

Full wwPDB/EMDataBank EM Map/Model Validation Report (i)

Oct 28, 2019 – 04:13 PM EDT

PDB ID : 6UI7

EMDB ID: : EMD-20670

Title : HBV T=3 149C3A

Authors: Wu, W.; Watts, N.R.; Cheng, N.; Huang, R.; Steven, A.; Wingfield, P.T.

Deposited on : 2019-09-30

Resolution : 3.65 Å(reported)

Based on PDB ID : 1QGT

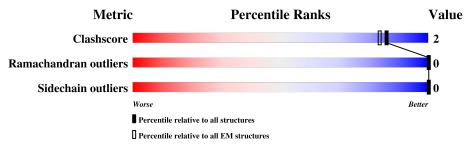
This is a Full wwPDB/EMDataBank EM Map/Model Validation Report for a publicly released PDB/EMDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
https://www.wwpdb.org/validation/2017/EMValidationReportHelp
with specific help available everywhere you see the (i) symbol.

MolProbity: 4.02b-467

Percentile statistics : 20171227.v01 (using entries in the PDB archive December 27th 2017)

Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et. al. (1996)


Validation Pipeline (wwPDB-VP) : 2.4

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.65 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive $(\# \mathrm{Entries})$	${ m EM\ structures} \ (\#{ m Entries})$
Clashscore	136327	1886
Ramachandran outliers	132723	1663
Sidechain outliers	132532	1531

The table below summarises the geometric issues observed across the polymeric chains. The red, orange, yellow and green segments on the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain	
1	A	143	91%	8% •
1	В	143	94%	6%
1	С	143	95%	
1	D	143	94%	6%

2 Entry composition (i)

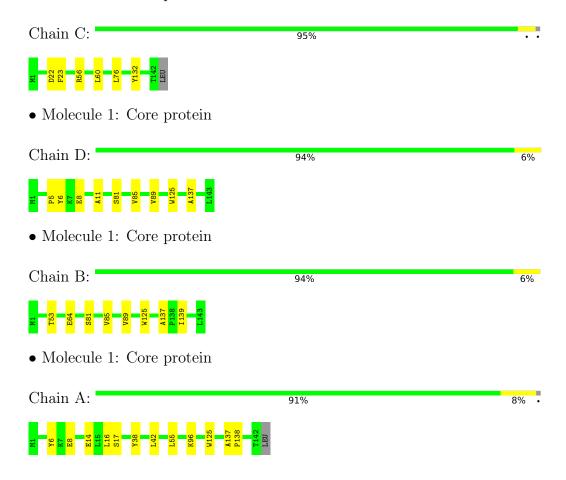
There is only 1 type of molecule in this entry. The entry contains 9034 atoms, of which 4486 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Core protein.

Mol	Chain	Residues		Atoms				AltConf	Trace	
1	С	142	Total	С	Н	N	О	S	0	0
1		142	2249	735	1116	188	207	3	U	0
1	D	143	Total	С	Н	N	О	S	0	0
1	D	143	2268	741	1127	189	208	3	U	U
1	В	143	Total	С	Н	N	О	S	0	0
1	Б	140	2268	741	1127	189	208	3	U	0
1	Λ	142	Total	С	Н	N	О	S	0	0
1	A	142	2249	735	1116	188	207	3	U	0

There are 12 discrepancies between the modelled and reference sequences:


Chain	Residue	Modelled	Actual	Comment	Reference
С	48	ALA	CYS	conflict	UNP A0A0D4D613
С	61	ALA	CYS	conflict	UNP A0A0D4D613
С	107	ALA	CYS	conflict	UNP A0A0D4D613
D	48	ALA	CYS	conflict	UNP A0A0D4D613
D	61	ALA	CYS	conflict	UNP A0A0D4D613
D	107	ALA	CYS	conflict	UNP A0A0D4D613
В	48	ALA	CYS	conflict	UNP A0A0D4D613
В	61	ALA	CYS	conflict	UNP A0A0D4D613
В	107	ALA	CYS	conflict	UNP A0A0D4D613
A	48	ALA	CYS	conflict	UNP A0A0D4D613
A	61	ALA	CYS	conflict	UNP A0A0D4D613
A	107	ALA	CYS	conflict	UNP A0A0D4D613

3 Residue-property plots (i)

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Core protein

4 Experimental information (i)

Property	Value	Source	
Reconstruction method	SINGLE PARTICLE	Depositor	
Imposed symmetry	POINT, Not provided	Depositor	
Number of particles used	14000	Depositor	
Resolution determination method	FSC 0.143 CUT-OFF	Depositor	
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor	
	CORRECTION		
Microscope	FEI POLARA 300	Depositor	
Voltage (kV)	300	Depositor	
Electron dose $(e^-/\text{Å}^2)$	25	Depositor	
Minimum defocus (nm)	Not provided	Depositor	
Maximum defocus (nm)	Not provided	Depositor	
Magnification	Not provided	Depositor	
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor	

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bond angles		
IVIOI	Chain	RMSZ	# Z >2	RMSZ	# Z > 2	
1	A	0.34	0/1167	0.52	0/1599	
1	В	0.32	0/1175	0.56	0/1610	
1	С	0.33	0/1167	0.52	0/1599	
1	D	0.33	0/1175	0.54	0/1610	
All	All	0.33	0/4684	0.53	0/6418	

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	A	1133	1116	1116	9	0
1	В	1141	1127	1127	7	0
1	С	1133	1116	1116	5	0
1	D	1141	1127	1127	6	0
All	All	4548	4486	4486	21	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 2.

All (21) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	$\begin{array}{c} \text{Interatomic} \\ \text{distance } (\text{\AA}) \end{array}$	Clash overlap (Å)
1:A:14:GLU:O	1:A:17:SER:OG	2.09	0.65
1:D:125:TRP:CZ2	1:D:137:ALA:HB2	2.42	0.55
1:B:64:GLU:OE2	1:A:96:LYS:NZ	2.39	0.55
1:C:56:ARG:NH2	1:D:8:GLU:OE1	2.44	0.51
1:A:38:TYR:O	1:A:42:LEU:HD23	2.10	0.50
1:A:125:TRP:CZ2	1:A:137:ALA:HB2	2.49	0.48
1:C:76:LEU:HD22	1:D:81:SER:HB2	1.95	0.48
1:D:85:VAL:O	1:D:89:VAL:HG23	2.13	0.47
1:A:42:LEU:HD21	1:A:55:LEU:HD23	1.99	0.45
1:B:125:TRP:CH2	1:B:137:ALA:HB2	2.51	0.45
1:B:125:TRP:CZ2	1:B:137:ALA:HB2	2.51	0.45
1:B:85:VAL:O	1:B:89:VAL:HG23	2.16	0.45
1:C:22:ASP:OD1	1:C:23:PHE:N	2.52	0.43
1:B:81:SER:O	1:B:85:VAL:HG23	2.19	0.42
1:A:125:TRP:CH2	1:A:137:ALA:HB2	2.55	0.42
1:A:6:TYR:HE2	1:A:16:LEU:HD22	1.85	0.41
1:C:60:LEU:HD11	1:D:5:PRO:HB3	2.02	0.41
1:A:137:ALA:HB1	1:A:138:PRO:HD2	2.03	0.41
1:B:53:THR:HG23	1:A:8:GLU:OE2	2.21	0.41
1:D:6:TYR:HB3	1:D:11:ALA:HB3	2.03	0.40
1:C:132:TYR:O	1:B:139:ILE:HG22	2.22	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	A	140/143 (98%)	134 (96%)	6 (4%)	0	100	100
1	В	141/143 (99%)	132 (94%)	9 (6%)	0	100	100
1	С	140/143 (98%)	135 (96%)	5 (4%)	0	100	100
1	D	141/143 (99%)	131 (93%)	10 (7%)	0	100	100
All	All	562/572 (98%)	532 (95%)	30 (5%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
1	A	123/124~(99%)	123 (100%)	0	100	100
1	В	124/124 (100%)	124 (100%)	0	100	100
1	С	123/124~(99%)	123 (100%)	0	100	100
1	D	124/124 (100%)	124 (100%)	0	100	100
All	All	494/496 (100%)	494 (100%)	0	100	100

There are no protein residues with a non-rotameric sidechain to report.

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no carbohydrates in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

