Structural basis of UCUU RNA motif recognition

by splicing factor RBM20

Santosh Kumar Upadhyay, Cameron D. Mackereth

SUPPLEMENTARY MATERIAL

Main Resources

Supplementary Table 1. List of PCR primers.

Supplementary Figure 1. Annotated 2D ¹H,¹⁵N-HSQC spectra corresponding to Figure 1B.

Supplementary Figure 2. Representative ITC raw data corresponding to Table 1.

Supplementary Figure 3. Complete spectra corresponding to the selected regions in Figure 3C-F.

Supplementary Figure 4. Identification of residues in the proximity of Val537.

Main Resources

REAGENT or RESOURCE	SOURCE	IDENTIFIER		
Bacterial and Virus Strains				
5-alpha Competent E. coli	New England Biolabs	Cat# C2987H		
T7 Express lysY Competent E. coli	New England Biolabs	Cat# C3010I		
Chemicals, Peptides, and Recombinant Proteins				
Nuvia TM IMAC Resin	BioRad Cat# 7800800			
TEV protease	In house produced N/A			
Deposited Data				
RBM20-AUCUUA chemical shifts	BioMagResBank (BMRB)	34428		
RBM20-AUCUUA structural ensemble	Protein Data Bank (PDB) 6SO9			
unbound RBM20 chemical shifts	BioMagResBank (BMRB) 34429			
unbound RBM20 structural ensemble	Protein Data Bank (PDB) 6SOE			
Oligonucleotides				
PCR oligos	Sigma	Supplementary Table 1		
RNA	In house produced	Table 1		
Recombinant DNA				
pET-His1a	EMBL	N/A		
mouse RBM20 cDNA	Pamela Lorenzi, University	N/A		
	of Verona			
pET-His1a:mRBM20 (513-621)H523A	This paper	N/A		
pET-His1a:mRBM20 (513-621)N526A	This paper	N/A		
pET-His1a:mRBM20 (513-621)V537I	This paper N/A			
pET-His1a:mRBM20 (513-621)Q558A	This paper N/A			
pET-His1a:mRBM20 (513-621)F560A	This paper N/A			
pET-His1a:mRBM20 (513-621)Q577A	This paper N/A			
pET-His1a:mRBM20 (513-621)R591M	This paper N/A			
pET-His1a:mRBM20 (513-621)R595M	This paper N/A			
pET-His1a:mRBM20 (513-621)Y596A	This paper N/A			
pET-His1a:mRBM20 (513-609)Δα3	This paper N/A			
pET-His1a:mRBM20 (513-649)+RS	This paper	N/A		
Software and Algorithms				
Topspin	Bruker BioSpin	Version 4.0		
NMRPipe	Delaglio et al, 1995	Version 8.6		
Sparky	T.D. Goddard and D.G.	Version 3		
	Kneller, Univ. of California			
CNS	Version 1.2			
ARIA		Version 2.3		

Supplementary Table 1. List of PCR primers.

Function	Direction	Primer sequence $(5' \rightarrow 3')$
Clone mRBM20 (513-621) from cDNA,	Forward	CAGTAGCCATGGCACAGAGGAAAGGCGCTG
add stop codon, NcoI/Acc65I sites	Reverse	GTGGTACCTTACCTCTCCCTCTGGGAATGG
Remove C-terminal helix (-609), add	Reverse	GTGGTACCTTAAGCCACATTTTTCCCAGGTTTC
stop codon, Acc65I site		
Add RS region (-649), add stop codon,	Reverse	GTGGTACCTTAGGATCTTGGGGAGAGTGATC
Acc651 site		
H523A mutation	Forward	CGGGTAGTGGCGATCTGCAATCTCCCG
	Reverse	GATTGCAGATCGCCACTACCCGTCCAGC
N526A mutation	Forward	CACATCTGCGCGCTCCCGGAGGGCAGC
	Reverse	GCCCTCCGGGAGCGCGCAGATGTGCACTAC
Q558A mutation	Forward	GTCAACTAATGCGGCTTTCTTGGAG
	Reverse	CAAGAAAGCCGCATTAGTTGACTTCATGAG
V537I mutation	Forward	GAGAATGACATTATTAACCTGGGGCTGCCC
	Reverse	CAGGTTAATAATGTCATTCTCCGTGCAGC
F560A mutation	Forward	CTAATCAGGCTGCGTTGGAGATGGCTTAC
	Reverse	GCCATCTCCAACGCAGCCTGATTAGTTGACTTC
Q577A mutation	Forward	CAGTACTACGCGGAAAAGCCTGCGATTATC
	Reverse	GCAGGCTTTTCCGCGTAGTACTGGACCATAGC
K779M mutation	Forward	CTACCAAGAAATGCCTGCGATTATCAATG
	Reverse	GATAATCGCAGGCATTTCTTGGTAGTACTG
R591M mutation	Forward	GTTACTCATTATGATGTCCACCAGATACAAG
	Reverse	CTGGTGGACATCATAATGAGTAACTTCTCGCC
R595M mutation	Forward	CATGTCCACCATGTACAAGGAATTGCAGC
	Reverse	CCTTGTACATGGTGGACATGCGAATGAG
Y596A mutation	Forward	GTCCACCAGAGCGAAGGAATTGCAGCTG
	Reverse	GCAATTCCTTCGCTCTGGTGGACATGCG

Supplementary Figure 1. Annotated 2D ¹H,¹⁵N-HSQC spectra corresponding to **Figure 1B**. The backbone and side chain amide cross peaks are labeled with the residue name (single amino acid letter code) and number. The spectra were recorded at 298 K in 20 mM sodium phosphate, 50 mM NaCl (pH 6.5), 2 mM DTT and 10 % (v/v) D₂O. (**A**) NMR sample containing 400 μ M [¹³C,¹⁵N]mRBM20₍₅₁₃₋₆₂₁₎ and spectrum collected at a field strength of 800 MHz. (**B**) NMR sample containing 400 μ M [¹³C,¹⁵N]mRBM20₍₅₁₃₋₆₂₁₎ and 480 μ M natural abundance AUCUUA RNA, with spectrum collected at a field strength of 700 MHz.

Supplementary Figure 2. Representative ITC raw data corresponding to **Table 1**. Above each thermogram the protein construct in the syringe is listed first, followed by the RNA ligand present in the cell. The number of replicates used to calculate the average and standard deviation in **Table 1** is indicated at the bottom right of each thermogram as 'nr'. In most cases, the target protein concentration was 400 μ M, with 40 μ M RNA ligand. Those samples which required higher concentrations of 800 μ M protein and 80 μ M RNA are indicated with 'conc.'.

Supplementary Figure 3. Complete spectra corresponding to the selected regions in Figure 3C-F.

Supplementary Figure 4. Identification of residues in the proximity of Val537. Using the structure of the RNA-bound mRBM20₍₅₁₃₋₆₂₁₎, Val537 is shown as a white stick representation with residues which are within 4 Å coloured in magenta onto the ribbon representation. Although Val537 is distant from the RNA-binding surface, there may be indirect (i.e. allosteric) affects via changes in the hydrophobic core of the protein including to the buried sidechains of Ile524, Leu527, Leu552, Ala559 and Leu561. Since the backbone amide of Leu552 in particular makes a hydrogen bond to the uracil base of U5, this could be one explanation for the slight drop in affinity for the V527I mutant. In addition, the V537I mutant is within helix α 1 and thus could alter the folding and stability of helix α 3 upon binding the RNA ligand.