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Supplementary Note 1 
 
Supplementary Methods 
 
MIP Design:​ We used two distinct MIP panels - a genome-wide panel designed to capture 

overall levels of differentiation and relatedness, and a drug resistance panel aimed at 

polymorphic sites known to be associated with antimalarial resistance. The drug resistance MIP 

panel included mutations in genes atp6 (L263E, E431K, A623E, S769N), crt (C72S, M74I, 

N75E, K76T, H97L, H97Y, A220S, N326S, I356T), cytb (M133I, Y268S, Y268C, V284K), dhfr-ts 

(A16V, N51I, C59R, S108T, I164L, T185), dhps (S436A, A437G, K540E, A581G, A613S), 

kelch13 (S436A, A437G, K540E, A581G, A613S), mdr1(N86Y, Y184F, S1034C, N1042D, 

D1246Y), mdr2 (T484I). In addition the following putative drug resistance mutations were 

included in the drug resistance panel: pib7 (C1484F), pph (V1157L), fd (D193Y), 

PF3D7_1322700 (T236I), PF3D7_1451200 (N71N) and arps10 (V127M)​1​. When selecting 

targets for the genome-wide panel, we used publicly available ​Plasmodium falciparum​ whole 

genome sequences provided by the Pf3k project (Data Release 5) and ​P. falciparum 

Community project (Data Release 4), which are part of the wider MalariaGEN Consortium​2,3​2​. 

This consisted of 923 samples in total, from Cameroon (n=134), the Democratic Republic of the 

Congo (n=285), Kenya (n=52), Malawi (n=369), Nigeria (n=5), Tanzania (n=66), and Uganda 

(n=12) (​Supplementary Data 1 ​). The genomic sequence from these samples underwent 

alignment, variant calling, and variant-filtering following the Pf3k strategy consistent with the 

Genome Analysis Toolkit (GATK, version 3.6) Best Practices with minor modifications​3–6​. Reads 

were aligned to the ​P. falciparum​ 3d7 reference assembly genome ​(version 3)​ using BWA-MEM 

with a raised base-match bonus (A=2) and clip penalty for local alignment (L=15) for increased 

sensitivity and specificity through hypervariable regions, and with all other flags set to default​7,8​. 

Given that there were paired-end reads, we used samtools fixmates, to synchronize any 

overlapping paired-end bases​9​. Mate-fixed reads were then deduplicated and merged with 

Picard Tools (version 2.2.4), MarkDuplicates and MergeSamFile respectively​10​. Finally, we 

performed local realignment of complex regions using GATKIndelRealigner 

 

Following best practices for variant calling, we first used the GATK BaseRecalibrator tool to 

adjust our samples’ base-quality scores using the sequences from the ​P. falciparum​ Genetic 

Cross project as the training set. Variant discovery was performed separately on each 

recalibrated binary alignment map (BAM) file using GATK HaplotypeCaller with the minimum 
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Phred score for a variant to be called at 30 and a ploidy of one. Setting the ploidy to one shifts 

the genotype-call to the major haplotype in polyclonal infections, in expectation. The individual 

variant call files (VCFs) then underwent joint variant discovery with the GATK GenotypeGVCFs 

tool. Following this step, we used the GATK VariantRecalibrator and ApplyRecalibration tools to 

recalibrate our discovered single-nucleotide-polymorphisms (SNPs) and insertion-deletions 

(INDELs). For SNP recalibration tuning, we again used the ​ P. falciparum​ genetic crosses as the 

training set with the quality depth, mapping quality, fisher-score, strand-odds ratio, and allele 

depth as the covariate considered and the maximum gaussian clusters set to eight processes. 

Similarly, for INDEL recalibration, the ​P. falciparum​ cross data was again used to train the 

model but only quality depth, fisher-score, strand-odds ratio, and allele depth were considered 

as covariates and the maximum gaussian clusters were set to four processes. In the 

ApplyRecalibration step, the truth sensitivity level for filtering was set at 99% for both SNPs and 

INDELs. Finally, from the recalibrated-joint VCF, we filtered all variants with a variant-quality 

recalibration log-odds of less-than or equal to zero. In addition, variants were excluded if they 

were not within the “core” genome as defined by the Pf3k project. 

 

To further decrease our false discovery rate, we subsetted to biallelic SNPs and excluded all 

samples (original BAMs) with fewer than 70% of loci that were callable as determined by GATK 

CallableLoci with flags set to a minimum base quality of 20, minimum mapping quality of 10, and 

a minimum depth of 4.  In addition, we excluded samples from Uganda and Nigeria, as these 

countries did not have enough high-quality genomes for analysis. Next, we separated the 

joint-VCF into country-level VCF and excluded intervals that had fewer than 5-fold coverage at 

50% of loci within a given country using GATK CoveredByNSamplesSites (version 3.4.46). The 

country-level VCFs were then re-merged and annotated using snpEFF and the Pf3D7v91 

genome pre-package in the snpEFF databases.  

 

From this filtered-VCF, we calculated Weir and Cochram’s F​ST​ with respect to country for each 

biallelic locus​11​. The 1,000 loci with the highest F​ST​ values were considered for MIP design as 

phylogeographically informative loci. Of these 1,000 potential loci, 739 were identified as 

regions that were suitable for MIP-probe design. Separately, from the combined SNP file, we 

identified 1,595 potential loci that had a minor-allele frequency greater than 5%, had an F​ST 

value between 0.005 and 0.2, and were annotated by snpEFF (version 4.3s) as functionally 

silent mutations. These were identified as putatively neutral SNPs. Of these 1,595 potential loci, 
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1,151 were suitable for MIP-probe design. 76 loci were shared between phylogeographically 

informative and putatively neutral loci. 

 
MIP capture, amplification, and sequencing 
Oligonucleotides described in Supplementary Data 3 were synthesized as 200 nm ultramers 

(Integrated DNA Technologies, USA) with equimolar hand-mix option for random bases. Upon 

receipt, these were pooled at equal concentrations to create the MIP panel. MIPs were 5’ 

phosphorylated using 1 µl (10 units) T4 Polynucleotide Kinase (NEB, catalog # M0201) for every 

nanomole of probe, in 1X T4 DNA ligase buffer (NEB, catalog # B0202S) in a maximum of 50 µl 

reaction (bigger reactions were split). Phosphorylation reactions were incubated in a 

thermocycler at 37°C for 45 min followed by heat inactivation at 65°C for 20 min. Probes were 

aliquoted and kept at -20°C. Probes were diluted 1:8 in TE buffer to bring them to 1 µM working 

solution. Antimalarial drug resistance and genome wide SNP panels were used in separate 

reactions. 

 

Capture reactions were carried out as follows. 10 µl capture reactions for each sample and MIP 

panel containing Ampligase Buffer (1X), Phusion DNA polymerase (0.0008 units/µl), Ampligase 

(0.04 units/µl), pooled MIPs (40 nM, each), dNTP (4 µM), template DNA (5µl) were incubated in 

a preheated thermocycler with the following steps 95°C (10 min), 60°C (1 hr), 4°C hold. Next, 2 

µl of exonuclease mix containing 1X Ampligase buffer, 10 units Exonuclease I and 50 units 

Exonuclease III were added to reactions following MIP captures. Reactions were performed in a 

thermocycler with the following steps: 37°C (1 hr), 95°C (2 min), 4°C hold. 

 

The entire capture reaction (12 µl) was amplified in a 25 µl PCR reaction containing the 

following components: 1X Phusion Polymerase Buffer, 1X Macromolecular Crowding (MMC) 

solution, 200 nM dNTP, 0.02 units/µl Phusion DNA polymerase, forward and reverse primers​1​, 

500 nM each. PCR was performed using a preheated thermocycler with the following steps 

98°C 30 s, 22 cycles (98°C 10 s, 63°C 30 s, 68°C 30 s), 68°C 2 min, 4°C hold. 50 ml 5X MMC 

was prepared by mixing the following components in water and filter-sterilized using 0.2 µ nylon 

syringe filter: 3.75 g Ficoll 70 (GE Healthcare, catalog # 17-0310-10), 1.25 g Ficoll 400 (Sigma 

catalog # F2637-5G), 0.125 g Polyvinylpyrrolidone (PVP360, Sigma catalog # PVP360-100g).  
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Next, library pools were created by combining 5 µl of each PCR reaction in a single tube and 

cleaned up and concentrated using Ampure XP beads (Beckman Coulter, Catalog #A63881) at 

0.8x bead:DNA ratio using manufacturer’s protocol. This generally removed the unwanted 

adapter/primer dimers ~ 200 bp. If dimers remained after bead clean up, the eluted DNA was 

loaded on a 1.5% agarose gel and the relevant band was extracted from the gel using Monarch 

DNA extraction kit (NEB, catalog # T1020S). Drug resistance MIP libraries were sequenced on 

Illumina MiSeq instrument using 250 bp paired end sequencing with dual indexing using MiSeq 

Reagent Kit v2. Genome-wide MIP libraries were sequenced on Illumina Nextseq 500 

instrument using 150 bp paired end sequencing with dual indexing using Nextseq 500/550 

Mid-output Kit v2. 

 

MIP data processing and variant calling: ​Sequencing data was processed using 

MIPWrangler software [Version 1.1.1-dev, Hathaway, unpublished] in combination with other 

software. Briefly, sequences were demultiplexed by their dual sample barcode using bcl2fastq 

software (v2.20.0.422, Illumina). Paired end reads were then stitched together using 

MIPWrangler and filtered on expected length and on per base quality scores by discarding a 

sequence if the fraction of quality scores above 30 was less than 70% (Q30 <70%). Quality 

filtered stitched sequences were then further demultiplexed by target using the extension and 

ligation arm sequences to produce a file for each target for each sample. Target sequences for 

each sample were then corrected using their unique molecular identifiers (UMIs). This was done 

by clustering sequences on their UMIs and then creating a consensus sequence for each 

specific UMI. This UMI redundancy removes a significant proportion of PCR errors that occur in 

late cycles, including polymerase stutter and subsequent sequencing errors. UMI corrected 

sequences were then further clustered within MIPWrangler using an implementation of the 

qluster algorithm derived from SeekDeep ​12​ allowing accurate detection of single base 

differences and indels at levels of 1% or less. We set a minimum relative abundance threshold 

of 0.5% for a cluster to be included in final analysis. Differences between the observed 

sequence and the reference sequence for each probe were obtained by pairwise alignment 

using LastZ software (version 1.04.00)​13​ and nucleotide variants and indels from the LastZ 

output were annotated using Annovar software (version 20180416)​14​.  

 
Complexity of Infection:​ We applied THE REAL McCOIL (v2) categorical method to the SNP 

genotyped samples to estimate each individual’s COI​15​, using a 10% minor allele frequency 
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cutoff for calling a heterozygous locus. We performed five repetitions for each sample, with a 

burn-in period of 10 ​4​ iterations followed by 10 ​6​ sampling iterations and using standard 

methodology to confirm convergence between chains​16​. Given the concurrent estimation of 

population allele frequencies within THE REAL McCOIL, samples were grouped initially within 

their countries. Default priors were assigned for each parameter, with a maximum observable 

COI equal to 25 and sequencing measurement error estimated along with COI and allele 

frequencies. COI estimates were compared between countries using 100,000 repetitions of a 

non-parametric bootstrap to estimate the 95% confidence interval from the bootstrapped COI 

density. Additionally, to test for a relationship between COI and transmission intensity, we 

modelled the exponential relationship between COI and malaria prevalence in the DRC at the 

cluster level, with a random intercept for each administrative region. 

 

Extended haplotype homozygosity analysis: ​Alleles at these biallelic SNPs were polarized 

as ancestral versus derived using P. reichenowi as an outgroup. Briefly, the ​P. falciparum​ 3D7 

assembly was aligned to the PlasmoDB v38 assembly of the ​P. reichenowi ​ CDC strain with 

nucmer​17​ using parameters “-g 500 -c 500 -l 10” as in Otto et al.​18​ Only segments with globally 

unique, one-to-one alignments were retained. The ​P. reichenowi ​allele was defined as ancestral 

at all SNPs in these segments; SNPs falling outside these segments were considered to have 

ambiguous ancestral state and were excluded from analysis. In order to account for linkage 

between SNPs, we created a recombination map from the pedigrees  reported in Miles et al.​19 

under the assumption of no unobserved double-crossovers. The genetic positions of  SNPs in 

the MIP panel were interpolated on this map with piecewise-linear interpolation. 

 

We then subsetted to a set of monoclonal samples as identified by THE REAL McCOIL 

categorical method. Haplotypes were created from the genotype calls, which were the majority 

within-sample allele frequency. To account for population structure, we analyzed the samples 

with respect to country with the exception of the DRC, which was split into two groups using 

K-means clustering weighted by longitude- and latitude-coordinates (​Supplementary Figure 7 ​). 
K-means clustering with two groups resulted in an East-West divide that is consistent with 

previous publications of DRC population substructuring ​20​. ​Samples were further subsetted to 

those without any missing genotype data. 
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Given that the MIP panel density was not uniform or symmetric by design, we did not perform 

genome-wide scans for recent positive selection ​21,22​. Genome-wide scans for recent positive 

selection with our MIP panel would have been biased towards sites with higher MIP density and 

would not have been comparable across the genome. However, given that MIP-site densities 

are identical between subpopulations at the same genomic region, cross-population 

interpretations of differing selection pressures were still considered valid. As a result, we 

calculated the log-ratio of the integrated EHH for the derived allele, hereafter called the 

XP-EHH​D​, to differentiate recent positive selection between subpopulations​23​. We focused on 

sites that were identified in this study as putative drug-resistance loci and had a prevalence of at 

least 10% in the DRC. The resulting XP-EHH​D​ were then standardized and a one-sided p-value 

was calculated for each site assuming a Gaussian cumulative distribution ​24,25​. We did not 

perform multiple comparison corrections when evaluating the XP-EHH associated p-values.  
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1 Introduction

Here we describe a simple model that can be used to explore various aspects
of P. falciparum genetics. This model can be used to simulate populations of
human hosts carrying potentially multiple distinct P. falciparum haplotypes,
taking into account both super-infection and co-transmission. The “true”
simulated haplotypes can then be passed through an observation model to
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create simulated genotypes that are somewhat representative of real data.
The advantage of using simulated data in this way is that the true relatedness
between samples is known, and hence methods of estimating relatedness can
be compared against a known ground truth.

We start by describing the underlying model from a traditional perspec-
tive, emphasising the link to models of population structure. We then argue
that this model can be reinterpreted for the purposes of modeling P. falci-
parum. Next we describe recombination and identity by descent within this
framework, and finally we describe the observation model that is applied to
simulated haplotypes to arrive at more realistic genotypes.

2 The Underlying Structured Model

The model description here is phrased in terms of traditional population
genetics, for example describing migration of individuals between demes.
However, bear in mind that in the next section the meaning of these terms
will be recast in terms of P. falciparum.

We assume a discrete-time model with time indexed by t 2 Z�0 genera-
tions. Each generation consists of N demes, and each deme contains one or
more distinct individuals. Let the number of individuals in deme i 2 1 : N at
time t be written nt,i. We initialise the model at time t = 0 with n0,i drawn
from a zero-truncated Poisson distribution with rate �:

Pr(n0,i) =
�n0,ie��

n0,i!(1� e��)
. (1)

At time t, individuals within a deme come together in pairs, chosen at
random, and mate to form a single o↵spring per pair through recombination.
The number of times this occurs per deme is denoted K. O↵spring then
undergo migration. Each o↵spring stays in its current deme with probability
(1�m), or migrates with probability m, in which case it has an equal chance
of migrating to each of the N demes. Note that o↵spring can “migrate”
to their current deme, meaning the probability of staying put is actually
(1�m+m/N).

After migration is complete, o↵spring within each deme are culled down
at random to produce the new population size. The number of surviving
o↵spring within each deme, nt,i, is drawn from a zero-truncated Poisson dis-
tribution with rate �, exactly the same as in the first generation. We take the
limit of this model as K ! 1, thereby ensuring there are always su�cient
o↵spring to be culled down to any given population size.
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Although the description above specifies the true forwards-in-time model,
it is usually more convenient to think about this process in terms of how
generation t 2 Z>0 relates to generation t� 1. At time t we can immediately
draw the population size nt,i from a zero-truncated Poisson distribution with
rate �. Then, for each individual j 2 1 : nt,i we can draw the parental deme
(denoted d) from the following categorical distribution:

Pr(d) =

(
1�m+ m

N , if d = i ,
m
N , if d 6= i ,

for d 2 1 : N. (2)

Finally we can draw the two parents of individual j from deme d with
equal probability 1/nt�1,d. Let these parents be indexed by a1 and a2 2
1 : nt�1,d. We repeat this process for every deme, resulting in a new popu-
lation at time t. Crucially, this process is mathematically equivalent to the
forwards-in-time process described above in limK!1, but is both simpler and
more computationally e�cient because we never deal with the o↵spring that
are eventually culled.

This model has a standard description in classical population genetics as
a structured Wright-Fisher model. Such models have a long history of being
used to describe organisms that are split into partially isolated subpopu-
lations [26], where the parameter m is a migration rate that allows us to
transition from perfect isolation when m = 0 to panmixia when m = 1.
The only idiosyncrasies of the model above are that 1) we model fluctuating
population sizes per deme using the zero-truncated Poisson distribution, and
2) we assume migration occurs before culling, while some models assume it
occurs after culling.

3 Recasting the Model for P. falciparum

Human hosts can be thought of as populations of malaria parasites, hence
we can recast the model above by treating hosts as demes. In this context,
N becomes the number of human hosts and nt,i becomes the complexity
of infection (COI) of host i at time t. � becomes the mean COI over the
population, which will typically be small (usually  5).

We must also rethink the continuity of demes over time. In the traditional
perspective, deme i at time t represents the same fundamental unit as deme
i at time t + 1, but when applying to P.falciparum we assume that hosts
are independent between generations, meaning these refer to completely dif-
ferent hosts. The idea of “migration” therefore needs to be reinterpreted,
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as recombinant products that pass from host i at time t to host i at time
t + 1 are not “staying put” as they were in the original formulation. The
parameter m is now better understood as a tuning parameter that controls
the extent to which hosts are infected by multiple haplotypes transmitted
from the same source host (when m is close to 0), vs. hosts being infected by
haplotypes contributed from a large number of source hosts (when m is close
to 1). The former roughly equates to co-transmission of haplotypes, while
the latter equates to super-infection, and the tuning parameter m allows us
to vary the balance of these e↵ects. The probability of super-infection is
known to increase at high transmission, therefore we can roughly model high
transmission settings by using large values of m and �, vs. low transmission
settings with small values of m and �.

4 Ancestry and Recombination

Our aim is to simulate blocks of identity by descent (IBD) between haplotypes
within the model framework described above. Haplotypes are modeled as
vectors of length L, corresponding to genomic positions gl for l 2 1 : L. The
jth haplotype within host i at time t will be written xt,i,j for j = 1 : nt,i and
the individual elements of this vector will be indexed using xt,i,j,l for l 2 1 : L.

IBD is always defined relative to some starting population, therefore at
time t = 0 we give each haplotype a unique value:

x0,i,j,l = j +
iX

k=1
k 6=i

n0,k , 8l . (3)

For the recombination model, we assume a constant hazard ⇢ over the con-
tinuous interval [0, L], resulting in a total number of recombination break-
points nb ⇠ Poisson(L⇢). We then draw the genomic positions of all nb

breakpoints independently from a Uniform(0, L) distribution. Let b1, ..., bnb

be the positions of these breakpoints, already sorted into ascending order.
We use these positions to create a set S of mutually exclusive intervals such
that:

S = {[0, b1), [b1, b2), ..., [bnb�1, bnb
), [bnb

, L)}. (4)

We assume that paternal vs. maternal ancestry alternates over subse-
quent intervals. Let each interval Si have a corresponding ancestry Ai. Re-
calling that we defined a1 and a2 as the ancestors of haplotype j in deme d
of the previous generation, we can define:
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Ai =

(
a1, if i is odd ,

a2, if i is even .
(5)

Finally, we relate the genomic positions gl back to the intervals in S. Let
cl for l 2 1 : L index the interval in which position gl falls, i.e. position gl
falls within interval Scl . At this stage we have everything needed to relate
haplotypes at time t back to haplotyes at time t � 1. This can be done
through the expression:

xt,i,j,l = xt�1,d,Acl ,l
, 8l . (6)

This simply states that the value of a haplotype at a given locus at time t
is equal to the value of its ancestor at time t�1. We evaluate this expression
over every l, j, i and t, and in doing so we simulate the buildup of shared
ancestry forwards in time.

5 Identity by Descent

IBD between hosts can be defined in terms of shared ancestry in the haplo-
types contained within those hosts. Let It,u,v be a vector of length L giving
the IBD status at each locus at time t between hosts u and v. It will be
indexed with elements It,u,v,l for l 2 1 : L, taking values 0 for non-IBD vs.
1 for IBD. Here we say that two hosts are IBD if any pair of haplotypes
between these hosts share common ancestry. Hence, we can say:

It,u,v,l =

(
1, if 9 {j1, j2 : xt,u,j1,l = xt,v,j2,l} ,

0, otherwise .
(7)

The total IBD proportion between samples u and v at time t is the the
mean over this vector:

IBDt
u,v =

1

L

LX

l=1

It,u,v,l . (8)

Note that we have not considered mutation in this model, hence IBD
between all samples will build up gradually over time until all samples are
IBD from a single common ancestor. This is unrealistic over long timescales,
where intervening mutations will limit IBD, causing it to tend to an equi-
librium state < 1. For this reason we only apply this model over a small
number of generations. Our justification is that we are only interested in
samples that share high relatedness relative to the background, and that can
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be identified with some confidence. IBD blocks in the distant past are likely
to be very small, perhaps spanning just a single genotyped locus, and so will
be indistinguishable from background identity by state. Even if we could
identify these regions, relatedness at this level gives us little useful informa-
tion about the recent transmission history of the population. For this reason,
we use the arbitrary cuto↵ of t = 10 generations when simulating IBD (see
section 7).

6 Observation Model

True IBD as defined above (i.e. IBDt
u,v) takes into account relationships

between all pairs of haplotypes within samples. However, the maximum
likelihood estimator described in the main text assumes monoclonal samples.
For polyclonal samples this forces us to discard samples, or to coerce samples
to monoclonal, for example by calling the major allele at every locus. We can
test the impact this has on IBD estimates by performing a similar procedure
on simulated data prior to evaluating the maximum likelihood estimator.
This requires an observation model that takes us from the complete set of
phased haplotypes per sample, to a single genotype per sample consisting of
within-sample allele frequencies of the reference vs. alternate allele.

First, we assume that all alleles are biallelic, and are drawn from the
population allele frequencies pl for each locus l 2 1 : L (note this is the
frequency of the reference allele). We can convert our ancestry vectors xt,i,j

directly to observed alleles by drawing from a finite alleles model for each
unique ancestor. Let wl be a vector of alleles, which will be indexed via wl[k].
The length of wl is

PN
i=1 n0,i, as this covers all possible ancestral values at

this locus (see (3)). The values wl[k] are modeled as independent Bernoulli
draws, each with probability pl. Next we define a vector yt,i,j, which is
analogous to xt,i,j but will contain biallelic values rather than ancestry. We
define:

yt,i,j,l = wl[xt,i,j,l] , 8t, i, j, l , (9)

in other words, the biallelic haplotypes yt,i,j are obtained by passing the
underlying ancestry xt,i,j through the finite alleles vector wl. Any genetic
elements that share common ancestry will also share the same allele, but
elements that have di↵erent ancestry may also share the same allele by chance
(i.e. they will be identical by state (IBS)).

Next, we consider the strain frequencies of each haplotype within a sam-
ple. Sample i contains nt,i haplotypes, and so we create a corresponding
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vector of strain frequencies, ft,i,j for j 2 1 : nt,i. These frequencies are drawn
from a symmetric Dirichlet distribution with concentration parameter ✓:

Pr(ft,i | ✓) =
�(nt,i✓)

�(✓)nt,i

nt,iY

j=1

f ✓�1
t,i,j . (10)

The true within-sample allele frequency is obtained by summing over all
biallelic haplotypes, weighted by these frequencies. Let gtruet,i,l be the within-
sample allele frequency (of the reference allele) of sample i at locus l. This
is obtained via:

gtruet,i,l =

nt,iX

j=1

(yt,i,j,l ⇥ ft,i,j) . (11)

We assume these true frequencies are perturbed by random errors in
sequencing, which occur independently for each locus with probability ". We
define the purturbed within-sample allele frequencies as follows:

gerrort,i,l = gtruet,i,l (1� ") + (1� gtruet,i,l )" . (12)

Finally, we draw read counts at each locus. Let zt,i,l be the read count
of sample i at locus l. For the case of molecular inversion probes this is the
the observed number of unique molecular identifiers of the reference allele.
We assume that read counts are drawn independently for each locus from
a Beta-Binomial distribution with total coverage d and shape parameters ↵
and �:

Pr(zt,i,l = k|d,↵, �) = �(d+ 1)

�(k + 1)�(d� k + 1)

�(k + ↵)�(d� k + �)

�(d+ ↵ + �)

�(↵ + �)

�(↵)�(�)
.

(13)
The parameters ↵ and � are defined from the purturbed allele frequencies

as follows:

↵ = gerrort,i,l /⌘ (14)

� = (1� gerrort,i,l )/⌘ , (15)

where ⌘ is an over-dispersion parameter relative to the ordinary Bino-
mial distribution. The final observed within-sample allele frequency can be
obtained by dividing the observed read counts by the total read depth, i.e.
we define gobst,i,l = zt,i,l/d. This will be close to the true frequencies gtruet,i,l , but
will be biased by sequencing errors and will contain random noise due to

14



sampling. gobst,i,l calculated for samples u and v can be passed to the maxi-
mum likelihood estimator described in the main text to arrive at an estimate
of IBD. We are interested in how this estimate di↵ers from the true value
IBDt

u,v.

7 Parameter Values

The following parameter values and ranges were used in simulation in the
main text:

t 10
N 10, 50, 100, 500, 1000
�/(1� e��) 1.0, 2.0, 3.0

(mean COI of positive samples)
m 0.0, 0.25, 0.5, 1.0
L 1079, 500, 100, 20

(full set of 1079 loci and sequential random sub-samples)
⇢ 7.4⇥ 10�7

(from [27])
pl drawn independently for each l from Beta(1.544, 0.620)

(shape parameters fitted from true allele frequency distribution)
✓ 1.0
" 0.05
⌘ 0.10
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Gene Mutation 
Locus 

Position sXP-EHH Stat. Sig. 

dhfr N51I 8 0.62 F 

dhfr C59R 9 0.10 F 

dhfr S108N 10 0.27 F 

mdr1 N86Y 34 - - 

mdr1 Y184F 39 0.31 F 

mdr1 D1246Y 47 - - 

crt M74I 16 -1.66 T 

crt N75E 17 -1.66 T 

crt K76T 19 -1.66 T 

crt I356T 25 - - 

dhps S436A 37 0.89 F 

dhps G437A 38 0.40 F 

dhps K540E 39 1.20 F 

dhps A581G 40 0.76 F 

mdr2 I492V 5 -0.01 F 

mdr2 F423Y 6 0.43 F 
 
Supplementary Table 1 - Cross Population Extended Haplotype Homozygosity Statistics 
Contrasting the Eastern and Western Democratic Republic of the Congo.​ The 
cross-population extended haplotype homozygosity (XP-EHH) statistics contrast the Eastern 
Democratic Republic of the Congo (DRC) versus the Western DRC subpopulations. The 
standardized XP-EHH (sXP-EHH) statistic is a standardized log ratio of the extended haplotype 
homozygosity between the two subpopulations, such that a positive value indicates more 
extended haplotype homozygosity in the Eastern DRC than the Western DRC. The categorical 
result of the one-side p-value (α: 0.05), without accounting for multiple testing, is indicated for 
each locus defined as True (T) or False (F) (Stat. Sig- Statistical Significance).  
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Supplementary Figure 1 - UMI depth distributions ​. Histograms show the raw distribution of 
coverage (number of unique UMIs) per locus for the genome-wide and drug resistance MIP 
panels on a log scale. 
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(b) 

 
 
Supplementary Figure 2 - Expected vs. measured allele frequencies in control samples 
for genome-wide MIPs.​ A mix of 4 laboratory strains (as described in the methods) were used 
as controls. ​(a)​ Each targeted SNP’s expected allele frequency (in increasing order) is plotted in 
blue based on which strains harbor the SNP and what ratio the strain was mixed in the sample. 
Each SNP’s frequency as measured experimentally is plotted in red. Pearson’s correlation 
coefficient between the expected and observed frequencies, calculated for alleles SNPs with 
nonzero expected frequencies, were 0.925 (R​2​=0.856). ​(b)​ Average relative error was calculated 
for each SNP using the formula (​experimental mean frequency - expected frequency) / expected 
frequency​. These values were grouped according to the expected frequencies and all values 
along with a line indicating the median value were plotted for each group. In total, 114 control 
reactions were run with experiments. 
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Supplementary Figure 3 - COI distribution per country. ​Violin plots show the distribution of 
the estimated COI, which is shown as the median from the posterior distribution estimated using 
THE REAL McCOIL categorical method. The mean and 95% confidence interval, estimated 
using a non-parametric bootstrap, are shown in red. Samples collected from Ghana had a 
significantly lower COI compared to the other countries, and samples collected from Zambia had 
a significantly higher COI compared to DRC.  
 
 
  

19 



 

 
 
 
Supplementary Figure 4 - Relationship between COI and prevalence. ​In ​(a) ​the relationship 
between COI ​ ​and microscopy prevalence at the province level is shown for the samples 
collected from the DRC. Each point represents the survey-weighted COI estimate and a locally 
weighted regression is shown in blue with the 95% confidence interval shaded in grey. The 
same relationship at the cluster level is shown in ​(b) ​with the size of the points reflecting the 
survey-weighted sample size.  
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Supplementary Figure 5 - PCA variance explained​. The variance explained by the first 20 
principal components as a percentage of overall variance. 
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Supplementary Figure 6 - Simulation-based Analysis of IBD. ​Simulated genetic datasets 
were generated from a range of values of effective population size (N), mean complexity of 
infection (COI) and a tuning parameter that relates to super-infection (m) - see ​Supplemental 
Text 2 ​ for full details of the simulation model. The “true” between-sample IBD from the raw 
(phased) haplotypes is compared against estimated IBD via the maximum likelihood estimator 
for the full complement of loci, and for smaller subsets. 
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Supplementary Figure 7 - Within-sample allele frequencies of highly related samples ​. For 
the 12 sample pairs identified as highly related (IBD>0.9), scatterplots compare the raw 
within-sample allele frequencies (WSAF) of the referent allele at every locus. Perfectly matching 
monoclonal genotypes would be represented as a single point in the lower-left and upper-right 
corners, however, polyclonal infections and sequencing errors cause deviations from this 
pattern. The number of loci that match or mismatch in terms of occupying the same or different 
intervals in {[0,0.5), [0.5,1]} is shown. 
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Supplementary Figure 8 - Population K-means clustering​. Geographic distribution of 
samples in each of the two clusters produced by K-means clustering within DRC. Countries 
outside DRC remain single groups. 
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Supplementary Figure 9 - ​pfcrt ​I356T EHH and haplotype plots among monoclonal 
infections with no missing genotype data ​. Panels ​(a)​ and ​(b)​ show the extended haplotype 
homozygosity (EHH) decay plots 200 kilobases upstream and downstream of the I356T core 
single nucleotide polymorphism (SNP) in centimorgans with respect to the eastern Democratic 
Republic of the Congo (DRC) and western DRC, respectively. Panels ​(c)​ and ​(d)​ display the 
extended haplotypes with the SNPs colored at each respective loci contributing to the ancestral 
(A) and derived (D) extended haplotype. The core SNP column is marked with a black asterisks.  
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Supplementary Figure 10 - ​dhps​ A581G EHH and haplotype plots among monoclonal 
infections with no missing genotype data ​. Panels (a) and (b) show the extended haplotype 
homozygosity (EHH) decay curve 200 kilobases upstream and downstream of the A581G core 
single nucleotide polymorphism (SNP) in centimorgans with respect to the eastern Democratic 
Republic of the Congo (DRC) and western DRC, respectively. Panels (c) and (d) display the 
extended haplotypes with the SNPs colored at each respective loci contributing to the ancestral 
(A) and derived (D) extended haplotype. The core SNP column is marked with a black asterisks. 
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Supplementary Figure 11 - ​dhps​ K540E EHH and haplotype plots among monoclonal 
infections with no missing genotype data ​. Panels (a) and (b) show the extended haplotype 
homozygosity (EHH) decay curve 200 kilobases upstream and downstream of the K540E core 
single nucleotide polymorphism (SNP) in centimorgans with respect to the eastern Democratic 
Republic of the Congo (DRC) and western DRC, respectively. Panels (c) and (d) display the 
extended haplotypes with the SNPs colored at each respective loci contributing to the ancestral 
(A) and derived (D) extended haplotype. The core SNP column is marked with a black asterisks. 
 
 

27 



 
 
Supplementary Figure 12 - ​dhps​ G437A EHH and haplotype plots among monoclonal 
infections with no missing genotype data ​. Panels (a) and (b) show the extended haplotype 
homozygosity (EHH) decay curve 200 kilobases upstream and downstream of the G437A core 
single nucleotide polymorphism (SNP) in centimorgans with respect to the eastern Democratic 
Republic of the Congo (DRC) and western DRC, respectively. Panels (c) and (d) display the 
extended haplotypes with the SNPs colored at each respective loci contributing to the ancestral 
(A) and derived (D) extended haplotype. The core SNP column is marked with a black asterisks.  
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Supplementary Figure 13 - Remaining EHH decay plot for the ​mdr1 ​, ​mdr2 ​, and ​dhfr ​ genes 
among monoclonal infections with no missing genotype data ​. Plots (a-j) display the 
extended haplotype homozygosity (EHH) decay curve 200 kilobases upstream and downstream 
of the respective core single nucleotide polymorphism. The remaining loci did not appear to be 
under recent positive selection. 
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Supplementary Figure 14 - Genomic positions of MIP targets. ​Genomic locations of 
geographically informative (red) and putatively neutral (blue) SNP targets are indicated on each 
chromosome. 
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Supplementary Figure 15 - MIP Design and Subsetting Pipeline. ​Loci were first identified 
from publicly available data (the Pf3K project) and were subsetted based on population-genetic 
statistics (light-grey). These loci were then genotyped using molecular inversion probes (MIPs). 
Loci that had low-coverage from MIP sequence were excluded (black).  
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