
S1 Appendix

Outline of coloc method

Single SNP GWAS summary statistics, for a single trait, provide an estimate of the effect of that

SNP on the trait, β̂, and an estimate of the variance of β̂, V̂ . Standard theory asserts that β̂ is an

unbiased estimate of the true effect of the SNP on the trait, β, such that

β̂ ∼ N(β, V̂ ).

We can calculate a Bayes factor to compare alternative hypothesis that β is non-zero to the null

that β = 0.[1] It is convenient to specify a conjugate prior for β under the alternative, β ∼ N(0,W ),

where W is chosen by prior experience. For example, for a case-control study, it is common to set

W = 0.22 which corresponds to a prior that P (e|β| > 1.2) < 0.05 — i.e. that the odds ratio will

exceed 1.5 with probability 0.05, but in the scale of data commonly used for GWAS, variations in

the choice of W tend to have negligible effects on the Bayes factor. This leads to the single SNP,

single trait Bayes factor

BF1 =

∫
π(β̂|β̂ ∼ N (β, V̂ ))π(β|β ∼ N(0,W ))dβ

π(β̂|β̂ ∼ N (0, V̂ ))
=
π(β̂|β̂ ∼ N (0, V̂ +W ))

π(β̂|β̂ ∼ N (0, V̂ ))
. (1)

Note that if we do not have β̂, but we do have a p value, then we may estimate the variance

of β, V̂ as a function of sample size and MAF[3], and hence estimate β̂ = Z
√
V̂ where Z is the

Z score associated with p. In this case, the sign of β̂ is not known, but that the sign of β̂ is not

required for what follows.

Assume now that we have two traits, 1 and 2, and are given the summary statistics at a single

SNP X, β̂1, β̂2, V̂1, V̂2. For independent data sets, corr(β̂1, β̂2) = 0, making calculations simple.

We can express the joint BF as in (1), if we write

β̂ = (β̂1, β̂2) and V̂ =

V̂1 0

0 V̂2

 . (2)
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Prior variance W of β can take different forms depending on the hypothesis under test at SNP

X

HX
0 : β1 = β2 = 0

HX
1 : β1 ∼ N(0,W1), β2 = 0

HX
2 : β1 = 0, β2 ∼ N(0,W2)

HX,Z
3 : β1 ∼ N(0,W1), γ2 ∼ N(0,W2)

HX
4 : β1 ∼ N(0,W1), β2 ∼ N(0,W2)

where Wi is a prior on the effect size of a SNP on trait i if it is causal, and βi, γi are used to denote

the estimands for SNPs X and Z on traits i respectively.

Under a single causal assumption, it has been shown that

Pr(G|X causal) = Pr(G−X |GX , X causal)Pr(GX) = Pr(G−X |GX)Pr(GX)

where G is the full genotype data, X is a SNP in G, and GX , G−X are used to represent the

genotype data at SNP X and at all SNPs except X. [2] This assumption means the Bayes factor

for X being causal and hypothesis H0 being true can be written as

Pr(G−X |GX)Pr(GX |β1 ∼ N(0,W1))

Pr(G−X |GX)Pr(GX |β1 = 0)
=
Pr(GX |β1 ∼ N(0,W1))

Pr(GX |β1 = 0)
(3)

i.e. as a quantity which only depends on estimates at X. We can thus enumerate all possible causal

SNP configurations of at most one causal variants per trait, and calculate the Bayes factor for each

hypothesis as the sum of Bayes factors over all configurations consistent with it.[3]

These Bayes factors are then used to derive the posterior probabilities:

P (Hi|Data) ∝ P (Data|Hi)P (Hi) ∝
P (Data|Hi)P (Hi)

P (Data|H0)
= BFi P (Hi)

where P (Hi) and BFi are used to denote the prior probability and Bayes factor for hypothesis Hi
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respectively.

|rg| can be used to conservatively estimate p12
√
q1q2

We assume two traits Y1, Y2 can be modelled as

Y1 =

n12∑
i=1

αiGi +

n1∑
i=1

βiHi + E1

Y2 =

n12∑
i=1

α′iGi +

n2∑
i=1

γiJi + E2

where i indexes variants, Gi are the n12 variants that contribute to both traits, Hi, Ji are n1 and n2

variants unique to traits Y1, Y2 and E1, E2 are residual non-genetic factors. We assume genotypes

at all variants are independently sampled from the same distribution (iid)

Gi, Hi, Ji
iid∼ f

and that the effects of each variant Hi, Ji on the traits are also iid

βi, γi
iid∼ N(0,W ).

To allow for dependence of effects at variants Gi, we assume αi, α
′
i are sampled from a bivariate

normal distribution αi
α′i

 iid∼ MNV


0

0

 ,
W ρW

ρW W




An extreme case might be that cor(αi, α
′
i) = ρ = 1 so that α′i = αi. Then the genetic correlation

between Y1 and Y2 is

rg =

∑n12
i α2

i var(Gi)√
(
∑n12

i α2
i var(Gi) +

∑n1
i β2i var(Hi))(

∑n12
i α2

i var(Gi) +
∑n2

i γ2i var(Ji))
(4)
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As all the variants and their effect estimates are iid from the same distributions, then

E(α2
i var(Gi)) = E(β2i var(Hi)) = E(γ2i var(Ji)) = ν

and replacing each term in (4) by its expectation, we find, to a first order approximation,

E(rg) ≈
n12ν√

(n12 + n1)ν(n12 + n2)ν
=

n12√
(n12 + n1)(n12 + n2)

(5)

The simplifying assumption that the shared variants have the same effect on the traits is obviously

unrealistic, but different effects over the same number of shared variants would produce a smaller

correlation, thus this is expected to be a conservative estimate. To see this, relax the assumption

that ρ = 1, but assume instead that the fraction of genetic variance of each trait attributable to

the total set of variants Gi, i = 1 . . . n is fixed, then only the numerator of (5) will change, and is

E

(
n12∑
i

αiα
′
i var(Gi)

)
=

n12∑
i

E(αiα
′
i)ν/W ) =

n12∑
i

ρw2ν/W = n12ρν

Thus, |rg| is maximal if the effects of all variants Gi on the two traits are equal.

Using estimated functional proportion of the genome to set a lower bound of p12

Let F be the event that a SNP is “functional” (in the sense that all causal variants for the traits

considered are assumed to be members of the functional set of SNPs), and recall that A1, A2 are

the events that a SNP is causal for traits 1 and 2 respectively. Because Ai, i = 1..2 occurs only

when F occurs, P (Ai ∩ F ) = P (Ai). We seek a lower bound for p12 = P (A1 ∩ A2), so assume

A1 ⊥⊥A2|F , and denote f = P (F ). Then
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p12 = P (A1 ∩A2) = P (A1 ∩A2|F )P (F )

= P (A1|F )P (A2|F )P (F )

=
P (A1 ∩ F )

P (F )

P (A2 ∩ F )

P (F )
P (F )

=
P (A1)P (A2)

P (F )

=
q1q2
f
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