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1. Extract RNA 2. Reverse transcribe in 
    the presence of Mn2+

3. Prepare libraries using
    Nextera DNA library kit,
    sequence 2x 150bp 

4. Align to virus reference
    genome and count 
    mutation rates 

5. Convert mutation rates
    to SHAPE reactivity values

6. Use SHAPE reactivity as 
    pseudoenergy constraint in
    structure predictions
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Supplementary Figure 1 | SHAPE-MaP analysis of the IAV genome. a, Schematic showing the vRNA samples 
used for SHAPE-MaP analysis. b, Reverse transcription primer extension reaction using vRNA that was extracted 
from SHAPE reagent (1M7 or NMIA) or DMSO treated viral samples and a 32P-labelled primer targeting NA segment 
vRNA. Bands indicate the stalling of reverse transcriptase at the sites of SHAPE modifications. Image shown is 
representative of 3 (1M7) and 5 (NMIA) independent experiments. c, Schematic of SHAPE-MaP library preparation 
and sequencing data analysis. d, Mutation rates in DMSO versus 1M7 reagent treated samples. 1M7, 1-methyl-7-ni-
troisatoic anhydride; NMIA, N-methylisatoic anhydride; DMSO, dimethyl sulfoxide.
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Supplementary Figure 2 | SHAPE reactivity variation between replicates and SHAPE reactivity correlation 
between different vRNA samples. a, Comparison between the in virio and ex virio (nkvRNA and ivtRNA) median 
SHAPE reactivities of NS segment vRNA across independent replicates. Medians were calculated over 50 nucleotide 
windows and plotted relative to the global median. Regions below zero tend to be more structured, while regions 
above zero indicate more flexible regions of RNA. b, Correlation of single-nucleotide SHAPE reactivities between 
each in virio replicate (rows) presented as a 2' histogram (scale at right) for each segment (columns) with Pearson’s 
r indicated on each plot. c, Sliding window correlation of SHAPE reactivities between ex virio vRNA samples indicates 
very high correlation between different ex virio conditions across the different segments. Sliding window correlation 
between in virio and ex virio samples indicates regions of high SHAPE reactivity correlation, where the secondary 
RNA structures are likely maintained. Pearson correlation was calculated over 50 nucleotide windows. ivtRNA, in vitro 
transcribed RNA; nkvRNA, naked viral RNA; Rep., replicate.
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Supplementary Figure 3 | Analysis of the SHAPE reactivities in the WSN genome. a, Probability distribution of 
the SHAPE reactivities in different regions of individual viral segments. 5' 200nt, the first 200 nucleotides of the 
vRNA; 3' 200nt, the last 200 nucleotides of the vRNA; 5' next 200nt, the 200 nucleotides following the first 200 nucle-
otides of the vRNA. b, Individual SHAPE reactivities of the first 400 nucleotides of the WSN polymerase segments. 
High (red) SHAPE reactivities indicate flexible regions of RNA, low SHAPE reactivities (black) indicate constrained 
regions of RNA, intermediate reactivities are coloured yellow and grey regions indicate the nucleotides for which the 
reactivities are not available due to low sequencing coverage. 
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Supplementary Figure 4 | SHAPE-informed secondary RNA structure of the IAV polymerase segments. Black arcs 
indicate the maximum expected accuracy RNA structures; only the arcs associated with greater than 80% base-pairing 
probabilities are shown. Coloured arcs show base-pairing probabilities. Secondary structure examples of highlighted 
regions are shown.
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Supplementary Figure 5 | SHAPE-informed secondary RNA structure of the IAV HA, NP, NA and M segments. 
Black arcs indicate the maximum expected accuracy RNA structures; only the arcs associated with greater than 80% 
base-pairing probabilities are shown. Coloured arcs show base-pairing probabilities. Secondary structure examples of 
highlighted regions are shown. The previously-predicted hairpin in M22 and pseudoknot in NP23 are highlighted.
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Supplementary Figure 6 | Comparison of SHAPE reactivities and NP occupancy in different IAV strains. a, Distribution of SHAPE 
reactivity values in high- and low-NP regions of WSN (as determined by Lee et al.19, n = 3409 and 10166 nucleotides per respective 
region, data is an average of three biologically independent samples) and PR8 (as determined by Williams et al.20, n = 6651 and 6931 
nucleotides per respective region, data is from a single biological sample). Box plot elements: centre line, median; box limits, upper and 
lower quartiles; whiskers, 1.5x interquartile range. P values were determined using two-sided Wilcox Rank-Sum Test. b-i, SHAPE 
reactivity plots for each segment and correlation between WSN, PR8, and Udorn strains, as indicated in the legend to the right of panel 
b. SHAPE reactivity medians were calculated over 50 nt windows and plotted relative to the global median. Pearson correlation was 
calculated over 50 nt windows. Data shown is the average of three biologically independent experiments (WSN) and of a single experi-
ment (PR8 and Udorn); raw data is presented in Supplementary Table 1. WSN, A/WSN/1933 (H1N1); PR8, A/Puerto Rico/8/1934 
(H1N1); Udorn, A/Udorn/307/72 (H3N2); nt, nucleotide; corr., correlation. 



1. Sequence SPLASH libraries 
    using NextSeq 550; 
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3. Align reads to virus
    genome and extract 
    chimeric reads
   

c

a
1. Purify virus through
    30% sucrose
   

2. Crosslink vRNPs with
    biotinylated-psoralen in virio

3. Fragment and size-
    select RNA

4. Enrich for the cross-
    linked RNA

5. Perform proximity 
    ligation

6. Reverse the psoralen
    crosslink

7. SMARTer sequencing
    library prep for Illumina

365nm

254nm

Seg.1

Seg.2

SPLASH sample preparation

SPLASH sequencing and bioinformatics

b
-UV
+BPSO

+UV
+BPSO

10-4

10-3

Dilution

Supplementary Figure 7 | SPLASH samples and sequencing. a, Schematic showing SPLASH sample prepara-
tion. b, Anti-biotin dot blot analysis of RNA crosslinked with biotinylated psoralen and extracted from viral particles. 
Image shown is representative of 3 biologically independent experiments. c, Schematic showing the SPLASH 
sequencing method and bioinformatics analysis steps. d, Read overlaps between two experimental replicates. e, 
Chimeric reads aligned to the HA segment from two experimental replicates versus total RNA input coverage. Red 
trace indicates sample in which T4 RNA ligase 1 was omitted during proximity ligation (step 5 in a). BPSO, biotiny-
lated psoralen; Rep., replicate.
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Supplementary Figure 8 | SPLASH determination of 
RNA:RNA interaction loci. a, Schematic showing identification 
of interaction loci, including representative data reflecting 
signal-to-noise ratios of low-, medium-, and high-frequency 
interactions. b, Prediction of RNA:RNA interaction structures at 
single-nt resolution using SHAPE. c, Comparison of identified 
loci between two biologically independent experimental 
replicates, n = 611. Blue bands show 95% prediction interval 
from Oinear regression� 3earson’s correOation coefficient (r) is 
indicated; RPM, reads per million. d, Schematic of qPCR 
validation of interacting loci. e, Gel electrophoresis of products 
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ing and non-interacting (controO) regions as indicated. ,mage 
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Supplementary Figure 9 | Benchmarking of SPLASH-based RNA:RNA interaction structure prediction against struc-
tured cellular RNAs. a-c, Inter-segment RNA structures determined from published cryoEM structures of the 80S 
ribosome43 (PDB: 6EK0) and the U4/U6.U5 tri-snRNP spliceosomal complex44 (EMDB: EMD-2966) are shown in the left 
column with base-paired regions indicated (yellow rectangles). SPLASH sequencing reads for the corresponding region are 
shown in the second column as a heatmap (scale as indicated), and the predicted RNA structures using the SPLASH data 
and the IntaRNA 2.0 algorithm (see Methods) are shown in the right column and compared to the cryoEM structures. In all 
cases, the SPLASH data is sufficient to correctly predict the core RNA structure (as indicated). a-b, Inter-segment interac-
tions present in the 80S ribosome (PDB: 6EK0) comprise a set of five discrete interactions between the 5.8S and 28S rRNA 
segments, and form two loci: a, a simple locus between the end of the 5.8S rRNA and the beginning of the 28S rRNA, and 
b, a complex locus composed of four base-pairing stretches (numbered in panel) between the beginning of the 5.8S rRNA 
and the ~325-425nt region of the 28S rRNA. Two of these stretches (‘2’ and ‘3’) are comprised of a 1-nt and 2-nt basepair, 
respectively, and are too short to be detected as discrete interactions by IntaRNA. c, Inter-segment interactions present in 
the U4/U6.U5 tri-snRNP spliceosomal complex (EMDB: EMD-2966) comprise a set of two discrete interactions between the 
U4 and U6 snRNAs. Low SPLASH sequencing coverage of the U4/U6 snRNA (9 reads total) does not prevent accurate 
prediction of the core RNA structures.



a

Supplementary Figure 10 | Common loci involved in inter-segment interactions in different IAV strains. a, The 
top 2� interactions in :SN, 3R8, and 8dorn are shown. /oci in common with other strains¬are highOighted. Note that 
some interactions are in common with another strain when considering the top 1��, bXt do not appear on the corre-
sponding strain’s pOot since the\ are not in the top 2� interactions. A fXOO tabOe of interactions and comparisons is present-
ed in Supplementary Data Table 2. b, AnaO\sis of the origin of the top 1�� interactions in the 3R8��8dorn(3%1�NA) 
reassortant YirXs, cOassified according to which segments are inYoOYed in the interaction (see Figure 3 for &ircos pOot).
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Supplementary Figure 11 | Properties of viruses containing different sources of NA and PB1 segments. a, Structure prediction 
for the H3N2-origin PB1-NA interaction with circled nucleotides highlighting the bases on the PB1 segment that differ between Udorn 
(H3N2) and PR8 (H1N1) strains. b, Competitive reverse-engineering of influenza viruses with a PR8::Udorn(NA) background and 
chimeric PR8 PB1s with Udorn region as indicated, demonstrates that the region containing the interaction shown in panel a is respon-
sible for PB1-NA co-segregation; P values as indicated, ANOVA with Tukey correction for multiple testing, n = 3 biologically independ-
ent experiments for each indicated competition; bar plot centre represents the mean, error bars indicate SEM. c, Replication kinetics 
of viruses on a PR8 background. Relative fitness was assessed for different virus pairs representing the potential progeny of the differ-
ent competitive reverse-engineering experiments shown in Fig. 4; data shown is the mean of n = 3 biologically independent experi-
ments, except for PR8::Ud(NA), where n = 4, error bars indicate SD. P values as indicated, two-way ANOVA with Sidak correction for 
multiple testing.   d, Competitive reverse-engineering experiment showing Wyo03 NA segment, not its PB1 segment, is responsible for 
the failure of Wyo03 PB1 and NA segments to co-segregate; P values as indicated, ANOVA with Sidak correction for multiple testing, 
n = 5 (Ud-NA) and 8 (Wyo03-NA) biologically independent experiments for each indicated competition; bar plot centre represents the 
mean, error bars indicate SEM. e, Inter-segment RNA interactions in the PR8::Wyo03(NAUdSub),Ud(PB1) virus. f, Inter-segment RNA 
interactions in the Wyo03 virus. The larger width of the arcs reflects the low sequencing coverage of this experiment. Mem71, A/Mem-
phis/1/71; Wyo03, A/Wyoming/3/03; PC73, A/Port Chalmers/73; Udorn, A/Udorn/307/72; PR8, A/Puerto Rico/8/34.  
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