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Supplementary Figure 1 | SHAPE-MaP analysis of the IAV genome. a, Schematic showing the vRNA samples
used for SHAPE-MaP analysis. b, Reverse transcription primer extension reaction using vVRNA that was extracted
from SHAPE reagent (1M7 or NMIA) or DMSO treated viral samples and a **P-labelled primer targeting NA segment
VRNA. Bands indicate the stalling of reverse transcriptase at the sites of SHAPE modifications. Image shown is
representative of 3 (1M7) and 5 (NMIA) independent experiments. ¢, Schematic of SHAPE-MaP library preparation
and sequencing data analysis. d, Mutation rates in DMSO versus 1M7 reagent treated samples. 1M7, 1-methyl-7-ni-
troisatoic anhydride; NMIA, N-methylisatoic anhydride; DMSO, dimethyl sulfoxide.
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Supplementary Figure 2 | SHAPE reactivity variation between replicates and SHAPE reactivity correlation
between different vVRNA samples. a, Comparison between the in virio and ex virio (nkvRNA and iviRNA) median
SHAPE reactivities of NS segment vRNA across independent replicates. Medians were calculated over 50 nucleotide
windows and plotted relative to the global median. Regions below zero tend to be more structured, while regions
above zero indicate more flexible regions of RNA. b, Correlation of single-nucleotide SHAPE reactivities between
each in virio replicate (rows) presented as a 2D histogram (scale at right) for each segment (columns) with Pearson’s
r indicated on each plot. ¢, Sliding window correlation of SHAPE reactivities between ex virio vRNA samples indicates
very high correlation between different ex virio conditions across the different segments. Sliding window correlation
between in virio and ex virio samples indicates regions of high SHAPE reactivity correlation, where the secondary
RNA structures are likely maintained. Pearson correlation was calculated over 50 nucleotide windows. iviRNA, in vitro
transcribed RNA; nkvRNA, naked viral RNA; Rep., replicate.
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Supplementary Figure 3 | Analysis of the SHAPE reactivities in the WSN genome. a, Probability distribution of
the SHAPE reactivities in different regions of individual viral segments. 5' 200nt, the first 200 nucleotides of the
VRNA; 3' 200nt, the last 200 nucleotides of the vRNA; 5' next 200nt, the 200 nucleotides following the first 200 nucle-
otides of the vRNA. b, Individual SHAPE reactivities of the first 400 nucleotides of the WSN polymerase segments.
High (red) SHAPE reactivities indicate flexible regions of RNA, low SHAPE reactivities (black) indicate constrained
regions of RNA, intermediate reactivities are coloured yellow and grey regions indicate the nucleotides for which the
reactivities are not available due to low sequencing coverage.
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Supplementary Figure 4 | SHAPE-informed secondary RNA structure of the IAV polymerase segments. Black arcs
indicate the maximum expected accuracy RNA structures; only the arcs associated with greater than 80% base-pairing
probabilities are shown. Coloured arcs show base-pairing probabilities. Secondary structure examples of highlighted
regions are shown.
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Supplementary Figure 5 | SHAPE-informed secondary RNA structure of the IAV HA, NP, NA and M segments.

Black arcs indicate the maximum expected accuracy RNA structures

; only the arcs associated with greater than 80%

base-pairing probabilities are shown. Coloured arcs show base-pairing probabilities. Secondary structure examples of

highlighted regions are shown. The previously-predicted hairpin in M?

and pseudoknot in NP2 are highlighted.
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Supplementary Figure 6 | Comparison of SHAPE reactivities and NP occupancy

in different IAV strains. a, Distribution of SHAPE

reactivity values in high- and low-NP regions of WSN (as determined by Lee et al.’®, n = 3409 and 10166 nucleotides per respective

region, data is an average of three biologically independent samples) and PR8 (as d
nucleotides per respective region, data is from a single biological sample). Box plot el

etermined by Williams et al.?°, n = 6651 and 6931
ements: centre line, median; box limits, upper and

lower quartiles; whiskers, 1.5x interquartile range. P values were determined using two-sided Wilcox Rank-Sum Test. b-i, SHAPE
reactivity plots for each segment and correlation between WSN, PR8, and Udorn strains, as indicated in the legend to the right of panel
b. SHAPE reactivity medians were calculated over 50 nt windows and plotted relative to the global median. Pearson correlation was
calculated over 50 nt windows. Data shown is the average of three biologically independent experiments (WSN) and of a single experi-
ment (PR8 and Udorn); raw data is presented in Supplementary Table 1. WSN, A/WSN/1933 (H1N1); PR8, A/Puerto Rico/8/1934

(H1N1); Udorn, A/Udorn/307/72 (H3N2); nt, nucleotide; corr., correlation.
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Supplementary Figure 7 | SPLASH samples and sequencing. a, Schematic showing SPLASH sample prepara-
tion. b, Anti-biotin dot blot analysis of RNA crosslinked with biotinylated psoralen and extracted from viral particles.
Image shown is representative of 3 biologically independent experiments. ¢, Schematic showing the SPLASH
sequencing method and bioinformatics analysis steps. d, Read overlaps between two experimental replicates. e,
Chimeric reads aligned to the HA segment from two experimental replicates versus total RNA input coverage. Red
trace indicates sample in which T4 RNA ligase 1 was omitted during proximity ligation (step 5 in a). BPSO, biotiny-
lated psoralen; Rep., replicate.
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Supplementary Figure 9 | Benchmarking of SPLASH-based RNA:RNA interaction structure prediction against struc-
tured cellular RNAs. a-c, Inter-segment RNA structures determined from published cryoEM structures of the 80S
ribosome*® (PDB: 6EKO) and the U4/U6.U5 tri-snRNP spliceosomal complex* (EMDB: EMD-2966) are shown in the left
column with base-paired regions indicated (yellow rectangles). SPLASH sequencing reads for the corresponding region are
shown in the second column as a heatmap (scale as indicated), and the predicted RNA structures using the SPLASH data
and the IntaRNA 2.0 algorithm (see Methods) are shown in the right column and compared to the cryoEM structures. In all
cases, the SPLASH data is sufficient to correctly predict the core RNA structure (as indicated). a-b, Inter-segment interac-
tions present in the 80S ribosome (PDB: 6EKO) comprise a set of five discrete interactions between the 5.8S and 28S rRNA
segments, and form two loci: a, a simple locus between the end of the 5.8S rRNA and the beginning of the 28S rRNA, and
b, a complex locus composed of four base-pairing stretches (numbered in panel) between the beginning of the 5.8S rRNA
and the ~325-425nt region of the 28S rRNA. Two of these stretches ("2’ and ‘3’) are comprised of a 1-nt and 2-nt basepair,
respectively, and are too short to be detected as discrete interactions by IntaRNA. ¢, Inter-segment interactions present in
the U4/U6.U5 tri-snRNP spliceosomal complex (EMDB: EMD-2966) comprise a set of two discrete interactions between the
U4 and U6 snRNAs. Low SPLASH sequencing coverage of the U4/U6 snRNA (9 reads total) does not prevent accurate
prediction of the core RNA structures.
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Supplementary Figure 10 | Common loci involved in inter-segment interactions in different 1AV strains. a, The
top 20 interactions in WSN, PR8, and Udorn are shown. Loci in common with other strains are highlighted. Note that
some interactions are in common with another strain when considering the top 10%, but do not appear on the corre-
sponding strain’s plot since they are not in the top 20 interactions. A full table of interactions and comparisons is present-
ed in Supplementary Data Table 2. b, Analysis of the origin of the top 100 interactions in the PR8::Udorn(PB1+NA)
reassortant virus, classified according to which segments are involved in the interaction (see Figure 3 for Circos plot).
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Supplementary Figure 11 | Properties of viruses containing different sources of NA and PB1 segments. a, Structure prediction
for the H3N2-origin PB1-NA interaction with circled nucleotides highlighting the bases on the PB1 segment that differ between Udorn
(H3N2) and PR8 (H1N1) strains. b, Competitive reverse-engineering of influenza viruses with a PR8::Udorn(NA) background and
chimeric PR8 PB1s with Udorn region as indicated, demonstrates that the region containing the interaction shown in panel a is respon-
sible for PB1-NA co-segregation; P values as indicated, ANOVA with Tukey correction for multiple testing, n = 3 biologically independ-
ent experiments for each indicated competition; bar plot centre represents the mean, error bars indicate SEM. ¢, Replication kinetics
of viruses on a PR8 background. Relative fithess was assessed for different virus pairs representing the potential progeny of the differ-
ent competitive reverse-engineering experiments shown in Fig. 4; data shown is the mean of n = 3 biologically independent experi-
ments, except for PR8::Ud(NA), where n = 4, error bars indicate SD. P values as indicated, two-way ANOVA with Sidak correction for
multiple testing. d, Competitive reverse-engineering experiment showing Wyo03 NA segment, not its PB1 segment, is responsible for
the failure of Wyo03 PB1 and NA segments to co-segregate; P values as indicated, ANOVA with Sidak correction for multiple testing,
n=>5 (Ud-NA) and 8 (Wyo03-NA) biologically independent experiments for each indicated competition; bar plot centre represents the
mean, error bars indicate SEM. e, Inter-segment RNA interactions in the PR8::Wy003(NA ¢ ,),Ud(PB1) virus. f, Inter-segment RNA
interactions in the Wyo03 virus. The larger width of the arcs reflects the low sequencing coverage of this experiment. Mem71, A/Mem-
phis/1/71; Wyo03, A/Wyoming/3/03; PC73, A/Port Chalmers/73; Udorn, A/lUdorn/307/72; PR8, A/Puerto Rico/8/34.





