation (¢) and sphere formation (d, e) in
PC3 and DU145 cells. Cell proliferation (viability) was determined by MTT assays (c). Data
represent the mean + S.D from a representative experiment with 4 technical repeats, and the
experiment was replicated 2 times with similar results. Spheres were enumerated 9 days after
plating (3500 cells/well) (d and e) (mean + S.D; n=3).

SiES1 or SE3 denotes knockdown by siRNAs against alternative exon 1 or 3.
All P values were calculated using two-tailed unpaired Student’s t-test.

Source data are provided as a Source Data File.
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Supplementary Figure 5. IR upregulation is a consistent hallmark of PCa development and
progression and associated with stemness and aggressiveness.

(a-c) IR is a hallmark of undifferentiated stem/progenitor cells. Shown are bar graphs comparing the level
of IR in human ESC or iPS cells relative to the respective fibroblasts (eFibroblasts, ESC-derived
fibroblasts; iFibroblasts, iPS cell derived fibroblasts) (GSE73211, a), in spermatocytes vs.
spermatids (GSE95138, b), and in resting vs. activated CD4 T cells (SRP058500, c).

(d-f) Overlapping of IR-affected genes identified in CRPC-Ad (vs. pri-PCa) and the above-mentioned
contexts associates IR with stemness. Shown are Venn Diagrams presenting the overlapped IR
genes identified in CRPC-Ad vs. human prostatic basal/stem cells (d), human ESC before and after
differentiated into Fibroblast (e), and stem-like resting human CD4 T cells after activation (f). The
actual overlapped genes are presented in respective boxes (below).

(g) PCa stage-specific repertoire of IR-affected genes. Shown is Venn Diagram highlighting the overlapping
relationship of IR-parental genes identified in three large clinical datasets. The 8 IR genes commonly
shared among the 3 comparisons are indicated on the right.
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Supplementary Figure 6. IR impacts PCa biology.

(a and b) IR code. Shown are splice site strength (a) and GC content and intron length (b) analyses of the
introns spliced either aberrantly (Up and Down) or constitutively (Control). Asterisks indicate *p<0.05
and **p<0.001 using one-sided Mann-Whitney U tests after Bonferroni correction.

(c) Genes with IR tend to be expressed at higher levels. The log2(RPKM+0.00001) values were used to
compare the expression of genes (number indicated) with upregulated IR events during PCa
development and progression. Genes exhibiting both up- and down-regulated IR events were removed.
In the plots, the center lines represent median values, box edges are 75th and 25th percentiles, and
whiskers denote the maximum and minimum values, respectively. Significance was calculated using
two-tailed paired Student’s t-test.

(d-f) IR-impacted genes are associated with stages of PCa development and progression. Shown are GO
analyses of the genes with upregulated IR, revealing the impact of global IR increase on PCa biology.
Genes showing increased IR in pri-PCa (vs. normal tissues) (d), CRPC (vs. pri-PCa) (e), and CRPC-
NE (vs. CRPC-Ad) (f) were used as input for Metascape analysis. Top enriched GO terms were
displayed and grouped into functional categories. Several major categories were highlighted on the
network of enriched terms. P-values were calculated based on the cumulative hypergeometric
distribution.

(9) Density plots (upper) showing the distribution of FDR and APSI of differentially expressed IR events
observed in the indicated clinical RNA-seq datasets. Examples of IR events (with mapped reads from
two samples of each group) in human clinical PCa tissues were illustrated (bottom).

(h) Analysis of coding potential of the retained introns. Shown are the percentage of retained introns that
are divisible by 3 (upper) and the percentage of retained introns that possibly harbor a peptide-coding
region based on the presence of a start codon ‘ATG’ in a DNA sequence minimal of >75nt in length
(bottom).
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Supplementary Figure 7. AR regulates PCa-associated AS globally, but not IR specifically.

(a) Statistics of RNA-seq data showing high quality of our data, as evidenced by both high sequencing
depth (83.1 million reads per sample) and mapping rate (averaging 96%).

(b) Expression of AR and KLK3 and GSEA of an AR-target gene signature showing proper manipulations
of endogenous AR signaling in LNCaP cells. AD, androgen-dependent; Al, androgen-independent;
Enza, enzalutamide; DHT, dihydrotestosterone. FDR values were calculated by DESeg2 v.1.18.1.

(c) DSEs associated with high or low AR activity in LNCaP cells detected by SUPPA. Note that rMATS
(Fig. 3i) and SUPPA generated similar patterns of splicing changes.

(d) Bar graphs showing SUPPA results of the DSEs associated with low or high AR activity in three
androgen-sensitive cell lines (LNCaP, VCaP and 22Rv1) following 24 h or 48 h of R1881 treatment
(GSE71797).

(e) Overlap between SAGs identified in three AR+ cell lines (as in d) and three sets of AR-regulated genes
in indicated contexts. The number in parentheses denotes the percentage of overlapped genes
proportioned to all SAGs. The circle was not drawn to scale.

(f) Changes of the ratio of IR events detected by rMATS and SUPPA in indicated pairwise comparisons.

(9-j) AR signaling does not alter IR as assessed by splicing reporter assays. Shown are schematic diagram
of the B-globin intron-containing (Luc-I, g), PSA intron 3-containing (i) and intronless (Luc) luciferase
reporters, experimental design (g and i), and results of the dual luciferase assays (h and j). An IR event
of PSA intron 3 has been reported (see Text). Results indicate that the pattern of luciferase activities
across indicated contexts was not affected by insertion of introns from either non-AR target gene (e.g.,
B-globin) or AR target gene (e.g., PSA), suggesting that modulation of AR activity does not regulate IR
specifically. ORF, open reading frame. Results (mean + SD) were representative data of 3 independent
experiments with 4 technical repeats for each experiment. The p values were calculated using two-
tailed unpaired Student’s t-test test.
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Supplementary Figure 8. Prominent SRG deletions in pri-PCa and correlation of SRG amplifications
with Gleason grade.

(a-d) Shown are the top 40 mutated SRGs in 4 indicated pri-PCa cohorts. The frequently deleted tumor
suppressor (TS) genes, PTEN and RB1, and amplified oncogene, MYC, were included as references.

(e) Group analysis of top altered SRGs showing that deletion of SRGs (upper) did not, whereas
amplification of SRGs (bottom) did, associate with increased Gleason grade. TCGA-PCa cohort
(n=333) was divided based on the genomic features (i.e., deletion or amplification as indicated) of
SRGs. In the plots, the center white dots represent median values, box edges are 75th and 25th
percentiles, and whiskers denote the maximum and minimum values, respectively. The p value was
calculated using two-tailed unpaired Student’s ttest. *p< 0.05.
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Supplementary Figure 9. Prominent amplifications of SRGs in CRPC.

(a-d) Shown are the top 40 mutated SRGs in 4 indicated CRPC cohorts. The frequently deleted tumor
suppressor RB1 and amplified oncogenes (AR, MYC and AURKA; highlighted in red) were included
as references.



chréq SRSF12 CDC40 chr16q SF3B3 CDH13_ CDK10
i — * A
e I L e I L ] - wm ki
I TCGA, Provisional
S (Al cases) - [Mmsn=] TCGA, Provisional
= (Cases with = gene deletion)

(e B O 00 DN N N O O TN (IR (| O | (N VY, e AN 0 1000 O 11 SONUA O - § NG - N ) M
chr13q weps ENOX1 RB1
[ o ! - T 9 1

- - T - -Tl TN s T - .- e * | " g

YBX2 FXR2 TP53
[ ) =TTl TCGA, Provisional
—— (Cases with 2 gene deletion)
—_— — TCGA, Provisional

Cases with 2 gene deletion Toom AN F @ WEIEEE © HE-—HEH-HA | HEHEE || 1 A 0

e AR L]
| - [ 1 LEENIN | 1 IRITET

I 1 PR VR ) R U DN AN, v 0| Ll

= - T W -

chr3q PIK3CB PIK3CA 11 FXR1 chrsq ESRP1 ABPC1 MYC KHDRBS3 PUF60

= e e O X E—
——e—— __:_‘ e - = :
1 _sux, Cell 2015 9 (All CRPC cases)

chr10q - HNRNPH3 | CCAR1 PTEN _ o

— = =
SU2C, Cell 20159
(CRPC Cases with 2 gene deletion/amplification) —

I
H

N Gerea] 1 IlHl—l- (B0 00 TR TSR BRI RN ] TR N I.-II-.“ | oo VO N OO V0 AV O 1R I I PiI- 'I

b Genomic information: TCGA, 2015 Cell Taylor et al., 2010 Cancer Cell Genes with mutation rate (mainly ampl. or del.) >5%
[ x — e I Wi - - o chri SF3B4 | chr5 DDX41 ;chr10 CCAR1
1 — L3l s | chr1 PRPF3 | chr6 SRSF12 i chr10 PTEN
b o ! L e 3 chri CELF3 I chr6 CDC40 1 chri0 FRA10AC1
[ X I ] el L ¢ = ] @3 | chrl SNRPE 'chr7 IGF2BP3  'chril SART1
— . ched 5 = mwi | chr2 PRPF40A| chr7 TRA2A | chri1 SF3B2
1 ! — - 4 | chr2 RBMS1 | chr7 HNRNPA2B1, chril RBMA4
L —_ '. ! ST T T W 1 chr2 PPIG | chr7  LSM5  chri1  CCND1
[ X ] el e ——— el chr3 ISY1 1 chr7 BUD31 1chri1 CWC15
: . = ; i — 7 | chr3 PIK3CB ! chr7 CNOT4 I chri1 ZBTB16
" chr3 U2SURP :chr8 ESRP1 :chr12 CDKN1B
| — - e —————— “% | chr3 MBNL1 | chr8 PABPC1 | chri2 ZC3H10
f— , o — e @ | chr3 PIK3CA | chr8 MYC , chri2 SRSF9
i T = i TR o | €hr3 FXR1 1 chr8 KHDRBS3 1chr13 SAP18
- - . chr3 IGF2BP2 ' chr8 PUF60 I chri3 BRCA2
L T 1 L L ] @il | chr3 TRA2B 'chr9 CDKN2A  'chri3 WBP4
— 3 iz e —1 @z | chr5 CWC27 | chr10 CELF2 | chr13 ENOX1
- ra— s | chr5 PPWD1 | chr10 HNRNPF | chr13 RB1
— '_—':n"ﬁl chr5 CHD1 | chr10 HNRNPH3 | chr13 HNRNPA1L2
] ard —_ one
L chri3 MBNL2 | chr19 LENG1 Reference genes
—_— Senomic CNV (within box) — : — % | chr1a RBM25 :chr20 CRNKL1 -—
T s i % |chria SNWI. 1 ohr20 PRPFE | SNT3: PIK3CB, PIK3CA
p——— .Deletion (hotspot) 1T [ e———] @17 | chr1i5 CELF6 ' chr22 ESS2 chr5: CHD1
SRG CNV (outside of box) s = : - c:r:g gg?z)“;’l :Chrzz SF3A1 c:rg: zlglt(:NzA
ﬁ outside of box] r cnr 1 chrX ZRSR2 chr9:
——— .Amplificalion . E=—=—= ||l Reference genes & | chr16 ESRP2 IchrX RBM10 chr10: PTEN
—— B oetetion #® 1 |l ARMYC,PIK3CAPIK3CB,CCND1 | % | ohri6 37383\ opy RBM3 chr11:CCND1, ZBTB16
— [ Reterence genes @it ———m ||l PTEN,BRCA2,RB1,TP53,CDKN2A, | &1 | | 1o cnyeqq 1 chrX PQBP1 chr12: CDKN1B
—— e — CDKN1B,ZBTB16,CHD1,CDH13 =2 |chri7 PRPF8 :cth GPKOW chr13: BRCA2, RB1
I - . wE - ; @ai |chr17 YBxz  chrX AR chr16: CDH13
s 0 Mo 100 e 150 My 200 M 250 U [T 50 b 100 M 150 M 300 U 280 chr17 FXR2 1 chrX  RBMX2 chr17: TP53
chr17 TP53 1 chrX MBNL3 chrX: AR
X :
Shri7 EFTUD2 ehrx FMRT —
chri8 CELF4 1chrX FAMsoa | Gene positionon chr:
chri8 TXNL4A ! Left to right

Supplementary Figure 10



Supplementary Figure 10. Genomic landscape of SRG alterations in PCa.

(a) Examples of the proximal chromosomal location of frequently deleted and amplified SRGs with well-
known alteration hotspots encompassing tumor suppressors (e.g., CDH13, RB1, PTEN, TP53) or
oncogenes (e.g., MYC, PIK3A, PIK3CB, AR), respectively.

(b) Chromosomal distribution of SRGs mutated at a frequency of >5% (in either one of the eight cohorts
examined) showing that, except for the genes located in the hotspots, the majority of SRGs are mutated

focally.
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Supplementary Figure 11. Copy number variations (CNVs) in SRGs correlate with gene
expression.

Shown are the top deleted and amplified SRGs in TCGA (a) and CRPC (b) cohorts, which were selected
based on their CNV status. Samples with or without SRG alterations individually were compared for gene
expression. Note that fewer deletions and more amplifications were found for SRGs in CRPC cohort.
Although not all amplified genes were overexpressed significantly in many cases due to a small sample
size, the trend of increased expression was observed. In the plots, the center white dots represent median
values, box edges are 75th and 25th percentiles, and whiskers denote the maximum and minimum values,
respectively. The significance was calculated by two-tailed Student’s t-test.
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Supplementary Figure 12. Pervasive SRG dysregulation during PCa development and
progression.

(a) Oncomine concept analysis of the 274 SRGs showing up- or down-regulation in the expression of many
SRGs in pri-PCa (vs. normal prostates) and metastasis (vs. pri-PCa), respectively. The medium-
rank of <2500, <4000, and >4000 for a gene denotes high, moderate and low levels of expression,
respectively. The rank for a gene is the median rank for that gene across each of the analyses. The
p-value for a gene is its p-value for the median-ranked analysis.

(b) Comparative RNA-seq analyses showing differentially expressed SRGs across datasets that represent
different stages of PCa development, therapy resistance, progression, and plasticity.

(c) Overlap of dysregulated SRGs identified by Oncomine (left) and RNA-seq (right) with top 10 deleted
and top 10 amplified SRGs showing that copy-number variations (CNVs) often predict an over-
expression or a down-expression at the population level, respectively.



E7107

59 altered SRGs

1234567 g = g
1 LNCaP 5 DU_145
43% ] = % =
PTEN -1 i 9 2 [ 2vcaP 6PC-3 D
AR 3% BIEE 29 3MDA_PCa_2b 7 NCI-H660 29
3 % \422Rvi 3z
o O
myce s> BIILIND = & 1234567 F E
RBMSA 43% l ll CELF4 14% 1
KHDRBS3 29% | | % | HNRNPLL 1a% |
THRAP3 20% BIH PRPF3 14% 1
RBM25 14% l *
SRSF3 29% l
HNRNPAO 14% l
WBP4 14% n * %
SF3B4 14% l *
SRSF12 1a% || * |*
TIA1 14% l
Y * |*
Cbk1o0 14% I WDR77 14% I
PUF60 14% e QKi 14% I
EFTUD2 14% I * ZNF830 14% I
ESRP1 14% l * | SRP54 14% 1
PPWD1 14% l * SRSF10 1a% ||
PRPF40A 14% . SF1 1% [
CCAR1 14% l *
PPIG 14% *
SNRNP70 1% ||
FRA10AC1 1a% || %
SRRM1 1% ||
TRA2B 1a% [ [] *ok| %
SNRPG 1% ||
HNRNPA3 14% l * HNRNPR 1a% |
ISY1 1a% [ [] *k|% SYF2 14% ||
AQR 14% | PLRG1 14% 1 *
PRCC 14% l HNRNPH3 14% | *
SRSF1 14% I RBFOX3 14% l
SRSF7 14% I EIF4A3 14% |
SNRPD2 1a% ||
SRSF2 14% | .
SNRPA 1% ||
RBM4 1a% [ *
SRSF5 14% |
SF3B2 1a% [ ] *
HNRNPUL1 1% ||
SART1 1a% [ CELF6 4 I »
CELF3 14% | * NOVA1 14% 5 *
MFAP1 14% I PPIL1 14% [ |
NOVA2 12% || ELAVL1 14% H

I Amplification I Deep Deletion ~ ® Truncating Mutation (putative driver)

® Missense Mutation (putative driver) " Missense Mutation (putative passenger)

= Inframe Mutation (putative passenger)

( * Deletion * Amplification #** Deletion/Amplification both found) LNCaP

0% 10% 20% 30%

DU145

Alteration rate = 3% in both TCGA (2015 Cell) and SUTC (2015 Cell) datasets PC3
PC3
o 1007 PC3
280 7" _

= k- s &

S S 60 S¢ %
€4 BeLs s
3 5| @ ?

3 204 8

= s a9

& 2 o il =
& 0 2 5 1020 &
21007 & DU145
2 o

= © 75 4 ?

5 S =
2 50 - oo, 0
=]

25 ol s
< 251 g 8|3

= 4 o |o||2

s £ 0 SIEAEE

T f 0 2 51020 2

E7107 (nM)

RNAi (Novartis DRIVE)
GSEA NES

RNA.i (Broad Achilles)
GSEA NES

Splicing gene signature 1

(Reactome_mRNA_Splicing)
[ Splicing gene signature 2
(GO_Catalytic Step 2_Spliceosome

Dataset: DRIVE RNAi (Novartis)
BILD_MYC_Signature

GO_AR_Signaling pathway

o 04 NES=1.76 0.4 NES=1.37
W g2 P=0.006 P=0.052
~ ( FDR=0.006 r FDR=0. 052
© oo LNCaP DU145
o 0.1

R TINR i I ulmuuumuw
% Dataset: RNAi_Ach DEMETER scores
£ GO_AR_Signaling pathway GO_AR_Signaling pathway
f) 04 NES=1.39 0.4 NES=1.37
= P=0.065 P=0.084
LICJ 0.0 FDR=0.075 0.0 FDR=0.084

LNCaP 02 22RV1
0T 1 A

g e DU145

2| B

©

8

S

8|

]

W

o

E

©

Cell Migration

LNCaP - colonies (7days)

g DU145

PC3
E7107 (5nM) E7107 (5nM) £, 0n skipping
Ctrl 1thr 3hr 6hr Ctrl 1hr 3hr 6hr E15-17
e E
 ——
LNCaP E7107 (5nM)
Ctrl 1hr _3hr _6hr Intron retention
 ——
GAPDH

Supplementary Figure 13



Supplementary Figure 13. Aggressive PCa cells are susceptible to the spliceosome
inhibitor E7107.

(a) Mutational landscape of the 59 SRGs in the indicated PCa cell lines. The results demonstrate that
(differentiated) AR*LNCaP cells possess more gene deletions whereas (undifferentiated) AR- PC3 cells
have more gene amplifications resembling pri-PCa and CRPC, respectively.

(b) Summary of GSEA of two splicing gene signatures on ranked lists of essential genes identified in the
indicated cell lines by two large-scale RNAi screening projects. The NES (normalized enrichment score)
suggests that biologically aggressive PCa cells more preferentially rely on spliceosome activities.

(c) Representative GSEA of an AR and a MYC gene signature showing biological dependency of AR+
LNCaP and 22Rv1 lines on AR signaling, and AR- and more aggressive DU145 line on MYC signaling.
The FDR for GSEA is the estimated probability that a gene set with a given NES represents a false
positive finding, and an FDR < 0.25 is considered statistically significant.

(d) Images of benign prostatic epithelia RWPE1 and PCa LNCaP cells growing in medium containing
varying concentrations of E7107 for 6-7 days in vitro.

(e) Representative images (original magnifications: 10x) of trans-well migration assays in DU145 cells
treated with varying concentrations of E7107.

(f) E7107 inhibits PCa cell migration as analyzed by wound-healing assays. Results shown were
representative of 2-3 independent experiments, with each experiment containing 3-5 technical repeats
(mean + S.D). For PC3, n=5 for the 0 nM group and n=4 for all other groups. For DU145, n=5 for 0 and
20 nM groups and n=4 for all other groups. P values were calculated using two-tailed unpaired Student’s
t-test. No significant cell death was observed in cells treated with E7107 for 24 or 48 h.

(g) Time-course study of the effect of E7107 on RNA splicing. Shown are representative RT-PCR analyses
of SE in RBM5 and IR in CRACR2B genes in PCa cells exposed to either DMSO (Ctrl) or E7107 (5
nM). For SE in RBM5 in DU145 and PC3 cells (top), the upper (with SE) and lower bands were
approximately 240 and 160 bp, respectively. For IR in CRACR2B in LNCaP cells (bottom), the sizes of
the upper (with IR) and lower bands were about 386 and 103 bp, respectively. GAPDH was 148 bp.

The experiment was repeated two times independently with similar results obtained (d, e, g).
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Supplementary Figure 14. The E7107 compound inhibits PCa cells via targeting
spliceosome.

(a) No obvious cytotoxicity was observed in PCa cells treated with E7107 (10 nM) for 6 hr in vitro. The
experiment was repeated two times independently with similar results.

(b) E7107 modulates RNA splicing. Shown are Sashimi plots of the indicated AS events (with mapped
reads from two replicates of each group) and RT-PCR validation in indicated PCa lines treated with
E7107 (10 nM, 6 hr). The event APSI values calculated by rMATS were provided in parentheses. The
red triangle denotes aberrantly spliced region. E, E7107; V, vehicle. The experiment was repeated two
times independently with similar results. For RT-PCR gel images (below), the sizes for ZFN7-IR were
~511 and 124 bp, GAS5-SE 172 and 88 bp, BRPF1-SE 376 and 91 bp, and AKAP8-SE 443 and 162
bp, respectively.

(c¢) GO analysis of top 1000 genes exhibiting down-regulated SE events after E7107 treatment in PC3
cells. E7107 dramatically inhibited the SE, the most abundant splicing type. These PC3-specific SE
events abolished by E7101 were chosen for GO analysis to reveal the impact of E7107-induced splicing
alterations on PCa biology.

(d) gRT-PCR validation of expression of the indicated genes showing consistency with RNA-seq data. The
upper panels show the fold change of gene expression calculated by DESeq of RNA-seq data. In
bottom panels, gene expression in DMSO group was set as onefold and the relative quantification of
gene expression was analyzed by normalization to internal GAPDH mRNA level. The error bars
represent the mean+S.D (n=3). P values were calculated using two-tailed unpaired Student’s t-test.

(e) GO analysis of genes upregulated at bulk RNA levels in LNCaP cells after E7107 (10 nM, 6h) treatment
in vitro. Significantly enriched terms with similar descriptions and functions were grouped into specific
biological categories to better reflect the biology of the context.

(f) AR signaling was not affected by E7107. Shown are GSEA of an AR gene signature (left) and the
expression of AR and AR target genes (right).

(9) Upregulation of p53 targets and tumor suppressors (RBM4 and MIR34A) in LNCaP cells after E7107
treatment.

(h) GSEA showing enrichment of TCGA-normal specific, but not tumor specific, gene signature in E7107
treated LNCaP cells, indicating a reversal of tumor aggressiveness. An FDR<0.25 is considered to be
statistically significant for GSEA.
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Supplementary Figure 15. E7107 inhibits CRPC in vivo.

(a-d) In vivo effects of E7107 treatment on tumor growth (left) and body weight of tumor-bearing mice (right)
in the indicated CRPC models. The pink lines in the right panels indicate the treatment regimens (see
Fig. 9b-e). For a and b, n=4 for each group. For ¢, n=5 and 6 for vehicle and treatment group,
respectively. For d, n=5 for each group.

(e) E7107 treatment promoted more differentiated morphologies in the CRPC models. Shown are
hematoxylin and eosin (H&E) staining in endpoint tumors as above. All tumors (n indicated above) were
examined. Boxed regions are enlarged. V, vehicle; E, E7107.

(f) E7107 treatment reshapes the AS landscape in treated CRPC models. Shown are Sashimi plots of the
indicated AS events (with mapped reads from two replicates of each group) and RT-PCR validation in
indicated models treated with E7107. The RNAs derived from all tumors (n indicated above) were used
for RT-PCR with 3 (left panel) and 2 (right panel) samples from each group loaded in the gel. The event
APSI values calculated by rMATS were provided in parentheses. The red triangles denote aberrantly
spliced region. E, E7107; V, vehicle. the sizes for ZFN7-IR were approximately 511 and 124 bp, AKAP8-
SE 443 and 162 bp, GAS5-SE 172 and 88 bp, and BRPF1-SE 376 and 91 bp, respectively.

(g) GO analysis of the top 1000 genes exhibiting down-regulated SE events after E7107 treatment in
LAPC9-Al tumors. E7107 dramatically inhibited the SE; hence, these LAPC9-AI specific SE events
abolished by E7107 were chosen for GO analysis to reveal the impact of E7107-induced splicing
alteration on CRPC biology.
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Supplementary Figure 16. E7107 reverses the aggressiveness of PCa cells at the
transcriptome level.

(a) gRT-PCR analysis of the indicated genes showing consistency with RNA-seq. The upper panels show
the fold change of gene expression calculated by DESeq of RNA-seq data. In bottom panels, gene
expression in DMSO group was set as baseline (i.e., 1) and the relative levels of gene expression was
analyzed by normalization to internal GAPDH mRNA level. Error bars represent the meantS.D (n=3).
P values were determined using two-tailed unpaired Student’s t-test. n.s, not significant.

(b) GO analysis of the genes upregulated at bulk RNA levels in LAPC9-AI tumors after E7107 treatment.

(c) Heatmap of AR signature showing that AR signaling was not affected by E7107 in LAPC9-Al tumors.

(d) GSEA showing enrichment of pri-PCa-specific and CRPC-specific (defined by comparing CRPC vs.
PCa) gene signatures in E7107- and vehicle-treated LAPC9-Al tumors, respectively. As LAPC9-Al
molecularly resembles CRPC-Ad, this result suggests that E7107 treatment reverses tumor
aggressiveness at the molecular level.

(e) GO analysis of genes upregulated in PC3 tumors after E7107 treatment.

(f) Heatmap of AR signature (left) and GSEA of AR pathway (right) showing that AR signaling was not
affected by E7107 (Note PC3 cells were negative for AR and NKX3-1 proteins but expressed these
genes at MRNA levels).

(g) GSEA showing negative enrichment of metastasis and stemness-related signatures in E7107-treated
relative to vehicle-treated PC3 tumors (suggesting that inhibition of spliceosome activity abolishes the
aggressive properties of CRPC in vivo).

(h) Heatmap showing reduced expression of a PC3 gene signature (defined as top genes exclusively
expressed or over-expressed in PC3 compared with LNCaP) in E7107-treated PC3 tumors.

(i) GSEA showing enrichment of CRPC-Ad specific and CRPC-NE specific (defined by comparing CRPC-
NE vs. -Ad) gene signatures in E7107- vs. vehicle-treated PC3 tumors. As PC3 tumors molecularly
resemble clinical CRPC-NE, this result suggests that E7107 treatment reverses PCa aggressiveness.





