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Appendix E1. Transmit Focal Range and Time Gain Compensation 
Settings 

The transmit focal range was adjusted for each participant during the RF data acquisition. The 
transmit focal range values used for the RF data acquisition varied from 2 to 14 cm. The 
distribution of the transmit focal range used is shown in Table E1. 

The time gain compensation was adjusted for each participant during the RF data 
acquisition. Figure E1 shows the actual analog gain as a function of depth applied to the 
radiofrequency signal. 

Appendix E2. Network Architectures and Implementation Details 
CNNs are commonly applied to images to automatically extract very subtle patterns, with each 
network layer learning increasingly abstract and higher-level representations of the input data. 
We designed 1D-CNNs applicable to 1D RF signals, where the one dimension represented the 
time axis. We implemented both 1D-CNN algorithms (ie, binary classifier and fat fraction 
estimator) in Tensorflow 1.7.0 (Google, Inc.; open source) and Python 2.7 (Python Software 
Foundation; open source). 

Both algorithms were developed, tuned, and trained using the training group (n = 102), 
and evaluated using the separate test group (n = 102). The tuning, including network architecture 
optimization and hyperparameter selection, was performed within the training group through 
cross-validation, without using data from the separate test group. Specifically, multiple networks 
and hyper-parameters were compared through cross-validation within the training group, and the 
best performing network and hyper-parameters were selected. The selected model was then 
trained using data from the entire training group, yielding trained algorithms that can be readily 
tested in the test group. 

The main architectures tested were 1D-CNNs in which the convolutional block was 
followed by two dense (fully connected) layers. The selected network for the classifier consisted 
of three convolutional layers, followed by two dense layers and a softmax layer (32). The 
classifier output was a NAFLD classification score p1 with a value between zero and one, as 
well as a normal classification score p0 = 1-p1. The selected network for the fat fraction 
estimator had a similar architecture except that the second dense layer served as the output 
without the softmax layer. The output value was the predicted fat fraction (%). Architecture 
details are presented in Figure E2. All activation layers were implemented with the tanh function 

defined by . 

The network was trained from scratch with random initialization of weights. We used the 
Adagrad optimizer (33) with a learning rate of 0.005. The batch size was 256. The classifier was 
trained by minimizing the cross-entropy loss (18). The fat fraction estimator was trained by 
minimizing the mean square error between the algorithm output and the MRI-derived proton 
density fat fraction. The training stopped at the 50th epoch. Line level outputs for each 
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participant were ensembled to generate the participant level output for that participant according 
to the procedure described in Materials and Methods. 

Appendix E3. Comparison between Radiofrequency and Envelope 
Signals as Deep Learning Input Data 

The radiofrequency (RF) data were chosen as the input data for our 1D-CNN models based on 
the premise that the RF data contain more information than the envelope data. However, it was 
unknown whether the additional information contained in the RF data could make a difference 
with the 1D-CNN models. For completeness, we retrained and retested our 1D-CNN models (the 
classifier and the fat fraction estimator) using envelope data as the input. 

Two groups of envelope data were tested, the raw envelope data and the processed 
envelope data, representing different degrees of processing involved. The raw envelope data 
were obtained by taking the absolute value of the Hilbert transform of the RF data [ie, raw 
envelope = abs (hilbert (RF))]. The processed envelope data were obtained by log-compressing 
the raw envelope data [ie, 20log10(raw envelope)] and setting a dynamic range of 60 dB. The 
above operations were performed on the RF data at the original sampling frequency (40 MHz). 
The downsampling by a factor of 4 was performed after the above operations. 

To be consistent with the RF methodology, both the RF data without TGC and the RF 
data with TGC were used to derive the envelope data, resulting in four types of envelope data: 
raw envelope data without TGC, processed envelope data without TGC, raw envelope data with 
TGC, and processed envelope data with TGC. The raw envelope data without TGC 
hypothetically contained less information than the RF data without TGC but contained more 
information than the processed envelope data without TGC. Among the four types of envelope 
data, the processed envelope data with TGC were closest to the underlying data of the B-mode 
images displayed on clinical scanners. Therefore, the processed envelope with TGC and the RF 
without TGC were the primary pair for purposes of comparing RF and envelope data, although 
the results of all types of input data were reported to provide further insight (Tables E2–E4). 

For the classifier, all four types of envelope data yielded AUC values > 0.90 in the test 
group (Table E2), suggesting that all four types of envelope data could be effective for NAFLD 
diagnosis. The AUC estimate for the processed envelope with TGC [0.95 (95% CI, 0.90–0.99)] 
and the AUC estimate for the RF without TGC [0.98 (95% CI, 0.94–1.00)] did not differ (P = 
.14). 

When a predetermined threshold of 0.5 in the composite NAFLD classification score was 
used for NAFLD diagnosis in the test group, the specificity and overall classification accuracy 
for the processed envelope data with TGC [specificity, 66% (95% CI, 47%–81%), 21/32; 
accuracy, 87% (95% CI: 79%–93%), 89/102] (Table E3) were lower than those for the RF data 
without TGC [specificity, 94% (95% CI, 79%–99%), 30/32; accuracy, 96% (95% CI, 90%–
99%), 98/102], with P = .006 for specificity and P = .02 for accuracy. The sensitivity between 
the two cases were identical [97% (95% CI, 90%–100%), 68/70]. 

For the fat fraction estimator, the Pearson correlation coefficient values between the 
predicted fat fraction and the MRI-PDFF were 0.85, 0.78, 0.78, 0.80, 0.67, 0.65 for RF without 
TGC, raw envelope data without TGC, processed envelope data without TGC, RF with TGC, 
raw envelope data with TGC, and processed envelope data with TGC, respectively (P < .001 for 
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all cases) (Table E4). The Pearson correlation coefficient was lower for the processed envelope 
with TGC than for the RF without TGC (P < .001). 

Overall, the additional information contained in the RF data relative to the envelope data 
were shown to positively affect the performance of the 1D-CNN fat fraction estimator, and to a 
lesser degree, the performances of the 1D-CNN classifier. 
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Table E1. The distribution of transmit focal range used for ultrasound 
radiofrequency data acquisition 

Transmit Focal Range (cm) Number of Participants 
Training Group Test Group Total 

2 1 0 1 
4 1 0 1 
6 26 34 60 
8 60 54 114 

10 14 12 26 
14 0 2 2 

Table E2. Area under the receiver operating characteristic curve values of the 
composite NAFLD classification scores obtained by the classifier in the test 
group, for various types of input ultrasound signals 
 Input without TGC Input with TGC 

Input = RF Input = Raw 
Envelope 

Input = Processed 
Envelope 

Input = RF Input = Raw 
Envelope 

Input = Processed 
Envelope 

AUC (95% CI) 0.98 (0.94–1.00) 0.96 (0.90–1.00) 0.97 (0.93–1.00) 0.95 (0.91–0.99) 0.91 (0.85–0.97) 0.95 (0.90–0.99) 

Footnote: AUC = area under the receiver operating characteristic curve, CI = confidence interval, NAFLD = 
nonalcoholic fatty liver disease, TGC = time gain compensation. 

Table E3. Performance metrics for NAFLD diagnosis in the test group using the 
composite NAFLD classification scores generated by the binary classifier based 
on the predetermined threshold of 0.5, for various types of input ultrasound 
signals 
 Input without TGC Input with TGC 

Input = RF Input = Raw 
Envelope 

Input = Processed 
Envelope 

Input = RF Input = Raw 
Envelope 

Input = Processed 
Envelope 

Sensitivity (95% CI) 
(%) [fraction] 

97 (90–100) 
[68/70] 

96 (88–99) [67/70] 96 (88–99) [67/70] 91 (82–97) [64/70] 91 (82–97) [64/70] 97 (90–100) 
[68/70] 

Specificity (95% CI) 
(%) [fraction] 

94 (79–99) [30/32] 84 (67–95) [27/32] 84 (67–95) [27/32] 88 (71–96) [28/32] 75 (57–89) [24/32] 66 (47–81) [21/32] 

PPV (95% CI) (%) 
[fraction] 

97 (90–99) [68/70] 93 (86–97) [67/72] 93 (86–97) [67/72] 94 (86–98) [64/68] 89 (81–94) [64/72] 86 (79–91) [68/79] 

NPV (95% CI) (%) 
[fraction] 

94 (79–98) [30/32] 90 (75–96) [27/30] 90 (75–96) [27/30] 82 (68–91) [28/34] 80 (64–90) [24/30] 91 (72–98) [21/23] 

Accuracy (95% CI) 
(%) [fraction] 

96 (90–99) 
[98/102] 

92 (85–97) 
[94/102] 

92 (85–97) 
[94/102] 

90 (83–95) 
[92/102] 

86 (78–92) 
[88/102] 

87 (79–93) 
[89/102] 



 

Page 4 of 4 

Footnote: CI = confidence interval, NAFLD = nonalcoholic fatty liver disease, NPV = negative predictive value, 
PPV = positive predictive value, RF = radiofrequency, TGC = time gain compensation. 

Table E4. Pearson correlation coefficient values between the predicted fat 
fraction and the MRI-derived proton density fat fraction for various types of input 
ultrasound signals 

 Input without TGC Input with TGC 
Input = RF Input = Raw 

Envelope 
Input = Processed 

Envelope 
Input = RF Input = Raw 

Envelope 
Input = Processed 

Envelope 
Pearson correlation 

coefficient 
0.85 (P < .001) 0.78 (P < .001) 0.78 (P < .001) 0.80 (P < .001) 0.67 (P < .001) 0.65 (P < .001) 

Footnote: RF = radiofrequency, TGC = time gain compensation. 
 


