Supplementary material

Content

i. <u>Tables</u>

• Supplementary Table 1 (pages 5-9)

Summary of in-house patient characteristics (n=67)

• Supplementary Table 2 (pages 10-11)

Regulation of immune suppressor genes in the pGBM infiltration clusters of the exploratory cohort.

• Supplementary Table 3 (pages 12-14)

Regulation of immune effector genes in the pGBM infiltration clusters of the exploratory cohort.

• Supplementary Table 4 (page 15)

Univariable and multivariable Cox's proportional hazard analyses, with survival as endpoint, in the exploratory cohort.

• Supplementary Table 5 (page 16)

Univariable and multivariable Cox's proportional hazard analyses, with survival as endpoint, in the validation cohort.

• Supplementary Table 6 (page 17)

Univariable and multivariable Cox's proportional hazard analyses, with survival as endpoint, in the pooled exploratory and validation cohorts.

• Supplementary Table 7 (page 18)

Effect of molecular subtypes on survival in pGBM-I1 and pGBM-I2, in the pooled exploratory and validation cohorts

ii. Figures

• Supplementary Figure 1 (page 19)

Selection of the number of pGBM infiltration clusters in the exploratory cohort.

• Supplementary Figure 2 (page 20)

Estimation of tumor infiltration across samples of the exploratory cohort.

• Supplementary Figure 3 (page 21)

Differential abundance of immune and stromal cell populations between pGBM-

I1 and pGBM-I2, in the validation dataset.

• Supplementary Figure 4 (page 22)

Expression levels of selected genes in the mesenchymal subtype *vs.* other subtypes (neural, proneural and classical), in the exploratory cohort.

• Supplementary Figure 5 (page 23)

Comparison of abundance of immune and stromal cell populations in the pGBM molecular subtypes (exploratory cohort).

• Supplementary Figure 6 (page 24)

Molecular characterization of the pGBM-I1 and pGBM-I2 clusters according to the Verhaak's signatures in the validation dataset.

• Supplementary Figure 7 (page 25)

Heatmaps of MCPcounter scores in mesenchymal tumors of the exploratory cohort.

• Supplementary Figure 8 (page 26)

Heatmaps of MCPcounter scores in neural tumors of the exploratory cohort.

• Supplementary Figure 9 (page 27)

Heatmaps of MCPcounter scores in classical tumors of the exploratory cohort.

• Supplementary Figure 10 (page 28)

Heatmaps of MCPcounter scores in proneural tumors of the exploratory cohort.

• Supplementary Figure 11 (page 29)

Kaplan-Meier curves modeling the effect of GBM molecular classification on survival in the validation cohort.

• Supplementary Figure 12 (page 30)

Kaplan-Meier curves modeling the effect of tumor infiltration on overall survival in the validation cohort.

• Supplementary Figure 13 (pages 31)

Effect of molecular subtypes on survival, in the pooled exploratory and validation cohorts, in (A) pGBM-I1 and (B) pGBM-I2.

			Histopathological	WHO		Combine	LOH	MGMT
Sample ID	Gender	Age ^c	diagnosia	arada	2 ototuo		1p/19	promoter
			ulagilosis	graue	z status	u +7-10*	q	methylation ^e
06-1563ª	Male	35	A	II	MUT	NA	No	U/M
07-0658	Male	25	A	II	MUT	NA	No	U/M
07-0841	Male	32	А	II	MUT	NA	No	NA
07-1082	Male	28	A	II	MUT	NA	No	U/M
08-0706	Female	42	A	II	MUT	NA	No	U/M
08-1168	Female	43	A	II	MUT	NA	No	U/M
08-1169	Male	37	A	II	MUT	NA	No	M/M
1002-0669	Male	31	A	II	MUT	NA	No	NA
07-0025	Male	64	A	II	MUT	NA	No	U/M
07-0041 ^b	Female	29	A	II	MUT	NA	No	U/M
07-0139	Male	40	A	II	MUT	NA	No	M/M
07-0350	Male	35	A	II	MUT	NA	No	M/M

07-0372	Female	32	A	П	MUT	NA	No	M/M
07-0450	Male	36	0	II	MUT	NA	Yes	M/M
07-0697	Male	51	А	II	MUT	NA	No	M/M
08-1321	Female	41	А	II	MUT	NA	No	NA
08-1498	Female	61	А	II	MUT	NA	No	U/M
08-1510	Male	38	А	II	MUT	NA	No	U/M
08-1592	Male	55	0	II	MUT	NA	Yes	M/M
06-1206	Female	36	0	II	MUT	NA	Yes	M/M
06-1467	Female	30	0	II	MUT	NA	Yes	U/M
07-0704	Male	45	0	II	MUT	NA	Yes	U/M
07-1341	Male	23	0	II	MUT	NA	Yes	U/M
07-1656	Female	51	А	II	WT	NA	No	U/U
09-0349	Female	36	0	II	NA	NA	Yes	NA
1002-0413	Female	40	0	II	MUT	NA	Yes	NA
06-0811	Male	70	pGBM	IV	WT	NA	NA	U/U
06-0813	Female	82	pGBM	IV	NA	NA	NA	NA
06-0823	Male	76	pGBM	IV	WT	Yes	NA	M/M

06-0849	Male	56	pGBM	IV	WT	Yes	NA	U/U
06-0984	Male	63	pGBM	IV	WT	No	NA	M/M
06-1051	Male	61	pGBM	IV	WT	Yes	NA	U/U
06-1126	Female	59	pGBM	IV	WT	Yes	NA	M/M
06-1163	Female	84	pGBM	IV	NA	NA	NA	NA
06-1277	Male	70	pGBM	IV	WT	Yes	NA	U/U
06-1471	Female	79	pGBM	IV	WT	No	NA	M/M
06-1591	Female	58	pGBM	IV	WT	Yes	NA	U/M
06-1603	Male	53	pGBM	IV	WT	Yes	NA	U/M
07-0173	Female	46	pGBM	IV	WT	Yes	NA	U/U
07-0666	Male	58	pGBM	IV	NA	No	NA	NA
07-0860	Male	65	pGBM	IV	WT	Yes	NA	U/U
07-0968	Male	62	pGBM	IV	WT	Yes	NA	U/M
07-1024	Male	81	pGBM	IV	WT	NA	NA	NA
07-1380	Male	70	pGBM	IV	WT	Yes	NA	M/M
07-1562	Male	56	pGBM	IV	WT	NA	NA	U/U
07-1568	Male	55	pGBM	IV	WT	No	NA	M/M

08-0123	Female	54	pGBM	IV	WT	NA	NA	M/M
08-0193	Male	48	pGBM	IV	WT	NA	NA	U/U
08-0194	Female	65	pGBM	IV	WT	NA	NA	M/M
08-0269	Male	59	pGBM	IV	WT	NA	NA	U/U
08-0308	Female	36	pGBM	IV	WT	NA	NA	U/U
08-0315	Female	61	pGBM	IV	WT	NA	NA	M/M
08-0316	Female	81	pGBM	IV	WT	NA	NA	NA
08-0417	Female	63	pGBM	IV	WT	NA	NA	M/M
08-0723	Female	56	pGBM	IV	WT	NA	NA	U/U
08-1253	Male	50	pGBM	IV	WT	NA	NA	U/U
08-1516	Male	81	pGBM	IV	WT	NA	NA	U/U
08-1556	Male	75	pGBM	IV	WT	NA	NA	U/U
09-0133	Male	55	pGBM	IV	WT	NA	NA	M/M
09-0201	Female	67	pGBM	IV	WT	NA	NA	NA
0992-0111	Female	82	pGBM	IV	WT	NA	NA	NA
0992-0314	Female	56	pGBM	IV	WT	NA	NA	NA
06-1223	Male	46	sGBM	IV	MUT	Yes	NA	M/M

07-0196	Male	48	sGBM	IV	MUT	NA	NA	U/M	
08-0243	Female	38	sGBM	IV	MUT	NA	NA	NA	
09-0194 ^a	Male	38	sGBM	IV	MUT	NA	NA	NA	
09-0380 ^b	Female	32	sGBM	IV	MUT	NA	NA	NA	

^a Samples originate from the same patient. ^b Samples originate from the same patient. ^c Age in years, ^d combined gain of chromosome 7 and loss of chromosome 10 (+7/-10) ^e Methylation status as determined by qMSP and Pyrosequencing (qMSP result / pyrosequencing result).

Supplementary Table 1: Summary of in-house patient characteristics (n = 67).

	Regulation in pGBM-I1	Regulation in pGBM-I2	Regulation in pGBM-I1
Gene	(<i>vs.</i> Normal, FDR<0.05)	(<i>vs.</i> Normal, FDR<0.05)	(<i>vs.</i> pGBM-I2, FDR<0.05)
VEGFA	-	-	Up
IL10	Up	-	Up
IL23A	-	-	Up
TGFB1	Up	-	Up
SPATA2	Down	Down	-
PDL1/CD274	-	-	Up
CTLA4	-	-	Up
CSF1	Up	-	Up
CCL2	Up	-	Up
CCL22	-	-	Up
CD163	Up	-	Up
MSR1	Up	-	Up

GDF15	-	-	Up
ARG1	-	Down	-
CD47	-	-	-
IL6	-	-	Up
IL6ST	Up	Up	-
JAK2	-	-	-
STAT3	Up	Up	Up
PIM1	-	-	Up
SOCS3	-	-	Up
STAT5A	-	-	Up
STAT5B	-	-	Down
CD4	Up	-	Up
ICOS	-	-	Up
FOXP3	-	-	Up

Supplementary Table 2: Regulation of immune suppressor genes in the pGBM infiltration clusters of the exploratory cohort.

	Regulation in pGBM-I1	Regulation in pGBM-I2	Regulation in pGBM-I1
Gene	(<i>vs.</i> Normal, FDR<0.05)	(<i>vs.</i> Normal, FDR<0.05)	(<i>vs.</i> pGBM-I2, FDR<0.05)
IFN-γ	-	-	Up
IL1A	-	-	Up
IL2	-	-	-
IL4	-	-	-
IL7	-	-	Up
IL12A	-	-	Down
IL15	-	-	Up
TNF	-	-	Up
CD3D	-	-	Up
CD8A	-	-	Up
CD8B	-	-	Up
CD80	-	-	Up
CD86	Up	-	Up

CD40	-	-	Up
HLA-B	Up	-	Up
HLA-DRA	Up	-	Up
HLA-DBP1	Up	-	Up
B2M	Up	Up	-
RELA	Up	Up	Up
STAT1	-	Up	Down
IRAK1	Up	-	Up
STAT4	Down	Down	Up
TBX21	-	-	Up
CD226	Up	-	Up
IDE7			
	-	-	Up
NCR1	-	-	Up Up
NCR1 NCR3	-	-	Up Up Up

KLRD1	-	-	Up
CD244	-	-	Up
TLR2	Up	-	Up
TLR3	Up	Up	-
TLR4	-	-	Up
TLR9	-	-	Up
TREM1	Up	-	Up
TREM2	Up	-	Up
MIF	-	-	Up

Supplementary Table 3: Regulation of immune effector genes in the pGBM infiltration clusters of the exploratory cohort.

				Univariable models		Multivariable model	
		Patients (n)	Events (n)	HR (95% CI)	<i>p</i> -value	HR (95% CI)	<i>p</i> -value
Molecular classif.				<i>p</i> -value of the mod	lel: 0.086		
	Classical	113	73	-		1.00 (ref)	
	Mesenchymal	137	101	-		1.71 (1.23-2.39)	0.0016
	Neural	73	52	-		1.21 (0.85-1.73)	0.29
	Proneural	105	75	-		1.34 (0.97-1.86)	0.080
Immune classif.				<i>p</i> -value of the mod	del: 0.032		
	pGBM-I1	192	130	1.00 (ref)		1.00 (ref)	
	pGBM-I2	236	171	1.29 (1.02-1.61)	0.032	1.51(1.14-2.00)	0.0037

Supplementary Table 4: Univariable and multivariable Cox's proportional hazard analyses, with survival as endpoint, in the exploratory cohort.

				Univariable m	nodels	Multivariable model	
		Patients (n)	Events (n)	HR (95% CI)	<i>p</i> -value	HR (95% CI)	<i>p</i> -value
Molecular classif.				<i>p</i> -value of the mod	el: 0.033		
	Classical	32	21	1.00 (ref)		1.00 (ref)	
	Mesenchymal	35	27	1.02 (0.58-1.81)	0.94	1.30 (0.70-2.43)	0.41
	Neural	29	16	0.60 (0.31-1.15)	0.12	0.61 (0.32-1.18)	0.15
	Proneural	28	12	0.42 (0.21-0.86)	0.018	0.39 (0.19-0.80)	0.010
Immune classif.				<i>p</i> -value of the mod	el: 0.47		
	pGBM-I1	57	35	-		1.00 (ref)	
	pGBM-I2	67	41	-		1.69 (1.00-2.84)	0.048

Supplementary Table 5: Univariable and multivariable Cox's proportional hazard analyses, with survival as endpoint, in the validation cohort.

				Univariable mo	odels	Multivariable model	
		Patients (n)	Events (n)	HR (95% CI)	<i>p</i> -value	HR (95% CI)	<i>p</i> -value
Molecular classif.				<i>p</i> -value of the model: 0.17			
	Classical	145	94	-		1.00 (ref)	
	Mesenchymal	172	128	-		1.63 (1.21-2.18)	0.0012
	Neural	102	68	-		1.09 (0.80-1.49)	0.59
	Proneural	133	87	-		1.09 (0.81-1.47)	0.57
Immune classif.				<i>p</i> -value of the mode	el: 0.025		
	pGBM-I1	249	165	1.00 (ref)		1.00 (ref)	
	pGBM-I2	303	212	1.26 (1.03-1.55)	0.025	1.55 (1.21-1.97)	4.8e-4
Cohort				<i>p</i> -value of the mode	el: 0.0022		
	In-house	36	30	1.00 (ref)		1.00 (ref)	
	TCGA	392	271	0.075 (0.49-1.04)		0.76 (0.51-1.11)	0.15
	Rembrandt	124	76	0.0013 (0.33-0.76)		0.53 (0.34-0.82)	0.0043

Supplementary Table 6: Univariable and multivariable Cox's proportional hazard analyses, with survival as endpoint, in the pooled exploratory and validation cohorts.

		pGBM-I1				pGBM-I2			
		Patients (n)	Events	HR (95% CI)	р-	Patients (n)	Events	HR (95% CI)	р-
			(n)		value		(n)		value
Molecular class	sif.								
Classi	cal	51	30	1.00 (ref)		94	64	1.00 (ref)	
Meser	ichymal	140	100	1.55 (1.03-2.33)	0.037	32	28	1.81 (1.15-2.86)	0.011
Neura	l	34	18	0.87 (0.48-1.57)	0.64	68	50	1.19 (0.82-1.73)	0.36
Prone	ural	24	17	1.52 (0.84-2.78)	0.17	109	70	1.02 (0.73-1.44)	0.90
Cohort									
In-hou	se	19	15	1.00 (ref)		17	15	1.00 (ref)	
TCGA		173	115	0.70 (0.41-1.19)	0.19	219	156	0.84 (0.48-1.47)	0.55
Remb	randt	57	35	0.52 (0.28-0.96)	0.037	67	41	0.56 (0.30-1.04)	0.066

Supplementary Table 7: Effect of molecular subtypes on survival in pGBM-I1 and pGBM-I2, in the pooled exploratory and validation cohorts.

Supplementary Figure 1: Selection of the number of pGBM infiltration clusters in the exploratory cohort. The silhouette plot identifies the optimal number of clusters, which maximizes the average silhouette width over a range of possible values (k = 1 to 10).

Supplementary Figure 2: Estimation of tumor infiltration across samples of the exploratory cohort. (A) Abundance fold-changes (FC), *i.e.* average infiltration scores in tumors - averages infiltration score in normal samples. Red color indicates a higher infiltration in tumors, compared to normal, while blue color underlines a lower infiltration in tumors. Heatmaps of MCPcounter scores in (B) pGBM-I1 and (C) pGBM-I2 samples. Columns are ordered using a hierarchical clustering procedure, using 1-Pearson's correlation as a measure of distance between samples.

Supplementary Figure 3: Differential abundance of immune and stromal cell populations between pGBM-I1 (n=57) and pGBM-I2 (n=67), in the validation dataset. FDR values from limma (Benjamini-Hochberg procedure) are indicated for each comparison. Legend: (*) FDR<0.05, (**) FDR<0.01, (***) FDR<0.001.

Supplementary Figure 4: Expression levels of selected genes in the mesenchymal subtype *vs.* other subtypes (neural, proneural and classical) in the exploratory cohort. FDR values from limma (Benjamini-Hochberg procedure) are indicated for each comparison. Legend: (*) FDR<0.05, (**) FDR<0.01, (***) FDR<0.001.

Supplementary Figure 5: Comparison of abundance of immune and stromal cell populations in the pGBM molecular subtypes (exploratory cohort).

Supplementary Figure 6: Molecular characterization of the pGBM-I1 (n=57) and pGBM-I2 (n=67) clusters according to the Verhaak's signatures in the validation dataset.

Supplementary Figure 7: Heatmaps of MCPcounter scores in mesenchymal tumors of the exploratory cohort (A) pGBM-I1 and (B) pGBM-I2. Columns are ordered using a hierarchical clustering procedure, using 1-Pearson's correlation as a measure of distance between samples.

Supplementary Figure 8: Heatmaps of MCPcounter scores in neural tumors of the exploratory cohort (A) pGBM-I1 and (B) pGBM-I2. Columns are ordered using a hierarchical clustering procedure, using 1-Pearson's correlation as a measure of distance between samples.

Α

В

Supplementary Figure 9: Heatmaps of MCPcounter scores in classical tumors of the exploratory cohort (A) pGBM-I1 and (B) pGBM-I2. Columns are ordered using a hierarchical clustering procedure, using 1-Pearson's correlation as a measure of distance between samples.

Supplementary Figure 10: Heatmaps of MCPcounter scores in proneural tumors of the exploratory cohort (A) pGBM-I1 and (B) pGBM-I2. Columns are ordered using a hierarchical clustering procedure, using 1-Pearson's correlation as a measure of distance between samples.

Supplementary Figure 11: Kaplan-Meier curves modeling the effect of GBM molecular classification on survival in the validation cohort.

Supplementary Figure 12: Kaplan-Meier curves modeling the effect of tumor infiltration on overall survival in the validation cohort.

Supplementary Figure 13: Effect of molecular subtypes on survival, in the pooled exploratory and validation cohorts, in (A) pGBM-I1 and (B) pGBM-I2.