SUPPLEMENTARY MATERIAL

SUPPLEMENTARY METHODS Mouse behavioral analyses.

SUPPLEMENTARY FIGURES

Figure S1 Breeding and behavioral analysis of wild type and *EndoV^{/-}* mice.
Figure S2 3'UTR hyperediting in *Rpa1* and *Tapbp*.
Figure S3 Analyses of DEN-treated mice.
Figure S4 Inflammatory cells in the livers of the DEN mice.
Figure S5 Evaluation of A-to-I editing in the DEN mice.
Figure S6 Cleavage of tRNA by recombinant mouse EndoV.
Figure S7 Analyses of mouse and human cells with or without EndoV.

SUPPLEMENTARY TABLES

Table S1 Primers.

Table S2 Metabolic parameters.

Table S3 The most up- and down regulated genes in $EndoV^{/-}$ mice livers.

Table S4 Gene expression analyses of DEN-treated mice.

Table S5 List of tRNA fragments in the RT-qPCR array.

Table S6 tRNA fragments with significant different levels in the liver samples.

SUPPLEMENTARY METHODS

Mouse behavioral analyses.

Behavioral parameters were tested in 8-10 weeks old mice (n = 16-20) as outlined below.

Grip strength test. To test for neuromuscular functions, grip strength was measured using Grip strength Test according to the protocol (Model GT3, Bioseb In Vivo Research Instruments). Maximal peak force (g) developed by the mouse while being on the grid was recorded and three independent tests were done for each mouse.

Rotarod. Motor coordination and balance were tested using motor driven rotating rod (Rotarod). The mice were placed on an accelerating rotarod where the speed was constantly increased from 4 to 40 revolutions per min, during a 5 min period. The time before the animal fell off from the rotarod was recorded. The animals were trained on the rotarod with constant speed (12 rpm) for up to 120 sec for three consecutive days prior to the test. The experiment was performed for four consecutive days with two sessions each day with 1 h interval.

Treadmill acute exhaustion assay. Acute exhaustion was tested on a motorized mouse treadmill (LE8710, Panlab) with an electric grid as a motivational stimulus. The mice were acclimatized to the treadmill for two days before the experiment: Day 1; 5 min without movement, afterwards the training protocol with 5 min at 5 m/min, 5 min with 7 m/min and 5 min with 9 m/min was conducted. Day 2; same as day 1, except the point without movement. On the following day, the acute exhaustion performance was tested with the following settings: 5 min with 6 m/min, then 2 min with 9 m/min and subsequent increasing the speed by 3 m/min every 2 min up to 30 m/min. The mice then run with the final speed and an incline increase by 5° every 10 min until exhaustion. Exhaustion was defined by entering the electric grid (0.2 mA) for more than 3 sec, two times on the grid for more than 1 sec or staying on the grid for more than 50% of the time.

Open field. To test for general activity, exploratory behavior and anxiety, open field tests were done. The mice were placed in a square with white enclosure, 50x50 cm with 50 cm high walls and an overhead camera with tracking system monitored the movement of the mice for 45 min.

Elevated zero maze. A related test is the elevated zero maze where the mice are challenged to open spaces and heights, and therefore to a larger extend monitors anxiety. The circular white maze with diameter of 60 cm and width of 5 cm, was elevated 60 cm above the floor. The platform was equally divided in four quadrants: two quadrants on opposite sides of the platform had enclosed walls and the two other quadrants were open with a 1 cm lip. An overhead camera with a tracking system monitored the mice. They were allowed to explore the maze for 5 min.

SUPPLEMENTARY FIGURES

Figure S1

(A) Gender distribution, (B) litter size in $EndoV^{/-}$ breeding and (C) growth of $EndoV^{/-}$ mice. Wild type and $EndoV^{/-}$ mice were tested for (D) grip strength, (E) balance/coordination with rotarod, (F) endurance on a treadmill, (G) olfactory function, exploratory behavior, anxiety and general activity by open field (H, I) and elevated zero maze (J, K) (n=16-20). g="grip force", s= time in seconds, m= distance in meters. Graphs are shown as means ± SEM.

Figure S2 3'UTR hyperediting in *Rpa1* and *Tapbp*.

Mapping positions and level of A-G mutations in (A) *Rpa1* and (B) *Tapbp* 3'UTRs in wild type and *EndoV*^{/-} mice by direct DNA sequencing. For each genotype, 24 individual clones obtained by subcloning of PCR products from cDNA, were sequenced. A-to-G mutations were calculated as the number of clones with Gs (in %) at the given positions. The numbers on the X axis refer to the nucleotide position where 1 corresponds to chr11:75300454 for *Rpa1* and chr17: 33928142 for *Tapbp* in the mouse GRCm38/mm10.

Figure S3 Analyses of DEN-treated mice.

(A) AST and (B) ALT values for the DEN-treated mice (n=28-30). Graphs are shown as means \pm SEM. (C) RT-qPCR of *EndoV* mRNA in non-tumor (NT) and tumor (T) tissue samples using wild type DEN-treated mice (n=10). Samples are related to the average of NT samples which was set as 1. Lines depict *EndoV* mRNA levels in NT and T samples within each animal analyzed.

Figure S4 Inflammatory cells in the livers of the DEN mice.

(A) Percentage of F4/80 positive cells and (B) CD163 positive cells, in non-tumor (NT) and tumor (T) liver samples from DEN-treated wild type (WT) and $EndoV^{/-}$ mice. Quantification was performed by Z9 (n=6). Graphs are shown as means ±SEM. *P <0.05 by paired Student's t-test.

Figure S5 Evaluation of A-to-I editing in DEN mice.

Expression of (A) Adar1 p110, (B) Adar1 p150 and (C) Adar2 mRNA in the DEN-treated mice as measured by RT-qPCR. The values are related to the average of wild type non-tumor (NT) samples which was set as 1. T= tumor, (n=8-10). A-to-I editing levels of specific positions in (D) Cog3(I635V; n=5), (E) Copa(I164V; n=2, no SEM) and (F) Flnb(Q2272R; n=5) mRNA in tumor and non-tumor tissue from DEN-treated mice as measured by reversed transcription and DNA sequencing of PCR products as in Figure 2B. (G) *Snd1* mRNA levels measured by RT-qPCR. The values in RT-qPCR are related to the average of wild type non-tumor (NT) samples which was set as 1. Graphs are shown as means ±SEM.

Figure S6 Cleavage of tRNA by recombinant mEndoV.

Northern blots of small RNA isolated from human U373 cells incubated with recombinant mouse MBP-EndoV wild type (WT) or inactive mutant D52A (0, 1.2, 3.8 or 11.1 pmol) using probes for ArgACG5', ArgACG3', ValAAC5', AlaAGC5' and GluCTC5' tRNA. Human EndoV (hEV, 10 pmol) was included as a positive control. An ethidium bromide stained gel at the bottom shows equal loading of small RNA. Glyphs to the right of the membranes indicate full-length and fragment tRNA species.

Figure S7 Analyses of mouse and human cells with or without EndoV.

(A) Proliferation of wild type and $EndoV^{/-}$ tail fibroblasts. Values are related to the starting time point (0 h). Graph is shown as mean ±SEM (n=3). (B) Viability as measured by MTT of wild type and EndoV Hap1 cells after sorafenib exposure for 24 h (n=6). Values are related to the average of the untreated samples (0 μ M). Graph is shown as mean ±SD.

SUPPLEMENTARY TABLES

Table S1 Primers.

Name	5'→3' sequence	Note		
Genotyping				
EndoV forward	agccaggagtacaaggagca			
EndoV reverse	gcaagtgggtgttggagagt			
<i>EndoV</i> ^{-/-} reverse (<i>Neo</i>)	ggggaacttcctgactaggg			
Site specific editing	Site specific editing			
Cog3 forward	ccacagttcgaaggacactt			
Cog3 reverse	ctcctccagctgctctacaa			
Copa forward	gcacttggattatatccgtacaa			
Copa reverse	cagcacaagacacattgttgtaat			
Flnb forward	gctgttgagggccctagtaa			
Flnb reverse	gctctcctacacgtactttgaaa			
3'UTR analyses				
Rpa1_3UTR forward	ctccacaatgaagatcctctag	PCR: 3'UTR region (770nt)		
<i>Rpa1_</i> 3UTR reverse	ggcaaccgaacggtaactg	PCR: 3'UTR region (770nt)		
Tapbp_3UTR forward	gtcacagtaaagaagttctcgtc	PCR: 3'UTR region (692nt)		
Tapbp_3UTR reverse	tettetcaaccetgggaete	PCR: 3'UTR region (692nt)		
M13 forward	gtaaaacgacggccagtg	Sequencing		
Ctn_Fwr region forward	tgagcccagttgaaggattt	PCR: 3'UTR region (653nt)		
Ctn_Fwr region reverse	agggcaactagcatttgtgg	PCR: 3'UTR region (653nt)		
Ctn_IR2 region forward	agcactgtgagtcagcagaa	PCR: 3'UTR region (597nt)		
Ctn_IR2 region reverse	ctcatctcaccagccccaag	PCR: 3'UTR region (597nt)		
Ctn_Fwr_seq forward	gtttagagatteteetatetate	Sequencing		
Ctn_IR2_seq reverse	ccaacctgttaaagtgctgct	Sequencing		
Northern blot analyses				
tRNA AlaAGC5'	cgagcgctctaccatttgagctaatccccc	human/mouse		
tRNA ArgACG5'	acgcgttatccattgcgccactggccc	human/mouse		
tRNA ArgACG3'	cgagccagccaggagtcgaacctggaat	human/mouse		
tRNA GluCTC5'	gccgaatcctaaccactagaccaccaggga	human/mouse		
tRNA LeuCAG3'	gtgtcaggagtgggattcg	mouse		
tRNA LeuAAG5'	agacgcattatccattgagccactggccc	human		
tRNA LysCCT5'	atgctctaccgactgagctagccgggc	human/mouse		
tRNA SerAGA5'	catcgccttaaccactcggccacgactac	human/mouse		
tRNA ValAAC5'	ggcgaacgtgataaccactacactacggaaac	human/mouse		

Table S2Metabolic parameters.

20 months old mice	Wild type (n=20) ± SEM	<i>EndoV</i> ^{-/-} (n=17) ± SEM
Body weight (g)	42.3 ± 1.6	42.1 ± 1.8
TAG-liver (mg/g tissue)	38.5 ± 6.9	36.3 ± 8.3
TAG-plasma (mg/dl)	100.4 ± 9.5	116.2 ± 7.8
NEFA-plasma (mmol/l)	1007 ± 59	1193 ± 116
Glucose-full blood (mmol/L)	8.8 ± 0.3	9.2 ± 0.3
C-peptide-plasma (ng/ml)	0.80 ± 0.11	0.70 ± 0.12
% Liver/body weight ratio	5.2 ± 0.2	5.2 ± 0.2
% Spleen/body weight ratio	0.24 ± 0.02	0.25 ± 0.01

Table S3 The most up- and down regulated genes in $EndoV^{\prime-}(EV^{\prime-})$ mice livers compared to wild type (WT).

Upregulated genes	p-value	Fold change <i>EV^{-/-}</i> vs. WT	Downregulated genes	p-value	Fold change <i>EV^{-/-}</i> vs. WT
Serpina1e	0,037	3,64	Slc25a47	0,018	-1,96
Tmem254b	0,021	2,20	Cyp2a5	0,008	-1,81
Tat	0,029	1,60	1500017E21Rik	0,003	-1,68
Csad	0,040	1,54	Apol9a	0,006	-1,65
Acss2	0,020	1,48	Lhpp	0,043	-1,57
Apom	0,001	1,43	Oat	0,016	-1,55
1810008118Rik	0,012	1,40	Creld2	0,049	-1,50
Tob1	0,020	1,38	Apol9b	0,018	-1,42
BC005537	0,044	1,38	Ifi27	0,032	-1,41
C4b	0,033	1,36	Lect2	0,014	-1,36
Ces1d	0,024	1,35	Cd59a	0,005	-1,35
Ces2a	0,026	1,35	Neat1	0,014	-1,35
Srebf1	0,036	1,33	Hmgcs2	0,044	-1,32
Sardh	0,013	1,31	H2-T9	0,006	-1,31
Afmid	0,032	1,29	Tmed9	0,047	-1,30

Table S4 Gene expression analyses of DEN-treated mice. (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001)

Gene	Ratio (Tumor/Non-tumor) ± SEM		
	Wild type (n=28)	<i>EndoV</i> ^{-/-} (n=29)	
Apoptosis			
Bax	1.1 ± 0.2	1.2 ± 0.1	
BclXL	1.8 ± 0.2 *	1.5 ± 0.2	
Cell invasion/sig	naling pathways		
Cdh1	2.2 ± 0.2 ***	2.4 ± 0.2 ***	
Fos	1.8 ± 0.7	1.7 ± 0.2	
Jun	1.2 ± 0.1	1.2 ± 0.1	
Mmp9	1.0 ± 0.3	0.7 ± 0.4	
Mmp12	3.0 ± 0.6 *	3.8 ± 1.1	
Мус	1.0 ± 0.3	0.7 ± 0.3	
Ppia	1.0 ± 0.1	0.9 ± 0.1	
Insulin/glucose s	ignaling and metabolism	n	
Atp5B	0.8 ± 0.1 *	0.8 ± 0.1	
Ghr	$0.5 \pm 0.1 **$	0.6 ± 0.1 **	
Glut1	1.1 ± 0.2	1.2 ± 0.2	
G6pdx	$3.9 \pm 0.5 **$	$2.2 \pm 0.2 **$	
Hk2	1.6 ± 0.4	0.7 ± 0.2	
Igf1	0.4 ± 0.1 **	0.4 ± 0.0 ***	
Igf2	5.4 ± 3.4	4.4 ± 2.1	
Irs1	1.0 ± 0.1	0.7 ± 0.1 **	
Pkm2	1.4 ± 0.2 *	1.3 ± 0.1	
Srebf1	0.7 ± 0.1	0.7 ± 0.2	
Fat metabolism			
Acaca	1.1 ± 0.1	1.3 ± 0.2	
Acadm	0.7 ± 0.1	0.7 ± 0.1 *	
Acox1	0.5 ± 0.1 **	0.6 ± 0.1 **	
Cpt1a	1.1 ± 0.1	1.3 ± 0.2	
Fasn	0.9 ± 0.2	1.4 ± 0.3	
Mgll	0.8 ± 0.3	0.5 ± 0.3 *	
INF pathway			
Bst2	0.6 ± 0.2	0.3 ± 0.1 ***	
Ifit1	0.7 ± 0.2	0.4 ± 0.1 ***	
Irf1	0.8 ± 0.1	0.8 ± 0.1 *	
Pkr	0.7 ± 0.1 *	$0.7 \pm 0.1 **$	
Rsad2	0.7 ± 0.2	0.6 ± 0.1 **	
Tnfa	1.7 ± 0.3	1.3 ± 0.3	
Usp18	0.6 ± 0.2	0.7 ± 0.2	
Other			
Serpina1e	1.2 ± 0.1	1.2 ±0.1	
Slc25a47	1.0 ±0.4	0.7 ±0.1	

Table S5 List of tRNA fragments in the RT-qPCR array. (database: <u>http://genome.bioch.virginia.edu/trfdb/index.php</u>).

Mouse tRF (88)				
tRF-1				
1003	SerGCT	3033b	Петат	
1006	HisATG	3034a	ArgTCT	
1008	CysGCA	3036a	AlaTGC	
1009	CysGCA	3036b/3037b	AlaTGC, AlaAGC	
1010	PheGAA	3038a	IleAAT, AlaTGC, AlaCGC	
1015	CysGCA	3038b	IleAAT	
1016	ValTAC	3039a	AlaAGC	
1019	TyrGTA	3041b/3042b	GlyTCC	
1020	MetCAT	3043a	GlyGCC	
1026	CysGCA	3043b	GlyGCC	
1035	ThrCGT	3044a	GlyCCC	
tRF-3		3044b	GlyCCC	
3001b	AsnGTT	3045a	GluCTC	
3002a/3035a	ТгрССА	3046a	TyrGTA, GluTTC	
3003a	ProTGG, ArgTCG, ArgCCG	3047b	MetCAT	
3004b	CysGCA, ProCGG, ProAGG	3048a	IleTAT	
3005a	ThrTGT	3050a	CysGCA	
3006a	GlnCTG	3051a	PheGAA	
3009a	ValCAC	3052a	AspGTC, SerGGA	
3009b	ValCAC, ValAAC, GlyACC	tRF-5		
3010a	LeuTAA, ValAAC, GlyACC	5001a/5001b/5010a	MetCAT, ArgACG	
3010b	LeuTAA	5002b/5004b	GlyGCC, GlyGCC, GlyCCC	
3011a	SerTGA	5005a/5006b	LvsTTT. LvsCTT	
3011b	SerTGA	5005b	LysTTT	
3012b	MetCAT	5006a	LvsCTT	
3017a	LeuCAG	5006c	LvsCTT	
3017b	LeuCAG	5007a	GlyCCC	
3019a	ThrAGT	5009a	ProTGG, ProCGG, ProAGG	
3019b/3020b	ThrAGT	5009b	ProTGG, ProCGG, ProAGG	
3021a	SerGCT. ThrAGT	5011a	AlaTGC, ProCGG, ProAGG	
3023b	HisGTG	5011b/5012b	AlaTGC, ProCGG, ProAGG, CysGCA	
3024b/3046b	TyrGTA	5012b	CysGCA	
3025a	SerTGA	5013a	LeuTAG, LeuAAG	
3025b	SerTGA, SerAGA	5013b	LeuTAG, LeuAAG	
3026a	SerCGA, SerAGA	5013b/5017b/5018b	LeuTAG, LeuAAG, LeuCAG, LeuCAA	
3027a	SerCGA	5014a	ValTAC	
3028b/3029b	GluTTC	5014a/5015a	ValTAC, GlnCTG	
3028b/3029b/	GluTTC			
3040b/3045b		5014b	ValTAC	
3029a	GluTTC AspGTC GluTTC	5016a	SerTGA SerAGA	
3030a	ArgACG	5019a	ValCAC, ValAAC, GlvACC	
3031a		5019h	ValCAC ValAAC	
3031b		5020b/5021a	GINTTC	
30329		5022a	GluTTC GluCTC	
3032h		5022a	GluCTC	
50520		50220		

Table S6

tRNA fragments with significant different levels in the liver samples. $KO=EndoV^{-}$, WT= wild type, NT= non tumor and T= tumor. 1'tRFs: orange color; 3'tRF: blue color; 5'tRF: red color

Upregulated tRFs: grey background; down-regulated tRFs: white background

KO NT vs WT NT	WT T vs WT NT	KO T vs WT T
CysGCA	TyrGTA	HisATG
AspGTC	SerTGA	TyrGTA
GluTTC/AspGTC	MetCAT	IleAAT
GluCTC/GluTTC	ValTAC	ThrAGT
GlyCCC	AlaTGC/ProCGG/ProAGG/CysGCA	GlyCCC
IleTAT	ValTAC	
LeuTAA	ValTAC/GlnCTG	
SerCGA	ValCAC/ValAAC/GlyAAC	
AspGTC		
GlyGCC, GlyCCC		