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The image biomarker standardisation initiative (IBSI) is an independent international col-

laboration which works towards standardising the extraction of image biomarkers from

acquired imaging for the purpose of high-throughput quantitative image analysis (radiom-

ics). Lack of reproducibility and validation of radiomic studies is considered to be a ma-

jor challenge for the field. Part of this challenge lies in the scantiness of consensus-based

guidelines anddefinitions for theprocess of translating acquired imaging intohigh-throughput

image biomarkers. The IBSI therefore seeks to provide standardised image biomarker no-

menclature and definitions, a standardised general image processing workflow, tools for

verifying radiomics software implementations and reporting guidelines for radiomic stud-

ies.
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Chapter 1

Introduction

A biomarker is ”a characteristic that is objectively measured and evaluated as an indicator of nor-

mal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic in-

tervention”7. Biomarkers may be measured from a wide variety of sources, such as tissue

samples, cell plating, and imaging. The latter are often referred to as imaging biomarkers55.

Imaging biomarkers consist of both qualitative biomarkers, which require expert interpret-

ation, and quantitative biomarkers which are based on mathematical definitions. Calcula-

tion of quantitative imaging biomarkers can be automated, which enables high-throughput

analyses. We refer to such (high-throughput) quantitative biomarkers as image biomarkers

to differentiate them from qualitative imaging biomarkers. Image biomarkers characterise

the contents of (regions of) an image, such as volume ormean intensity. Because of the histor-

ically close relationship with the computer vision field, image biomarkers are also referred

to as image features. The term features, instead of biomarkers, will be used throughout the

remainder of the referencemanual, as the contents are generally applicable and not limited

to life sciences and medicine only.

This work focuses specifically on the (high-throughput) extraction of image biomark-

ers from acquired, reconstructed and stored imaging. High-throughput quantitative im-

age analysis (radiomics) has shown considerable growth in e.g. cancer research41, but the

scarceness of consensus guidelines and definitions has led to it being described as a ”wild

frontier” 13. This reference manual therefore presents an effort to chart a course through

part of this frontier by presenting consensus-based recommendations, guidelines, defini-

tions and reference values for image biomarkers and defining a general radiomics image

processing scheme. We hope use of this manual will improve reproducibility of radiomic

studies.

We opted for a specific focus on the computation of image biomarkers from acquired

imaging. Thus, validation of imaging biomarkers, either viewed in a broader framework

such as the one presented by O’Connor et al. 55 , or within smaller-scope settings such as

those presented by Caicedo et al. 13 and by Lambin et al. 41 , falls beyond the scope of this

work. Notably, the issue of harmonising and standardising (medical) image acquisition and

reconstruction is being addressed in a more comprehensive manner by groups such as the

Quantitative Imaging Biomarker Alliance53,68, the Quantitative Imaging Network 17,54, and

task groups and committees of the American Association of Physicists in Medicine, the

European Association for Nuclear Medicine 11, the European Society of Radiology (ESR)28,

and the European Organisation for Research and Treatment of Cancer (EORTC)55,86, among

others. Where overlap does exists, the reference manual refers to existing recommenda-

tions and guidelines.
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CHAPTER 1. INTRODUCTION 2

This reference manual is divided into several chapters that describe processing of ac-

quired and reconstructed (medical) imaging for high-throughput computation of image bio-

markers (Chapter 2); that define a diverse set of image biomarkers (Chapter 3); that describe

guidelines for reporting on radiomic studies and provide nomenclature for image biomark-

ers (Chapter 4); and that describe the data sets and image processing configurations used

to find reference values for image biomarkers (Chapter 5).



Chapter 2

Image processing

Image processing is the sequence of operations required to derive image biomarkers (fea-

tures) from acquired images. In the context of this work an image is defined as a three-

dimensional (3D) stackof two-dimensional (2D) digital image slices. Image slices are stacked

along the 𝑧-axis. This stack is furthermore assumed to possess the same coordinate sys-

tem, i.e. image slices are not rotated or translated (in the 𝑥𝑦-plane)with regard to each other.

Moreover, digital images typically possess a finite resolution. Intensities in an image are

thus located at regular intervals, or spacing. In 2D such regular positions are called pixels,

whereas in 3D the term voxels is used. Pixels and voxels are thus represented as the inter-

sections on a regularly spaced grid. Alternatively, pixels and voxels may be represented

as rectangles and rectangular cuboids. The centers of the pixels and voxels then coincide

with the intersections of the regularly spaced grid. Both representations are used in the

document.

Pixels and voxels contain an intensity value for each channel of the image. The number

of channels depends on the imaging modality. Most medical imaging generates single-

channel images, whereas the number of channels inmicroscopymay be greater, e.g. due to

different stainings. In suchmulti-channel cases, features may be extracted for each separ-

ate channel, a subset of channels, or alternatively, channels may be combined and conver-

ted to a single-channel representation. In the remainder of the document we consider an

image as if it only possesses a single channel.

The intensity of a pixel or voxel is also called a grey level or grey tone, particularly in

single-channel images. Though practically there is no difference, the terms grey level or

grey tone are more commonly used to refer to discrete intensities, including discretised in-

tensities.

Image processing may be conducted using a wide variety of schemes. We therefore de-

signed a general image processing scheme for image feature calculation based on schemes

usedwithin scientific literature38. The image processing scheme is shown in figure 2.1. The

processing steps referenced in the figure are described in detail within this chapter.

2.1 Data conversion 23XZ

Some imaging modalities require conversion of raw image data into a more meaningful

presentation, e.g. standardised uptake values (SUV) 11. This is performed during the data

conversion step. Assessment of data conversion methods falls outside the scope of the

3
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Image data

Segmentation

Voxel interpolation

Feature data

Data conversion

Region of interest
ROI

Image interpolation

ROI interpolation

Re-segmentation

ROI extraction

Discretisation

Intensity mask Morphological mask

Feature calculation  Calculation

local intensity

Calculation

Calculation

Calculation

Calculation

IH, IVH*, GLCM, GLRLM
GLSZM, NGTDM, NGLDM

morphological

statistical

GLDZM

Image
post-acquisition

processing

Figure ҍ.ɰ | Image processing scheme for image feature calculation. Depending on the specific
imaging modality and purpose, some steps may be omitted. The region of interest (ROI) is ex-
plicitly split into two masks, namely an intensity and morphological mask, after interpolation to
the same grid as the interpolated image. Feature calculation is expanded to show the different
feature families with specific pre-processing. IH: intensity histogram; IVH: intensity-volume histo-
gram; GLCM: grey level cooccurrence matrix; GLRLM: grey level run length matrix; GLSZM: grey
level size zone matrix; NGTDM: neighbourhood grey tone difference matrix; NGLDM: Neighbour-
ing grey level dependence matrix; GLDZM: grey level distance zone matrix; *Discretisation of IVH
differs from IH and texture features, see section Ҏ.Ґ.
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current work.

2.2 Image post-acquisition processing PCDE

Images are post-processed to enhance image quality. For instance, magnetic resonance

imaging (MRI) contains both Gaussian and Rician noise33 and may benefit from denoising.

As another example, intensities measured using MRmay be non-uniform across an image

and could require correction9,61,84. FDG-PET-basedmay furthermore be corrected for partial

volume effects 12,66 and noise26,43. In CT imaging, metal objects, e.g. pacemakers and tooth

implants, introduce artifacts andmay require artifinterpact suppression32. Microscopy im-

ages generally benefit from field-of-view illumination correction as illumination is usually

inhomogeneous due to the light-source or the optical path 13,62.

Evaluation and standardisation of various image post-acquisition processing methods

falls outside the scope of the current work. Note that vendors may provide or implement

software to perform noise reduction and other post-processing during image reconstruc-

tion. In such cases, additional post-acquisition processing may not be required.

2.3 Segmentation OQYT

High-throughput image analysis, within the feature-based paradigm, relies on the defin-

ition of regions of interest (ROI). ROIs are used to define the region in which features are

calculated. What constitutes an ROI depends on the imaging and the study objective. For

example, in 3D microscopy of cell plates, cells are natural ROIs. In medical imaging of can-

cer patients, the tumour volume is a common ROI. ROIs can be definedmanually by experts

or (semi-)automatically using algorithms.

From a process point-of-view, segmentation leads to the creation of an ROI maskR, for

which every voxel 𝑗 ∈ R (𝑅𝑗) is defined as:

𝑅𝑗 =
⎧{
⎨{⎩

1 𝑗 in ROI

0 otherwise
�

ROIs are typically stored with the accompanying image. Some image formats directly

store ROImasks as voxels (e.g. NIfTI,NRRD andDICOM Segmentation), and generating theROI

mask is conducted by loading the corresponding image. In other cases the ROI is saved as a

set of (𝑥, 𝑦, 𝑧) points that define closed loops of (planar) polygons, for examplewithinDICOM

RTSTRUCT or DICOM SR files. In such cases, we should determine which voxel centers lie

within the space enclosed by the contour polygon in each slice to generate the ROI mask.

A commonmethod to determine whether a point in an image slice lies inside a 2D poly-

gon is the crossing number algorithm, for which several implementations exist58. The main

concept behind this algorithm is that for any point inside the polygon, any line originating

outside the polygonwill cross the polygon an uneven number of times. A simple example is

shown in figure 2.2. The implementation in the example makes use of the fact that the ROI

mask is a regular grid to scan entire rows at a time. The example implementation consists

of the following steps:

1. (optional) A ray is cast horizontally from outside the polygon for each of the 𝑛 image
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rows. As we iterate over the rows, it is computationally beneficial to exclude polygon

edges that will not be crossed by the ray for the current row 𝑗. If the current row has

𝑦-coordinate 𝑦𝑗, and edge 𝑘 has two vertices with 𝑦-coordinates 𝑦𝑘1 and 𝑦𝑘2, the ray

will not cross the edge if both vertices lie either above or below 𝑦𝑗, i.e. 𝑦𝑗 < 𝑦𝑘1, 𝑦𝑘2

or 𝑦𝑗 > 𝑦𝑘1, 𝑦𝑘2. For each row 𝑗, find those polygon edges whose 𝑦-component of the

vertices do not both lie on the same side of the row coordinate 𝑦𝑗. This step is used to

limit calculation of intersection points to only those that cross a ray cast from outside

the polygon – e.g. ray with origin (−1, 𝑦𝑗) and direction (1, 0). This an optional step.

2. Determine intersection points 𝑥𝑖 of the (remaining) polygon edges with the ray.

3. Iterate over intersection points and add 1 to the count of each pixel center with 𝑥 ≥ 𝑥𝑖.

4. Apply the even-odd rule. Pixels with an odd count are inside the polygon, whereas

pixels with an even count are outside.

Note that the example represents a relatively naive implementation that will not con-

sistently assign voxel centers positioned on the polygon itself to the interior.

grid with polygon contour
1. find intersecting polygons

2. find ray-polygon intersection 

I II

I II

3. count intersections along line

4. apply even-odd rule

I II

I II

0 1 1 1 1 2

Figure ҍ.ҍ | Simple algorithm to determine which pixels are inside a ҍD polygon. The suggested
implementation consists of four steps: (ɰ) Omit edges that will not intersect with the current row
of voxel centers. (ҍ) Calculate intersection points of edges I and II with the ray for the current row.
(Ҏ) Determine the number of intersections crossed from ray origin to the row voxel centers. (ҏ)
Apply even-odd rule to determine whether voxel centers are inside the polygon.

2.4 Interpolation VTM2

Texture feature sets require interpolation to isotropic voxel spacing to be rotationally in-

variant, and to allow comparison between image data from different samples, cohorts or

batches. Voxel interpolation affects image feature values asmany image features are sens-

itive to changes in voxel size4,8,59,60,87. Maintaining consistent isotropic voxel spacingacross

different measurements and devices is therefore important for reproducibility. At the mo-

ment there are no clear indications whether upsampling or downsampling schemes are

preferable. Consider, for example, an image stack of slices with 1.0 × 1.0 × 3.0 mm3 voxel

spacing. Upsampling to 1.0 × 1.0 × 1.0 mm3 requires inference and introduces artificial in-

formation, while conversely downsampling to the largest dimension (3.0×3.0×3.0mm3) in-

curs information loss. Multiple-scaling strategies potentially offer a good trade-off78. Note
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that downsampling may introduce image aliasing artifacts. Downsampling may therefore

require anti-aliasing filters prior to filtering49,90.

While in general 3D interpolation algorithms are used to interpolate 3D images, 2D inter-

polationwithin the image slice planemay be recommended in some situations. In 2D inter-

polation voxels are not interpolated between slices. This may be beneficial if, for example,

the spacing between slices is large compared to the desired voxel size, and/or compared

to the in-plane spacing. Applying 3D interpolation would either require inferencing a large

number of voxels between slices (upsampling), or the loss of a large fraction of in-plane

information (downsampling). The disadvantage of 2D interpolation is that voxel spacing is

no longer isotropic, and as a consequence texture features can only be calculated in-plane.

Interpolation algorithms

Interpolation algorithms translate image intensities from the original image grid to an

interpolation grid. In such grids, voxels are spatially represented by their center. Several

algorithms are commonly used for interpolation, such as nearest neighbour, trilinear, tricubic

convolution and tricubic spline interpolation. In short, nearest neighbour interpolation assigns

the intensity of the most nearby voxel in the original grid to each voxel in the interpolation

grid. Trilinear interpolation uses the intensities of the eightmost nearby voxels in the original

grid to calculate a new interpolated intensity using linear interpolation. Tricubic convolution

and tricubic spline interpolation draw upon a larger neighbourhood to evaluate a smooth, con-

tinuous third-order polynomial at the voxel centers in the interpolation grid. The differ-

ence between tricubic convolution and tricubic spline interpolation lies in the implementation.

Whereas tricubic spline interpolation evaluates the smooth and continuous third-order poly-

nomial at every voxel center, tricubic convolution approximates the solution using a convolu-

tion filter. Though tricubic convolution is faster, with modern hardware and common image

sizes, the difference in execution speed is practically meaningless. Both interpolation al-

gorithms produce similar results, and both are often referred to as tricubic interpolation.

While no consensus exists concerning the optimal choice of interpolation algorithm, tri-

linear interpolation is usually seen as a conservative choice. It does not lead to the blockiness

produced by nearest neighbour interpolation that introduces bias in local textures38. Nor does

it lead to out-of-range intensitieswhichmay occur due to overshootwith tricubic and higher

order interpolations. The latter problem can occur in acute intensity transitions, where

the local neighbourhood itself is not sufficiently smooth to evaluate the polynomial within

the allowed range. Tricubic methods, however, may retain tissue contrast differences bet-

ter. Particularly when upsampling, trilinear interpolation may act as a low-pass filter which

suppresses higher spatial frequencies and cause artefacts in high-pass spatial filters. In-

terpolation algorithms and their advantages and disadvantages are treated in more detail

elsewhere, e.g. Thévenaz et al. 70 .

In a phantom study, Larue et al. 42 compared nearest neighbour, trilinear and tricubic inter-

polation and indicated that feature reproducibility is dependent on the selected interpola-

tion algorithm, i.e. some features were more reproducible using one particular algorithm.

Rounding image intensities after interpolation 68QD

Image intensities may require rounding after interpolation, or the application of cut-off

values. For example, in CT images intensities represent Hounsfield Units, and these do not

take non-integer values. Following voxel interpolation, interpolated CT intensities are thus

rounded to the nearest integer.
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Partial volume effects in the ROI mask E8H9

If the image on which the ROI mask was defined, is interpolated after the ROI was seg-

mented, the ROI maskR should likewise be interpolated to the same dimensions. Interpol-

ation of the ROImask is best conducted using either the nearest neighbour or trilinear interpol-

ationmethods, as these are guaranteed to produce meaningful masks. Trilinear interpolation

of the ROI mask leads to partial volume effects, with some voxels containing fractions of

the original voxels. Since a ROI mask is a binary mask, such fractions need to be binarised

by setting a partial volume threshold 𝛿:

𝑅𝑗 =
⎧{
⎨{⎩

1 𝑅𝑖𝑛𝑡𝑒𝑟𝑝,𝑗 ≥ 𝛿
0 𝑅𝑖𝑛𝑡𝑒𝑟𝑝,𝑗 < 𝛿

�

A common choice for the partial volume threshold is 𝛿 = 0.5. For nearest neighbour interpol-
ation the ROI mask does not contain partial volume fractions, and may be used directly.

Interpolation results depend on the floating point representation used for the image and

ROI masks. Floating point representations should at least be full precision (Ҏҍ-bit) to avoid

rounding errors.

Interpolation grid UMPJ

Interpolated voxel centers lie on the intersections of a regularly spaced grid. Grid inter-

sections are represented by two coordinate systems. The first coordinate system is the grid

coordinate system, with origin at (0.0, 0.0, 0.0) and distance between directly neighbouring

voxel centers (spacing) of 1.0. The grid coordinate system is the coordinate system typically

used by computers, and consequentially, by interpolation algorithms. The second coordin-

ate system is the world coordinate system, which is typically found in (medical) imaging

andprovides an image scale. As the desired isotropic spacing is commonly defined inworld

coordinate dimensions, conversions between world coordinates and grid coordinates are

necessary, and are treated in more detail after assessing grid alignment methods.

Grid alignment affects feature values and is non-trivial. Three common grid alignments

may be identified, and are shown in figure 2.3:

1. Fit to original grid (58MB). In this case the interpolation grid is deformed so that the

voxel centers at the grid intersections overlap with the original grid vertices. For an

original 4 × 4 voxel grid with spacing (3.00, 3.00) mmand a desired interpolation spa-

cing of (2.00, 2.00) mmwe first calculate the extent of the original voxel grid in world

coordinates leading to an extent of ((4−1) 3.00, ((4−1) 3.00) = (9.00, 9.00)mm. In this

case the interpolated grid will not exactly fit the original grid. Therefore we try to find

the closest fitting grid, which leads to a 6×6 grid by roundingup (9.00/2.00, 9.00/2.00).
The resulting grid has a grid spacing of (1.80, 1.80) mm in world coordinates, which

differs from the desired grid spacing of (2.00, 2.00) mm.

2. Align grid origins (SBKJ). A simple approachwhich conserves the desired grid spacing

is the alignment of the origins of the interpolation and original grids. Keeping with

the same example, the interpolation grid is (6 × 6). The resulting voxel grid has a grid

spacing of (2.00, 2.00) mm in world coordinates. By definition both grids are aligned

at the origin, (0.00, 0.00).

3. Align grid centers (3WE3). The position of the origin may depend on image meta-data

defining image orientation. Not all software implementationsmay process this meta-

data the same way. An implementation-independent solution is to align both grids
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on the grid center. Again, keeping with the same example, the interpolation grid is

(6 × 6). Thus, the resulting voxel grid has a grid spacing of (2.00, 2.00) mm in world

coordinates.

Align grid centers is recommended as it is implementation-independent and achieves the

desired voxel spacing. Technical details of implementing align grid centers are described

below.

Interpolation grid dimensions 026Q

The dimensions of the interpolation grid are determined as follows. Let 𝑛𝑎 be the num-

ber of points along one axis of the original grid and 𝑠𝑎,𝑤 their spacing in world coordinates.

Then, let 𝑠𝑏,𝑤 be the desired spacing after interpolation. The axial dimension of the inter-

polated mesh grid is then:

𝑛𝑏 = ⌈𝑛𝑎𝑠𝑎
𝑠𝑏

⌉

Rounding towards infinity guarantees that the interpolation grid exists even when the ori-

ginal grid contains few voxels. However, it also means that the interpolation mesh grid is

partially located outside of the original grid. Extrapolation is thus required. Padding the

original grid with the intensities at the boundary is recommended. Some implementations

of interpolation algorithms may perform this padding internally.

Interpolation grid position QCY4

For the align grid centers method, the positions of the interpolation grid points are de-

termined as follows. As before, let 𝑛𝑎 and 𝑛𝑏 be the dimensions of one axis in the original

and interpolation grid, respectively. Moreover, let 𝑠𝑎,𝑤 be the original spacing and 𝑠𝑏,𝑤 the

desired spacing for the same axis in world coordinates. Then, with 𝑥𝑎,𝑤 the origin of the

original grid in world coordinates, the origin of the interpolation grid is located at:

𝑥𝑏,𝑤 = 𝑥𝑎,𝑤 + 𝑠𝑎(𝑛𝑎 − 1) − 𝑠𝑏(𝑛𝑏 − 1)
2

In the grid coordinate system, the original grid origin is located at 𝑥𝑎,𝑔 = 0. The origin of

the interpolation grid is then located at:

𝑥𝑏,𝑔 = 1

2
(𝑛𝑎 − 1 −

𝑠𝑏,𝑤
𝑠𝑎,𝑤

(𝑛𝑏 − 1))

Here the fraction 𝑠𝑏,𝑤/𝑠𝑎,𝑤 = 𝑠𝑏,𝑔 is the desired spacing in grid coordinates. Thus, the in-

terpolation grid points along the considered axis are located at grid coordinates:

𝑥𝑏,𝑔, 𝑥𝑏,𝑔 + 𝑠𝑏,𝑔, 𝑥𝑏,𝑔 + 2𝑠𝑏,𝑔, … , 𝑥𝑏,𝑔 + (𝑛𝑏 − 1)𝑠𝑏,𝑔

Naturally, the above description applies to each grid axis.
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original grid fit to original grid

Interpola�on grid
Size: 6x6 points
Desired spacing: (2.00, 2.00)
Realised spacing: (1.80, 1.80)

Original grid
Size: 4x4 points
Spacing: (3.00, 3.00)

align grid origins

Interpola�on grid
Size: 6x6 points
Desired spacing: (2.00, 2.00)
Realised spacing: (2.00, 2.00)

align grid centers

Interpola�on grid
Size: 6x6 points
Desired spacing: (2.00, 2.00)
Realised spacing: (2.00, 2.00)

Figure ҍ.Ҏ | Different interpolationmesh grids based on an original 4×4 grid with (3.00, 3.00)mm
spacing. The desired interpolation spacing is (2.00, 2.00) mm. Fit to original grid creates an
interpolationmesh grid that overlaps with the corners of the original grid. Align grid origins creates
an interpolation mesh grid that is positioned at the origin of the original grid. Align grid centers
creates an interpolation grid that is centered on the center of original and interpolation grids.
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Figure ҍ.ҏ | Example showing how intensity and morphological masks may differ due to re-
segmentation. (ɰ) The original region of interest (ROI) is shown with pixel intensities. (ҍ) Sub-
sequently, the ROI is re-segmented to only contain values in the range [1, 6]. Pixels outside
this range are marked for removal from the intensity mask. (Ҏa) Resulting morphological mask,
which is identical to the original ROI. (Ҏb) Re-segmented intensity mask. Note that due to re-
segmentation, intensity and morphological masks are different.

2.5 Re-segmentation IF9H

Re-segmentation entails updating the ROI maskR based on corresponding voxel intensit-

iesX𝑔𝑙. Re-segmentationmay be performed to exclude voxels froma previously segmented

ROI, and is performed after interpolation. An example use would be the exclusion of air or

bone voxels from an ROI defined on CT imaging. Two common re-segmentation methods

are described in this section. Combining multiple re-segmentation methods is possible. In

this case, the intersection of the intensity ranges defined by the re-segmentation methods

is used.

Intensity and morphological masks of an ROI ECJF

Conventionally, an ROI consists of a singlemask. However, re-segmentationmay lead to

exclusion of internal voxels, or divide the ROI into sub-volumes. To avoid undue complexity

by again updating the re-segmented ROI for a more plausible morphology, we define two

separate ROI masks.

The morphological mask (G5KJ) is not re-segmented and maintains the original mor-
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range: [-50, 50] HU

outlier: 1.0 σ range:  [-50, 50] HU
outlier: 1.0 σ

CT image slice with mask

Figure ҍ.Ґ | Re-segmentation example based on a CT-image. The masked region (blue) is re-
segmented to create an intensity mask (orange). Examples using three different re-segmentation
parameter sets are shown. The bottom right combines the range and outlier re-segmentation, and
the resulting mask is the intersection of the masks in the other two examples. Image data from
Vallières et al. ɰґ,ɦґ,ɦɦ.

phology as defined by an expert and/or (semi-)automatic segmentation algorithms.

The intensitymask (SEFI) canbe re-segmentedandwill contain only the selectedvoxels.

Formany feature families, only this is important. However, formorphological and grey level

distance zonematrix (GLDZM) feature families, both intensity andmorphologicalmasks are

used. A two-dimensional schematic example is shown in figure 2.4, and a real example is

shown in figure 2.5.

Range re-segmentation USB3

Re-segmentation may be performed to remove voxels from the intensity mask that fall

outside of a specified range. An example is the exclusion of voxels with Hounsfield Units

indicating air and bone tissue in the tumour ROI within CT images, or low activity areas

in PET images. Such ranges of intensities of included voxels are usually presented as a

closed interval [𝑎, 𝑏] or half-open interval [𝑎, ∞), respectively. For arbitrary intensity units
(found in e.g. raw MRI data, uncalibrated microscopy images, and many spatial filters), no

re-segmentation range can be provided.

When a re-segmentation range is defined by the user, it needs to be propagated and used

for the calculation of features that require a specified intensity range (e.g. intensity-volume

histogram features) and/or that employs fixed bin size discretisation. Recommendations

for the possible combinations of different imaging intensity definitions, re-segmentation

ranges and discretisation algorithms are provided in Table 2.1.
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Intensity outlier filtering 7ACA

ROI voxelswith outlier intensitiesmaybe removed from the intensitymask. Onemethod

for defining outliers was suggested by Vallières et al. 76 after Collewet et al. 19 . The mean 𝜇
and standard deviation 𝜎 of grey levels of voxels assigned to the ROI are calculated. Voxels

outside the range [𝜇 − 3𝜎, 𝜇 + 3𝜎] are subsequently excluded from the intensity mask.

2.6 ROI extraction 1OBP

Many feature families require that the ROI is isolated from the surrounding voxels. The

ROI intensity mask is used to extract the image volume to be studied. Excluded voxels are

commonly replaced by a placeholder value, often NaN. This placeholder value may then

used to exclude these voxels from calculations. Voxels included in the ROI mask retain

their original intensity. An example is shown in figure 2.6.

2.7 Intensity discretisation 4R0B

Discretisation or quantisation of image intensities inside the ROI is often required to make

calculation of texture features tractable88, and possesses noise-suppressing properties as

well. An example of discretisation is shown in figure 2.7.

Two approaches to discretisation are commonly used. One involves the discretisation

to a fixed number of bins, and the other discretisation with a fixed bin width. As we will

observe, there is no inherent preference for one or the other method. However, both meth-

ods have particular characteristics (as described below) that may make them better suited

for specific purposes. Note that the lowest bin always has value 1, and not 0. This ensures

consistency for calculations of texture features, where for some features grey level 0 is not

allowed .

Fixed bin number K15C

In the fixed bin number method, intensities 𝑋𝑔𝑙 are discretised to a fixed number of 𝑁𝑔
bins. It is defined as follows:

𝑋𝑑,𝑘 =
⎧{
⎨{⎩

⌊𝑁𝑔
𝑋𝑔𝑙,𝑘−𝑋𝑔𝑙,𝑚𝑖𝑛

𝑋𝑔𝑙,𝑚𝑎𝑥−𝑋𝑔𝑙,𝑚𝑖𝑛
⌋ + 1 𝑋𝑔𝑙,𝑘 < 𝑋𝑔𝑙,𝑚𝑎𝑥

𝑁𝑔 𝑋𝑔𝑙,𝑘 = 𝑋𝑔𝑙,𝑚𝑎𝑥
�

apply mask

Figure ҍ.ґ | Masking of an image by the ROI mask during ROI extraction. Intensities outside the
ROI are excluded. Image data from Vallières et al. ɰґ,ɦґ,ɦɦ.
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image A

image B

original 32 bins 16 bins 8 bins 4 bins

original 0.25 SUV 0.50 SUV 1.00 SUV 2.00 SUV

fixed bin number discretisation

image A

image B

fixed bin size discretisation

Figure ҍ.ɦ | Discretisation of two different ɰҒF-FDG-PET images with SUVmax of 27.8 (A) and 6.6
(B). Fixed bin number discretisation adjust the contrast between the two images, with the number
of bins determining the coarseness of the discretised image. Fixed bin size discretisation leaves
the contrast differences between image A and B intact. Increasing the bin size increases the
coarseness of the discretised image. Image data from Vallières et al. ɰґ,ɦґ,ɦɦ.

In short, the intensity𝑋𝑔𝑙,𝑘 of voxel 𝑘 is corrected by the lowest occurring intensity𝑋𝑔𝑙,𝑚𝑖𝑛 in

the ROI, divided by the bin width (𝑋𝑔𝑙,𝑚𝑎𝑥 − 𝑋𝑔𝑙,𝑚𝑖𝑛) /𝑁𝑔, and subsequently rounded down

to the nearest integer (floor function).

The fixed bin numbermethodbreaks the relationshipbetween image intensity andphysiolo-

gical meaning (if any). However, it introduces a normalising effect whichmay be beneficial

when intensity units are arbitrary (e.g. raw MRI data and many spatial filters), and where

contrast is considered important. Furthermore, as values of many features depend on the

number of grey levels found within a given ROI, the use of a fixed bin number discretisation

algorithm allows for a direct comparison of feature values across multiple analysed ROIs

(e.g. across different samples).

Fixed bin size Q3RU

Fixed bin size discretisation is conceptually simple. A new bin is assigned for every in-

tensity interval with width 𝑤𝑏; i.e. 𝑤𝑏 is the bin width, starting at a minimum 𝑋𝑔𝑙,𝑚𝑖𝑛.

The minimum intensity may be a user-set value as defined by the lower bound of the re-

segmentation range, or data-drivenasdefinedby theminimumintensity in theROI𝑋𝑔𝑙,𝑚𝑖𝑛 =
min (𝑋𝑔𝑙). In all cases, the method used and/or set minimum value must be clearly repor-

ted. However, to maintain consistency between samples, we strongly recommend to al-

ways set the same minimum value for all samples as defined by the lower bound of the

re-segmentation range (e.g. HU of -500 for CT, SUV of 0 for PET, etc.). In the case that no

re-segmentation range may be defined due to arbitrary intensity units (e.g. raw MRI data

and many spatial filters), the use of the fixed bin size discretisation algorithm is not recom-

mended.
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Imaging intensity
units(1)

Re-segmentation
range

FBN(2) FBS(3)

calibrated

[𝑎, 𝑏] 4 4

[𝑎, ∞) 4 4

none 4 5

arbitrary none 4 5

Table ҍ.ɰ | Recommendations for the possible combinations of different imaging intensity defin-
itions, re-segmentation ranges and discretisation algorithms. Checkmarks (4) represent recom-
mended combinations of re-segmentation range and discretisation algorithm, whereas cross-
marks (5) represent non-recommended combinations.
(ɰ) PET and CT are examples of imaging modalities with calibrated intensity units (e.g. SUV and
HU, respectively), and raw MRI data of arbitrary intensity units.
(ҍ) Fixed bin number (FBN) discretisation uses the actual range of intensities in the analysed ROI
(re-segmented or not), and not the re-segmentation range itself (when defined).
(Ҏ) Fixed bin size (FBS) discretisation uses the lower bound of the re-segmentation range as the
minimum set value. When the re-segmentation range is not or cannot be defined (e.g. arbitrary
intensity units), the use of the FBS algorithm is not recommended.

The fixed bin size method has the advantage of maintaining a direct relationship with

the original intensity scale, which could be useful for functional imaging modalities such

as PET.

Discretised intensities are computed as follows:

𝑋𝑑,𝑘 = ⌊
𝑋𝑔𝑙,𝑘 − 𝑋𝑔𝑙,𝑚𝑖𝑛

𝑤𝑏
⌋ + 1

In short, the minimum intensity 𝑋𝑔𝑙,𝑚𝑖𝑛 is subtracted from intensity 𝑋𝑔𝑙,𝑘 in voxel 𝑘, and
then divided by the bin width 𝑤𝑏. The resulting value is subsequently rounded down to the

nearest integer (floor function), and 1 is added to arrive at the discretised intensity.

Other methods

Many other methods and variations for discretisation exist, but are not described in de-

tail here. Vallières et al. 76 described the use of intensity histogram equalisation and Lloyd-Max

algorithms for discretisation. Intensity histogram equalisation involves redistributing intens-

ities so that the resulting bins contain a similar number of voxels, i.e. contrast is increased

by flattening the histogram as much as possible34. Histogram equalisation of the ROI ima-

ging intensities can be performed before any other discretisation algorithm (e.g. FBN, FSB,

etc.), and it also requires the definition of a given number of bins in the histogram to be

equalised. The Lloyd-Max algorithm is an iterative clustering method that seeks to minim-

ise mean squared discretisation errors47,50.

Recommendations

The discretisation method that leads to optimal feature inter- and intra-sample repro-

ducibility is modality-dependent. Usage recommendations for the possible combinations

of different imaging intensity definitions, re-segmentation ranges and discretisation al-

gorithms are provided in Table 2.1. Overall, the discretisation choice has a substantial im-

pact on intensity distributions, feature values and reproducibility4,25,37,38,44,59,83.
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2.8 Feature calculation

Feature calculation is thefinal processing stepwhere featuredescriptors areused to quantify

characteristics of the ROI. After calculation such featuresmay be used as image biomarkers

by relating them to physiological and medical outcomes of interest. Feature calculation is

handled in full details in the next chapter.

Let us recall that the image processing steps leading to image biomarker calculations

can be performed in many different ways, notably in terms of spatial filtering, segmenta-

tion, interpolation and discretisation parameters. Furthermore, it is plausible that different

texture features will better quantify the characteristics of the ROI when computed using

different image processing parameters. For example, a lower number of grey levels in the

discretisation process (e.g. 8 or 16) may allow to better characterize the sub-regions of the

ROI using grey level size zone matrix (GLSZM) features, whereas grey level co-occurence matrix

(GLCM) features may be better modeled with a higher number of grey levels (e.g. 32 or 64).

Overall, these possible differences opens the door to the optimization of image processing

parameters for each different feature in terms of a specific objective. For the specific case

of the optimization of image interpolation and discretisation prior to texture analysis, Val-

lières et al.76 have named this process texture optimization. The authors notably sugges-

ted that the texture optimization process could have significant influence of the prognostic

capability of subsequent features. In another study78, the authors constructed predictive

models using textures calculated from all possible combinations of PET and CT images in-

terpolated at four isotropic resolutions and discretised with two different algorithms and

four numbers of grey levels.



Chapter 3

Image features

In this chapter we will describe a set of quantitative image features together with the refer-

ence values established by the IBSI. This feature set builds upon the feature sets proposed

by Aerts et al. 1 and Hatt et al. 38 , which are themselves largely derived from earlier works.

References to earlier work are provided whenever they could be identified.

Reference values were derived for each feature. A table of reference values contains the

values that could be reliably reproduced, within a tolerance margin, for the reference data

sets (see Chapter 5). Consensus on the validity of each reference value is also noted. Con-

sensus can have four levels, depending on the number of teams that were able to produce

the same value during the standardization process: weak (< 3 matches), moderate (3 to 5

matches), strong (6 to 9 matches), and very strong (≥ 10 matches). If consensus on a ref-

erence value was weak or if it could not be reproduced by an absolute majority of teams,

it was not considered standardized. Such features do currently not have reference values,

and should not be used.

The set of features can be divided into a number of families, of which intensity-based

statistical, intensity histogram-based, intensity-volume histogram-based, morphological

features, local intensity, and texture matrix-based features are treated here. All texture

matrices are rotationally and translationally invariant. Illumination invariance of texture

matrices may be achieved by particular image post-acquisition schemes, e.g. histogram

matching. None of the texture matrices are scale invariant, a property which can be use-

ful in many (biomedical) applications. What the presented texture matrices lack, however,

is directionality in combination with rotation invariance. These may be achieved by local

binary patterns and steerable filters, which however fall beyond the scope of the current

work. For these and other texture features, see Depeursinge et al. 24 .

Features are calculated on the base image, as well as images transformed using wavelet

or Gabor filters). To calculate features, it is assumed that an image segmentation mask

exists, which identifies the voxels located within a region of interest (ROI). The ROI itself

consists of two masks, an intensity mask and a morphological mask. These masks may be

identical, but not necessarily so, as described in Section 2.5.

Several feature families require additional image processing steps before feature calcu-

lation. Notably intensity histogram and texture feature families require prior discretisation

of intensities into grey level bins. Other feature families do not require discretisation before

calculations. For more details on image processing, see figure 2.1 in the previous chapter.

Below is an overview table that summarises image processing requirements for the dif-

ferent feature families.

17
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ROI mask

Feature family count morph. int. discr.

morphology 29 4 4 5

local intensity 2 5 4a 5

intensity-based statistics 18 5 4 5

intensity histogram 23 5 4 4

intensity-volume histogram 5 5 4 4b

grey level co-occurrence matrix 25 5 4 4

grey level run length matrix 16 5 4 4

grey level size zone matrix 16 5 4 4

grey level distance zone matrix 16 4 4 4

neighbourhood grey tone difference matrix 5 5 4 4

neighbouring grey level dependence matrix 17 5 4 4

Table Ҏ.ɰ | Feature families and required image processing. For each feature family, the number
of features in the document, the required input of a morphological (morph.) and/or intensity (int.)
ROI mask, as well as the requirement of image discretisation (discr.) is provided.
a The entire image volume should be available when computing local intensity features.
b Image discretisation for the intensity-volume histogram is performed with finer discretisation
than required for e.g. textural features.

Though image processing parameters affect feature values, three other concepts influ-

ence feature values for many features: distance, feature aggregation and distance weight-

ing. These are described below.

Grid distances MPUJ

Grid distance is an important concept that is used by several feature families, particu-

larly texture features. Grid distances canbemeasured in severalways. Letm = (𝑚𝑥, 𝑚𝑦, 𝑚𝑧)
be the vector from a center voxel at k = (𝑘𝑥, 𝑘𝑦, 𝑘𝑧) to a neighbour voxel at k + m. The fol-

lowing norms (distances) are used:

• ℓ1 norm orManhattan norm (LIFZ):

‖m‖1 = |𝑚𝑥| + |𝑚𝑦| + |𝑚𝑧|

• ℓ2 norm or Euclidean norm (G9EV):

‖m‖2 = √𝑚2𝑥 + 𝑚2𝑦 + 𝑚2𝑧

• ℓ∞ norm or Chebyshev norm (PVMT):

‖m‖∞ = max(|𝑚𝑥|, |𝑚𝑦|, |𝑚𝑧|)

An example of how the above norms differ in practice is shown in figure 3.1.
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(a)Manhattan norm (b) Euclidean norm (c) Chebyshev norm

Figure Ҏ.ɰ | Grid neighbourhoods for distances up to 3 according to Manhattan, Euclidean and
Chebyshev norms. The orange pixel is considered the center pixel. Dark blue pixels have distance
𝛿 = 1, blue pixels 𝛿 ≤ 2 and light blue pixels 𝛿 ≤ 3 for the corresponding norm.

Feature aggregation 5QB6

Features from some families may be calculated from, e.g. slices. As a consequence,

multip le values for the same feature may be computed. These different values should be

combined into a single value for many common purposes. This process is referred to as

feature aggregation. Feature aggregation methods depend on the family, and are detailed

in the family description.

Distance weighting 6CK8

Distance weighting is not a default operation for any of the texture families, but is im-

plemented in software such as PyRadiomics81. It may for example be used to put more

emphasis on local intensities.
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3.1 Morphological features HCUG

Morphological features describe geometric aspects of a region of interest (ROI), such as area

and volume. Morphological features are based on ROI voxel representations of the volume.

Three voxel representations of the volume are conceivable:

1. The volume is represented by a collection of voxelswith each voxel taking up a certain

volume (LQD8).

2. The volume is represented by a voxel point set X𝑐 that consists of coordinates of the

voxel centers (4KW8).

3. The volume is represented by a surface mesh (WRJH).

We use the second representation when the inner structure of the volume is important, and

the third representation when only the outer surface structure is important. The first rep-

resentation is not used outside volume approximations because it does not handle partial

volume effects at the ROI edge well, and also to avoid inconsistencies in feature values in-

troduced by mixing representations in small voxel volumes.

Mesh-based representation WRJH

A mesh-based representation of the outer surface allows consistent evaluation of the

surface volume and area independent of size. Voxel-based representations lead to partial

volume effects and over-estimation of the surface area. The surface of the ROI volume is

translated into a triangle mesh using a meshing algorithm. While multiple meshing al-

gorithms exist, we suggest the use of theMarching Cubes algorithm45,48 because of its wide-

spread availability in different programming languages and reasonable approximation of

the surface area and volume67. In practice, mesh-based feature values depend upon the

meshing algorithm and small differences may occur between implementations46.

a
b

c

n

Figure Ҏ.ҍ | Meshing algorithms draw faces and vertices to cover the ROI. One face, spanned by
vertices a, b and c, is highlighted. Moreover, the vertices define the three edges ab = b − a,
bc = c − b and ca = a − c. The face normal n is determined using the right-hand rule, and
calculated asn = (ab × bc) /‖ab×bc‖, i.e. the outer product of edge abwith edgebc, normalised
by its length.

Meshing algorithms use the ROI voxel point setX𝑐 to create a closed mesh. Dependent

on the algorithm, a parameter is required to specify where the mesh should be drawn. A

default level of 0.5 times the voxel spacing is used for marching cube algorithms. Other

algorithms require a so-called isovalue, for which a value of 0.5 can be used since the ROI

mask consists of 0 and 1 values, and we want to roughly draw the mesh half-way between

voxel centers. Depending on implementation, algorithms may also require padding of the
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ROImaskwith non-ROI (0) voxels to correctly estimate themesh in placeswhere ROI voxels

would otherwise be located at the edge of the mask.

The closedmeshdrawnby themeshing algorithmconsists of𝑁𝑓 𝑐 triangle faces spanned

by 𝑁𝑣𝑥 vertex points. An example triangle face is drawn in Figure 3.2. The set of vertex

points is thenX𝑣𝑥.

The calculation of the mesh volume requires that all faces have the same orientation of

the face normal. Consistent orientation can be checked by the fact that in a regular, closed

mesh, all edges are shared between exactly two faces. Given the edge spanned by vertices

a and b, the edge must be ab = b − a for one face and ba = a − b for the adjacent face.

This ensures consistent application of the right-hand rule, and thus consistent orientation

of the face normals. Algorithm implementations may return consistently orientated faces

by default.

ROI morphological and intensity masks

The ROI consists of a morphological and an intensity mask. The morphological mask is

used to calculatemany of themorphological features and to generate the voxel point setX𝑐.

Any holes within the morphological mask are understood to be the result of segmentation

decisions, and thus to be intentional. The intensity mask is used to generate the voxel

intensity setX𝑔𝑙 with corresponding point setX𝑐,𝑔𝑙.

Aggregating features

By definition, morphological features are calculated in 3D (DHQ4), and not per slice.

Units of measurement

By definition, morphological features are computed using the unit of length as defined

in the DICOM standard, i.e. millimeter for most medical imaging modalities1.

If the unit of length is not defined by a standard, but is explicitly defined as meta data,

this definition should be used. In this case, care should be taken that this definition is

consistent across all data in the cohort.

If a feature value should be expressed as a different unit of length, e.g. cm instead ofmm,

such conversions should take place after computing the value using the standard units.

3.1.1 Volume (mesh) RNU0

The mesh-based volume 𝑉 is calculated from the ROI mesh as follows89. A tetrahedron is

formed by each face 𝑘 and the origin. By placing the origin vertex of each tetrahedron at

(0, 0, 0), the signed volume of the tetrahedron is:

𝑉𝑘 = a ⋅ (b × c)
6

Here a, b and c are the vertex points of face 𝑘. Depending on the orientation of the nor-

mal, the signed volume may be positive or negative. Hence, the orientation of face nor-

mals should be consistent, e.g. all normals must be either pointing outward or inward. The

volume 𝑉 is then calculated by summing over the face volumes, and taking the absolute

1DICOM PS3.3 2019a - Information Object Definitions, Section 10.7.1.3
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value:

𝐹morph.vol = 𝑉 =
∣
∣∣
∣

𝑁𝑓 𝑐

∑
𝑘=1

𝑉𝑘
∣
∣∣
∣

In positron emission tomography, the volume of the ROI commonly receives a name re-

lated to the radioactive tracer, e.g. metabolically active tumour volume (MATV) for 18F-FDG.

data value tol. consensus

dig. phantom 556 4 very strong

config. A 3.58 × 105 5 × 103 very strong

config. B 3.58 × 105 5 × 103 strong

config. C 3.67 × 105 6 × 103 strong

config. D 3.67 × 105 6 × 103 strong

config. E 3.67 × 105 6 × 103 strong

Table Ҏ.ҍ | Reference values for the volume (mesh) feature.

3.1.2 Volume (voxel counting) YEKZ

In clinical practice, volumes are commonly determined by counting voxels. For volumes

consisting of a large number of voxels (1000s), the differences between voxel counting and

mesh-based approaches are usually negligible. However for volumes with a low number of

voxels (10s to 100s), voxel counting will overestimate volume compared to the mesh-based

approach. It is therefore only used as a reference feature, and not in the calculation of other

morphological features.

Voxel counting volume is defined as:

𝐹morph.approx .vol =
𝑁𝑣

∑
𝑘=1

𝑉𝑘

Here 𝑁𝑣 is the number of voxels in the morphological mask of the ROI, and 𝑉𝑘 the volume

of voxel 𝑘.

data value tol. consensus

dig. phantom 592 4 very strong

config. A 3.59 × 105 5 × 103 strong

config. B 3.58 × 105 5 × 103 strong

config. C 3.68 × 105 6 × 103 strong

config. D 3.68 × 105 6 × 103 strong

config. E 3.68 × 105 6 × 103 strong

Table Ҏ.Ҏ | Reference values for the volume (voxel counting) feature.
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3.1.3 Surface area (mesh) C0JK

The surface area𝐴 is also calculated from the ROImesh by summing over the triangular face

surface areas 1. By definition, the area of face 𝑘 is:

𝐴𝑘 = |ab × ac|
2

As in Figure 3.2, edge ab = b− a is the vector from vertex a to vertex b, and edge ac = c− a

the vector from vertex a to vertex c. The total surface area 𝐴 is then:

𝐹morph.area = 𝐴 =
𝑁𝑓 𝑐

∑
𝑘=1

𝐴𝑘

data value tol. consensus

dig. phantom 388 3 very strong

config. A 3.57 × 104 300 strong

config. B 3.37 × 104 300 strong

config. C 3.43 × 104 400 strong

config. D 3.43 × 104 400 strong

config. E 3.43 × 104 400 strong

Table Ҏ.ҏ | Reference values for the surface area (mesh) feature.

3.1.4 Surface to volume ratio 2PR5

The surface to volume ratio is given as 1:

𝐹morph.av = 𝐴
𝑉

Note that this feature is not dimensionless.

data value tol. consensus

dig. phantom 0.698 0.004 very strong

config. A 0.0996 0.0005 strong

config. B 0.0944 0.0005 strong

config. C 0.0934 0.0007 strong

config. D 0.0934 0.0007 strong

config. E 0.0934 0.0007 strong

Table Ҏ.Ґ | Reference values for the surface to volume ratio feature.

3.1.5 Compactness 1 SKGS

Several features (compactness 1 and 2, spherical disproportion, sphericity and asphericity) quantify

the deviation of the ROI volume from a representative spheroid. All these definitions can be

derived fromone another. As a results these features are are highly correlated andmay thus
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be redundant. Compactness 1 1 is a measure for how compact, or sphere-like the volume is.

It is defined as:

𝐹morph.comp.1 = 𝑉
𝜋1/2𝐴3/2

Compactness 1 is sometimes 1 defined using 𝐴2/3 instead of 𝐴3/2, but this does not lead to a

dimensionless quantity.

data value tol. consensus

dig. phantom 0.0411 0.0003 strong

config. A 0.03 0.0001 strong

config. B 0.0326 0.0001 strong

config. C — — moderate

config. D 0.0326 0.0002 strong

config. E 0.0326 0.0002 strong

Table Ҏ.ґ | Reference values for the compactness ɰ feature. An unset value (—) indicates the lack
of a reference value.

3.1.6 Compactness 2 BQWJ

Like Compactness 1, Compactness 2 1 quantifies how sphere-like the volume is:

𝐹morph.comp.2 = 36𝜋𝑉 2

𝐴3

By definition 𝐹morph.comp.1 = 1/6𝜋 (𝐹morph.comp.2)1/2
.

data value tol. consensus

dig. phantom 0.599 0.004 strong

config. A 0.319 0.001 strong

config. B 0.377 0.001 strong

config. C 0.378 0.004 strong

config. D 0.378 0.004 strong

config. E 0.378 0.004 strong

Table Ҏ.ɦ | Reference values for the compactness ҍ feature.

3.1.7 Spherical disproportion KRCK

Spherical disproportion 1 likewise describes how sphere-like the volume is:

𝐹morph.sph.dispr = 𝐴
4𝜋𝑅2

= 𝐴
(36𝜋𝑉 2)1/3

By definition 𝐹morph.sph.dispr = (𝐹morph.comp.2)−1/3
.
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data value tol. consensus

dig. phantom 1.19 0.01 strong

config. A 1.46 0.01 strong

config. B 1.38 0.01 strong

config. C 1.38 0.01 strong

config. D 1.38 0.01 strong

config. E 1.38 0.01 strong

Table Ҏ.Ғ | Reference values for the spherical disproportion feature.

3.1.8 Sphericity QCFX

Sphericity 1 is a further measure to describe how sphere-like the volume is:

𝐹morph.sphericity = (36𝜋𝑉 2)1/3

𝐴

By definition 𝐹morph.sphericity = (𝐹morph.comp.2)1/3
.

data value tol. consensus

dig. phantom 0.843 0.005 very strong

config. A 0.683 0.001 strong

config. B 0.722 0.001 strong

config. C 0.723 0.003 strong

config. D 0.723 0.003 strong

config. E 0.723 0.003 strong

Table Ҏ.ғ | Reference values for the sphericity feature.

3.1.9 Asphericity 25C7

Asphericity 6 also describes howmuch the ROI deviates from a perfect sphere, with perfectly

spherical volumes having an asphericity of 0. Asphericity is defined as:

𝐹morph.asphericity = ( 1

36𝜋
𝐴3

𝑉 2
)

1/3

− 1

By definition 𝐹morph.asphericity = (𝐹morph.comp.2)−1/3 − 1

data value tol. consensus

dig. phantom 0.186 0.001 strong

config. A 0.463 0.002 strong

config. B 0.385 0.001 moderate

config. C 0.383 0.004 strong

config. D 0.383 0.004 strong

config. E 0.383 0.004 strong

Table Ҏ.ɰҔ | Reference values for the asphericity feature.
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3.1.10 Centre of mass shift KLMA

The distance between the ROI volume centroid and the intensity-weighted ROI volume is

an abstraction of the spatial distribution of low/high intensity regions within the ROI. Let

𝑁𝑣,𝑚 be the number of voxels in the morphological mask. The ROI volume centre of mass

is calculated from the morphological voxel point setX𝑐 as follows:

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐶𝑜𝑀𝑔𝑒𝑜𝑚 = 1

𝑁𝑣,𝑚

𝑁𝑣,𝑚

∑
𝑘=1

⃗𝑋𝑐,𝑘

The intensity-weighted ROI volume is based on the intensity mask. The position of each

voxel centre in the intensitymask voxel setX𝑐,𝑔𝑙 is weighted by its corresponding intensity

X𝑔𝑙. Therefore, with 𝑁𝑣,𝑔𝑙 the number of voxels in the intensity mask:

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐶𝑜𝑀𝑔𝑙 =
∑𝑁𝑣,𝑔𝑙

𝑘=1
𝑋𝑔𝑙,𝑘 ⃗𝑋𝑐,𝑔𝑙,𝑘

∑𝑁𝑣,𝑔𝑙
𝑘=1

𝑋𝑔𝑙,𝑘

The distance between the two centres of mass is then:

𝐹morph.com = || ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐶𝑜𝑀𝑔𝑒𝑜𝑚 − ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐶𝑜𝑀𝑔𝑙||2

data value tol. consensus

dig. phantom 0.672 0.004 very strong

config. A 52.9 28.7 strong

config. B 63.1 29.6 strong

config. C 45.6 2.8 strong

config. D 64.9 2.8 strong

config. E 68.5 2.1 moderate

Table Ҏ.ɰɰ | Reference values for the centre of mass shift feature.

3.1.11 Maximum 3D diameter L0JK

Themaximum 3D diameter 1 is the distance between the twomost distant vertices in the ROI

mesh vertex setX𝑣𝑥:

𝐹morph.diam = max(|| ⃗𝑋𝑣𝑥,𝑘1
− ⃗𝑋𝑣𝑥,𝑘2

||2) , 𝑘1 = 1, … , 𝑁 𝑘2 = 1, … , 𝑁

A practical way of determining the maximum 3D diameter is to first construct the convex

hull of the ROI mesh. The convex hull vertex set X𝑣𝑥,𝑐𝑜𝑛𝑣𝑒𝑥 is guaranteed to contain the

two most distant vertices of X𝑣𝑥. This significantly reduces the computational cost of cal-

culating distances between all vertices. Despite the remaining 𝑂(𝑛2) cost of calculating

distances between different vertices,X𝑣𝑥,𝑐𝑜𝑛𝑣𝑒𝑥 is usually considerably smaller in size than

X𝑣𝑥. Moreover, the convex hull is later used for the calculation of other morphological fea-

tures (3.1.25-3.1.26).
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data value tol. consensus

dig. phantom 13.1 0.1 strong

config. A 125 1 strong

config. B 125 1 strong

config. C 125 1 strong

config. D 125 1 strong

config. E 125 1 strong

Table Ҏ.ɰҍ | Reference values for themaximum ҎD diameter feature.

3.1.12 Major axis length TDIC

Principal component analysis (PCA) can be used to determine the main orientation of the

ROI65. On a three dimensional object, PCA yields three orthogonal eigenvectors {𝑒1, 𝑒2, 𝑒3}
and three eigenvalues (𝜆1, 𝜆2, 𝜆3). These eigenvalues and eigenvectors geometrically de-

scribe a triaxial ellipsoid. The three eigenvectors determine the orientation of the ellipsoid,

whereas the eigenvalues provide a measure of how far the ellipsoid extends along each ei-

genvector. Several features make use of principal component analysis, namelymajor,minor

and least axis length, elongation, flatness, and approximate enclosing ellipsoid volume and area

density.

The eigenvalues can be ordered so that𝜆major ≥ 𝜆minor ≥ 𝜆least correspond to themajor,

minor and least axes of the ellipsoid respectively. The semi-axes lengths 𝑎, 𝑏 and 𝑐 for the

major, minor and least axes are then 2√𝜆major , 2√𝜆minor and 2√𝜆least respectively. The

major axis length is twice the semi-axis length 𝑎, determined using the largest eigenvalue

obtained by PCA on the point set of voxel centersX𝑐
39:

𝐹morph.pca.major = 2𝑎 = 4√𝜆major

data value tol. consensus

dig. phantom 11.4 0.1 very strong

config. A 92.7 0.4 very strong

config. B 92.6 0.4 strong

config. C 93.3 0.5 strong

config. D 93.3 0.5 strong

config. E 93.3 0.5 strong

Table Ҏ.ɰҎ | Reference values for themajor axis length feature.

3.1.13 Minor axis length P9VJ

Theminor axis length of the ROI provides ameasure of how far the volume extends along the

second largest axis. Theminor axis length is twice the semi-axis length 𝑏, determined using

the second largest eigenvalue obtained by PCA, as described in Section 3.1.12:

𝐹morph.pca.minor = 2𝑏 = 4√𝜆minor
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data value tol. consensus

dig. phantom 9.31 0.06 very strong

config. A 81.5 0.4 very strong

config. B 81.3 0.4 strong

config. C 82 0.5 strong

config. D 82 0.5 strong

config. E 82 0.5 strong

Table Ҏ.ɰҏ | Reference values for theminor axis length feature.

3.1.14 Least axis length 7J51

The least axis is the axis along which the object is least extended. The least axis length is

twice the semi-axis length 𝑐, determined using the smallest eigenvalue obtained by PCA,

as described in Section 3.1.12:

𝐹morph.pca.least = 2𝑐 = 4√𝜆least

data value tol. consensus

dig. phantom 8.54 0.05 very strong

config. A 70.1 0.3 strong

config. B 70.2 0.3 strong

config. C 70.9 0.4 strong

config. D 70.9 0.4 strong

config. E 70.9 0.4 strong

Table Ҏ.ɰҐ | Reference values for the least axis length feature.

3.1.15 Elongation Q3CK

The ratio of the major and minor principal axis lengths could be viewed as the extent to

which a volume is longer than it is wide, i.e. is eccentric. For computational reasons, we

express elongation as an inverse ratio. 1 is thus completely non-elongated, e.g. a sphere, and

smaller values express greater elongation of the ROI volume.

𝐹morph.pca.elongation = √𝜆𝑚𝑖𝑛𝑜𝑟
𝜆𝑚𝑎𝑗𝑜𝑟

data value tol. consensus

dig. phantom 0.816 0.005 very strong

config. A 0.879 0.001 strong

config. B 0.878 0.001 strong

config. C 0.879 0.001 strong

config. D 0.879 0.001 strong

config. E 0.879 0.001 strong

Table Ҏ.ɰґ | Reference values for the elongation feature.
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3.1.16 Flatness N17B

The ratio of themajor and least axis lengths could be viewedas the extent towhich a volume

is flat relative to its length. For computational reasons, we express flatness as an inverse

ratio. 1 is thus completely non-flat, e.g. a sphere, and smaller values express objects which

are increasingly flatter.

𝐹morph.pca.flatness = √ 𝜆𝑙𝑒𝑎𝑠𝑡
𝜆𝑚𝑎𝑗𝑜𝑟

data value tol. consensus

dig. phantom 0.749 0.005 very strong

config. A 0.756 0.001 strong

config. B 0.758 0.001 strong

config. C 0.76 0.001 strong

config. D 0.76 0.001 strong

config. E 0.76 0.001 strong

Table Ҏ.ɰɦ | Reference values for the flatness feature.

3.1.17 Volume density (axis-aligned bounding box) PBX1

Volume density is the fraction of the ROI volume and a comparison volume. Here the com-

parison volume is that of the axis-aligned bounding box (AABB) of the ROI mesh vertex set

X𝑣𝑥 or theROImesh convexhull vertex setX𝑣𝑥,𝑐𝑜𝑛𝑣𝑒𝑥. Both vertex sets generate an identical

bounding box, which is the smallest box enclosing the vertex set, and alignedwith the axes

of the reference frame.

𝐹morph.v .dens.aabb = 𝑉
𝑉aabb

This feature is also called extent27,65.

data value tol. consensus

dig. phantom 0.869 0.005 strong

config. A 0.486 0.003 strong

config. B 0.477 0.003 strong

config. C 0.478 0.003 strong

config. D 0.478 0.003 strong

config. E 0.478 0.003 strong

Table Ҏ.ɰҒ | Reference values for the volume density (AABB) feature.

3.1.18 Area density (axis-aligned bounding box) R59B

Conceptually similar to the volume density (AABB) feature, area density considers the ratio of

the ROI surface area and the surface area 𝐴𝑎𝑎𝑏𝑏 of the axis-aligned bounding box enclosing
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the ROImesh vertex setX𝑣𝑥
80. The bounding box is identical to the one used for computing

the volume density (AABB) feature. Thus:

𝐹morph.a.dens.aabb = 𝐴
𝐴𝑎𝑎𝑏𝑏

data value tol. consensus

dig. phantom 0.866 0.005 strong

config. A 0.725 0.003 strong

config. B 0.678 0.003 strong

config. C 0.678 0.003 strong

config. D 0.678 0.003 strong

config. E 0.678 0.003 strong

Table Ҏ.ɰғ | Reference values for the area density (AABB) feature.

3.1.19 Volume density (oriented minimum bounding box) ZH1A

Note: This feature currently has no reference values and should not be used.

The volume of an axis-aligned bounding box is generally not the smallest obtainable

volume enclosing the ROI. By orienting the box along a different set of axes, a smaller en-

closing volume may be attainable. The oriented minimum bounding box (OMBB) of the

ROI mesh vertex setX𝑣𝑥 orX𝑣𝑥,𝑐𝑜𝑛𝑣𝑒𝑥 encloses the vertex set and has the smallest possible

volume. A 3D rotating callipers technique was devised by O’Rourke 56 to derive the oriented

minimum bounding box. Due to computational complexity of this technique, the oriented

minimum bounding box is commonly approximated at lower complexity, see e.g. Barequet

and Har-Peled 10 and Chan and Tan 14 . Thus:

𝐹morph.v .dens.ombb = 𝑉
𝑉𝑜𝑚𝑏𝑏

Here 𝑉𝑜𝑚𝑏𝑏 is the volume of the oriented minimum bounding box.

3.1.20 Area density (oriented minimum bounding box) IQYR

Note: This feature currently has no reference values and should not be used.

The area density (OMBB) is estimated as:

𝐹morph.a.dens.ombb = 𝐴
𝐴𝑜𝑚𝑏𝑏

Here𝐴𝑜𝑚𝑏𝑏 is the surface area of the same bounding box as calculated for the volume density

(OMBB) feature.

3.1.21 Volume density (approximate enclosing ellipsoid) 6BDE

The eigenvectors and eigenvalues fromPCAof the ROI voxel center point setX𝑐 can be used

to describe an ellipsoid approximating the point cloud51, i.e. the approximate enclosing
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ellipsoid (AEE). The volume of this ellipsoid is 𝑉aee = 4𝜋 𝑎 𝑏 𝑐/3, with 𝑎, 𝑏, and 𝑐 being the

lengths of the ellipsoid’s semi-principal axes, see Section 3.1.12. The volume density (AEE) is

then:

𝐹morph.v .dens.aee = 3𝑉
4𝜋𝑎𝑏𝑐

data value tol. consensus

dig. phantom 1.17 0.01 moderate

config. A 1.29 0.01 strong

config. B 1.29 0.01 strong

config. C 1.29 0.01 moderate

config. D 1.29 0.01 moderate

config. E 1.29 0.01 strong

Table Ҏ.ҍҔ | Reference values for the volume density (AEE) feature.

3.1.22 Area density (approximate enclosing ellipsoid) RDD2

The surface area of an ellipsoid can generally not be evaluated in an elementary form. How-

ever, it is possible to approximate the surface using an infinite series. We use the same

semi-principal axes as for the volume density (AEE) feature and define:

𝐴aee (𝑎, 𝑏, 𝑐) = 4𝜋 𝑎 𝑏
∞
∑
𝜈=0

(𝛼 𝛽)𝜈

1 − 4𝜈2
𝑃𝜈 (𝛼2 + 𝛽2

2𝛼𝛽 )

Here 𝛼 = √1 − 𝑏2/𝑎2 and 𝛽 = √1 − 𝑐2/𝑎2 are eccentricities of the ellipsoid and 𝑃𝜈 is the

Legendre polynomial function for degree 𝜈. The Legendre polynomial series, though in-

finite, converges, and approximation may be stopped early when the incremental gains in

precision become limited. By default, we stop the series after 𝜈 = 20.

The area density (AEE) is then approximated as:

𝐹morph.a.dens.aee = 𝐴
𝐴aee

data value tol. consensus

dig. phantom 1.36 0.01 moderate

config. A 1.71 0.01 moderate

config. B 1.62 0.01 moderate

config. C 1.62 0.01 moderate

config. D 1.62 0.01 moderate

config. E 1.62 0.01 strong

Table Ҏ.ҍɰ | Reference values for the area density (AEE) feature.

3.1.23 Volume density (minimum volume enclosing ellipsoid) SWZ1

Note: This feature currently has no reference values and should not be used.
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Theminimum volume enclosing ellipsoid (MVEE), unlike the approximate enclosing el-

lipsoid, is the smallest ellipsoid that encloses the ROI. Direct computation of the MVEE is

usually unfeasible, and is therefore approximated. Various approximation algorithms have

been described, e.g.2,72, which are usually elaborations onKhachiyan’s barycentric coordin-

ate descent method40.

TheMVEEencloses theROImesh vertex setX𝑣𝑥, and by definitionX𝑣𝑥,𝑐𝑜𝑛𝑣𝑒𝑥 aswell. Use

of the convex mesh set X𝑣𝑥,𝑐𝑜𝑛𝑣𝑒𝑥 is recommended due to its sparsity compared to the full

vertex set. The volume of the MVEE is defined by its semi-axes lengths 𝑉mvee = 4𝜋 𝑎 𝑏 𝑐/3.

Then:

𝐹morph.v .dens.mvee = 𝑉
𝑉mvee

For Khachiyan’s barycentric coordinate descent-based methods we use a default toler-

ance 𝜏 = 0.001 as stopping criterion.

3.1.24 Area density (minimum volume enclosing ellipsoid) BRI8

Note: This feature currently has no reference values and should not be used.

The surface area of an ellipsoid does not have a general elementary form, but should be

approximated as noted in Section 3.1.22. Let the approximated surface area of the MVEE be

𝐴mvee . Then:

𝐹morph.a.dens.mvee = 𝐴
𝐴mvee

3.1.25 Volume density (convex hull) R3ER

The convex hull encloses ROI mesh vertex setX𝑣𝑥 and consists of the vertex setX𝑣𝑥,𝑐𝑜𝑛𝑣𝑒𝑥
and corresponding faces, see section 3.1.11. The volume of the ROI mesh convex hull set

𝑉𝑐𝑜𝑛𝑣𝑒𝑥 is computed in the same way as that of the volume (mesh) feature (3.1.1). The volume

density can then be calculated as follows:

𝐹morph.v .dens.conv .hull = 𝑉
𝑉𝑐𝑜𝑛𝑣𝑒𝑥

This feature is also called solidity 27,65.

data value tol. consensus

dig. phantom 0.961 0.006 strong

config. A 0.827 0.001 moderate

config. B 0.829 0.001 moderate

config. C 0.834 0.002 moderate

config. D 0.834 0.002 moderate

config. E 0.834 0.002 moderate

Table Ҏ.ҍҍ | Reference values for the volume density (convex hull) feature.
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3.1.26 Area density (convex hull) 7T7F

The area of the convexhull𝐴𝑐𝑜𝑛𝑣𝑒𝑥 is the sumof the areas of the faces of the convexhull, and

is computed in the same way as the surface area (mesh) feature (section 3.1.3). The convex

hull is identical to the one used in the volume density (convex hull) feature. Then:

𝐹morph.a.dens.conv .hull = 𝐴
𝐴𝑐𝑜𝑛𝑣𝑒𝑥

data value tol. consensus

dig. phantom 1.03 0.01 strong

config. A 1.18 0.01 moderate

config. B 1.12 0.01 moderate

config. C 1.13 0.01 moderate

config. D 1.13 0.01 moderate

config. E 1.13 0.01 moderate

Table Ҏ.ҍҎ | Reference values for the area density (convex hull) feature.

3.1.27 Integrated intensity 99N0

Integrated intensity is the average intensity in the ROI, multiplied by the volume. In the con-

text of 18F-FDG-PET, this feature is often called total lesion glycolysis75. Thus:

𝐹morph.integ.int = 𝑉 1

𝑁𝑣,𝑔𝑙

𝑁𝑣,𝑔𝑙

∑
𝑘=1

𝑋𝑔𝑙,𝑘

𝑁𝑣,𝑔𝑙 is the number of voxels in the ROI intensity mask.

data value tol. consensus

dig. phantom 1.2 × 103 10 moderate

config. A 4.81 × 106 3.2 × 105 strong

config. B 4.12 × 106 3.2 × 105 strong

config. C −1.8 × 107 1.4 × 106 strong

config. D −8.64 × 106 1.56 × 106 strong

config. E −8.31 × 106 1.6 × 106 strong

Table Ҏ.ҍҏ | Reference values for the integrated intensity feature.

3.1.28 Moran’s I index N365

Moran’s I index is an indicator of spatial autocorrelation21,52. It is defined as:

𝐹morph.moran.i =
𝑁𝑣,𝑔𝑙

∑𝑁𝑣,𝑔𝑙
𝑘1=1

∑𝑁𝑣,𝑔𝑙
𝑘2=1

𝑤𝑘1𝑘2

∑𝑁𝑣,𝑔𝑙
𝑘1=1

∑𝑁𝑣,𝑔𝑙
𝑘2=1

𝑤𝑘1𝑘2
(𝑋𝑔𝑙,𝑘1

− 𝜇) (𝑋𝑔𝑙,𝑘2
− 𝜇)

∑𝑁𝑣,𝑔𝑙
𝑘=1

(𝑋𝑔𝑙,𝑘 − 𝜇)2
, 𝑘1 ≠ 𝑘2

As before 𝑁𝑣,𝑔𝑙 is the number of voxels in the ROI intensity mask, 𝜇 is the mean ofX𝑔𝑙 and

𝑤𝑘1𝑘2
is a weight factor, equal to the inverse Euclidean distance between voxels 𝑘1 and 𝑘2
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of the point set X𝑐,𝑔𝑙 of the ROI intensity mask20. Values of Moran’s I close to 1.0, 0.0 and

-1.0 indicate high spatial autocorrelation, no spatial autocorrelation and high spatial anti-

autocorrelation, respectively.

Note that for an ROI containing many voxels, calculating Moran’s I index may be com-

putationally expensive due to 𝑂(𝑛2) behaviour. Approximation by repeated subsampling

of the ROI may be required to make the calculation tractable, at the cost of accuracy.

data value tol. consensus

dig. phantom 0.0397 0.0003 strong

config. A 0.0322 0.0002 moderate

config. B 0.0329 0.0001 moderate

config. C 0.0824 0.0003 moderate

config. D 0.0622 0.0013 moderate

config. E 0.0596 0.0014 moderate

Table Ҏ.ҍҐ | Reference values for theMoran’s I index feature.

3.1.29 Geary’s C measure NPT7

Geary’s C measure assesses spatial autocorrelation, similar to Moran’s I index21,31. In con-

trast to Moran’s I index, Geary’s Cmeasure directly assesses intensity differences between

voxels and is more sensitive to local spatial autocorrelation. This measure is defined as:

𝐹morph.geary.c =
𝑁𝑣,𝑔𝑙 − 1

2 ∑𝑁𝑣,𝑔𝑙
𝑘1=1

∑𝑁𝑣,𝑔𝑙
𝑘2=1

𝑤𝑘1𝑘2

∑𝑁𝑣,𝑔𝑙
𝑘1=1

∑𝑁𝑣,𝑔𝑙
𝑘2=1

𝑤𝑘1𝑘2
(𝑋𝑔𝑙,𝑘1

− 𝑋𝑔𝑙,𝑘2
)2

∑𝑁𝑣,𝑔𝑙
𝑘=1

(𝑋𝑔𝑙,𝑘 − 𝜇)2
, 𝑘1 ≠ 𝑘2

As with Moran’s I, 𝑁𝑣,𝑔𝑙 is the number of voxels in the ROI intensity mask, 𝜇 is the mean of

X𝑔𝑙 and 𝑤𝑘1𝑘2
is a weight factor, equal to the inverse Euclidean distance between voxels 𝑘1

and 𝑘2 of the ROI voxel point setX𝑐,𝑔𝑙
20.

Just as Moran’s I, Geary’s C measure exhibits 𝑂(𝑛2) behaviour and an approximation

scheme may be required to make calculation feasible for large ROIs.

data value tol. consensus

dig. phantom 0.974 0.006 strong

config. A 0.863 0.001 moderate

config. B 0.862 0.001 moderate

config. C 0.846 0.001 moderate

config. D 0.851 0.001 moderate

config. E 0.853 0.001 moderate

Table Ҏ.ҍґ | Reference values for the Geary’s C measure feature.
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3.2 Local intensity features 9ST6

Voxel intensitieswithin adefinedneighbourhoodaroundacenter voxel are used to compute

local intensity features. Unlike many other feature sets, local features do not draw solely

on intensities within the ROI. While only voxels within the ROI intensity map can be used

as a center voxel, the local neighbourhood draws upon all voxels regardless of being in an

ROI.

Aggregating features

By definition, local intensity features are calculated in 3D (DHQ4), and not per slice.

3.2.1 Local intensity peak VJGA

The local intensity peak was originally devised for reducing variance in determining stand-

ardised uptake values85. It is defined as the mean intensity in a 1 cm3 spherical volume (in

world coordinates), which is centered on the voxel with themaximum intensity level in the

ROI intensity mask29.

To calculate 𝐹loc.peak .local , we first select all the voxels with centers within a radius 𝑟 =
( 3

4𝜋)1/3 ≈ 0.62 cm of the center of the maximum intensity voxel. Subsequently, the mean

intensity of the selected voxels, including the center voxel, are calculated.

In case the maximum intensity is found in multiple voxels within the ROI, local intensity

peak is calculated for each of these voxels, and the highest local intensity peak is chosen.

data value tol. consensus

dig. phantom 2.6 — strong

config. A −277 10 moderate

config. B 178 10 moderate

config. C 169 10 moderate

config. D 201 10 strong

config. E 181 13 moderate

Table Ҏ.ҍɦ | Reference values for the local intensity peak feature.

3.2.2 Global intensity peak 0F91

The global intensity peak feature 𝐹loc.peak .global is similar to the local intensity peak 29. However,

instead of calculating the mean intensity for the voxel(s) with the maximum intensity, the

mean intensity is calculated within a 1 cm3 neighbourhood for every voxel in the ROI in-

tensity mask. The highest intensity peak value is then selected.

Calculation of the global intensity peak feature may be accelerated by construction and

application of an appropriate spatial spherical mean convolution filter, due to the convolu-

tion theorem. In this case one would first construct an empty 3D filter that will fit a 1 cm3

sphere. Within this context, the filter voxelsmay be represented by a point set, akin toX𝑐 in

section 3.1. Euclidean distances in world spacing between the central voxel of the filter and

every remaining voxel are computed. If this distance lies within radius 𝑟 = ( 3
4𝜋)1/3 ≈ 0.62

the corresponding voxel receives a label 1, and 0 otherwise. Subsequent summation of the
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voxel labels yields𝑁𝑠, the number of voxelswithin the 1 cm3 sphere. The filter then becomes

a spherical mean filter by dividing the labels by 𝑁𝑠.

data value tol. consensus

dig. phantom 3.1 — strong

config. A 189 5 moderate

config. B 178 5 moderate

config. C 180 5 moderate

config. D 201 5 moderate

config. E 181 5 moderate

Table Ҏ.ҍҒ | Reference values for the global intensity peak feature.
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3.3 Intensity-based statistical features UHIW

The intensity-based statistical features describe how intensities within the region of in-

terest (ROI) are distributed. The features in this set do not require discretisation, and may

be used to describe a continuous intensity distribution. Intensity-based statistical features

are not meaningful if the intensity scale is arbitrary.

The set of intensities of the 𝑁𝑣 voxels included in the ROI intensity mask is denoted as

X𝑔𝑙 = {𝑋𝑔𝑙,1, 𝑋𝑔𝑙,2, … , 𝑋𝑔𝑙,𝑁𝑣}.

Aggregating features

Werecommendcalculating intensity-based statistical featuresusing the 3Dvolume (DHQ4).

An approach that computes intensity-based statistical features per slice and subsequently

averages them (3IDG) is not recommended.

3.3.1 Mean intensity Q4LE

Themean intensity ofX𝑔𝑙 is calculated as:

𝐹stat.mean = 1

𝑁𝑣

𝑁𝑣

∑
𝑘=1

𝑋𝑔𝑙,𝑘

data value tol. consensus

dig. phantom 2.15 — very strong

config. A 13.4 1.1 very strong

config. B 11.5 1.1 strong

config. C −49 2.9 very strong

config. D −23.5 3.9 strong

config. E −22.6 4.1 strong

Table Ҏ.ҍғ | Reference values for themean feature.

3.3.2 Intensity variance ECT3

The intensity variance ofX𝑔𝑙 is defined as:

𝐹stat.var = 1

𝑁𝑣

𝑁𝑣

∑
𝑘=1

(𝑋𝑔𝑙,𝑘 − 𝜇)2

Note that we do not apply a bias correction when computing the variance.
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data value tol. consensus

dig. phantom 3.05 — very strong

config. A 1.42 × 104 400 very strong

config. B 1.44 × 104 400 strong

config. C 5.06 × 104 1.4 × 103 very strong

config. D 3.28 × 104 2.1 × 103 strong

config. E 3.51 × 104 2.2 × 103 strong

Table Ҏ.ҎҔ | Reference values for the variance feature.

3.3.3 Intensity skewness KE2A

The skewness of the intensity distribution ofX𝑔𝑙 is defined as:

𝐹stat.skew =
1

𝑁𝑣
∑𝑁𝑣

𝑘=1
(𝑋𝑔𝑙,𝑘 − 𝜇)3

( 1
𝑁𝑣

∑𝑁𝑣
𝑘=1

(𝑋𝑔𝑙,𝑘 − 𝜇)2)
3/2

Here 𝜇 = 𝐹stat.mean . If the intensity variance 𝐹stat.var = 0, 𝐹stat.skew = 0.

data value tol. consensus

dig. phantom 1.08 — very strong

config. A −2.47 0.05 very strong

config. B −2.49 0.05 strong

config. C −2.14 0.05 very strong

config. D −2.28 0.06 strong

config. E −2.3 0.07 strong

Table Ҏ.Ҏɰ | Reference values for the skewness feature.

3.3.4 (Excess) intensity kurtosis IPH6

Kurtosis, or technically excess kurtosis, is a measure of peakedness in the intensity distri-

butionX𝑔𝑙:

𝐹stat.kurt =
1

𝑁𝑣
∑𝑁𝑣

𝑘=1
(𝑋𝑔𝑙,𝑘 − 𝜇)4

( 1
𝑁𝑣

∑𝑁𝑣
𝑘=1

(𝑋𝑔𝑙,𝑘 − 𝜇)2)
2

− 3

Here 𝜇 = 𝐹stat.mean . Note that kurtosis is corrected by a Fisher correction of -3 to center it

on 0 for normal distributions. If the intensity variance 𝐹stat.var = 0, 𝐹stat.kurt = 0.
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data value tol. consensus

dig. phantom −0.355 — very strong

config. A 5.96 0.24 very strong

config. B 5.93 0.24 strong

config. C 3.53 0.23 very strong

config. D 4.35 0.32 strong

config. E 4.44 0.33 strong

Table Ҏ.Ҏҍ | Reference values for the (excess) kurtosis feature.

3.3.5 Median intensity Y12H

Themedian intensity 𝐹stat.median is the sample median ofX𝑔𝑙.

data value tol. consensus

dig. phantom 1 — very strong

config. A 46 0.3 very strong

config. B 45 0.3 strong

config. C 40 0.4 very strong

config. D 42 0.4 strong

config. E 43 0.5 strong

Table Ҏ.ҎҎ | Reference values for themedian feature.

3.3.6 Minimum intensity 1GSF

Theminimum intensity is equal to the lowest intensity present inX𝑔𝑙, i.e:

𝐹stat.min = min(X𝑔𝑙)

data value tol. consensus

dig. phantom 1 — very strong

config. A −500 — very strong

config. B −500 — strong

config. C −939 4 very strong

config. D −724 12 strong

config. E −743 13 strong

Table Ҏ.Ҏҏ | Reference values for theminimum feature.

3.3.7 10th intensity percentile QG58

𝑃10 is the 10
th percentile ofX𝑔𝑙. 𝑃10 is a more robust alternative to theminimum intensity.
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data value tol. consensus

dig. phantom 1 — very strong

config. A −129 8 very strong

config. B −136 8 strong

config. C −424 14 very strong

config. D −304 20 strong

config. E −310 21 strong

Table Ҏ.ҎҐ | Reference values for the ɰҔth percentile feature.

3.3.8 90th intensity percentile 8DWT

𝑃90 is the 90
th percentile ofX𝑔𝑙. 𝑃90 is a more robust alternative to themaximum intensity.

data value tol. consensus

dig. phantom 4 — very strong

config. A 95 — strong

config. B 91 — strong

config. C 86 0.1 strong

config. D 86 0.1 strong

config. E 93 0.2 strong

Table Ҏ.Ҏґ | Reference values for the ғҔth percentile feature.

Note that the 90th intensity percentile obtained for the digital phantommay differ from the

above reference value depending on the software implementation used to compute it. For

example, some implementations were found to produce a value of 4.2 instead of 4.

3.3.9 Maximum intensity 84IY

Themaximum intensity is equal to the highest intensity present inX𝑔𝑙, i.e:

𝐹stat.max = max(X𝑔𝑙)

data value tol. consensus

dig. phantom 6 — very strong

config. A 377 9 very strong

config. B 391 9 strong

config. C 393 10 very strong

config. D 521 22 strong

config. E 345 9 strong

Table Ҏ.Ҏɦ | Reference values for themaximum feature.
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3.3.10 Intensity interquartile range SALO

The interquartile range (IQR) ofX𝑔𝑙 is defined as:

𝐹stat.iqr = 𝑃75 − 𝑃25

𝑃25 and 𝑃75 are the 25
th and 75th percentiles ofX𝑔𝑙, respectively.

data value tol. consensus

dig. phantom 3 — very strong

config. A 56 0.5 very strong

config. B 52 0.5 strong

config. C 67 4.9 very strong

config. D 57 4.1 strong

config. E 62 3.5 strong

Table Ҏ.ҎҒ | Reference values for the interquartile range feature.

3.3.11 Intensity range 2OJQ

The intensity range is defined as:

𝐹stat.range = max(X𝑔𝑙) − min(X𝑔𝑙)

data value tol. consensus

dig. phantom 5 — very strong

config. A 877 9 very strong

config. B 891 9 strong

config. C 1.33 × 103 20 very strong

config. D 1.24 × 103 40 strong

config. E 1.09 × 103 30 strong

Table Ҏ.Ҏғ | Reference values for the range feature.

3.3.12 Intensity-based mean absolute deviation 4FUA

Mean absolute deviation is a measure of dispersion from the mean ofX𝑔𝑙:

𝐹stat.mad = 1

𝑁𝑣

𝑁𝑣

∑
𝑘=1

∣𝑋𝑔𝑙,𝑘 − 𝜇∣

Here 𝜇 = 𝐹stat.mean .
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data value tol. consensus

dig. phantom 1.55 — very strong

config. A 73.6 1.4 very strong

config. B 74.4 1.4 strong

config. C 158 4 very strong

config. D 123 6 strong

config. E 125 6 strong

Table Ҏ.ҏҔ | Reference values for themean absolute deviation feature.

3.3.13 Intensity-based robust mean absolute deviation 1128

The intensity-basedmean absolute deviation featuremaybe influenced by outliers. To increase

robustness, the set of intensities can be restricted to those which lie closer to the center of

the distribution. Let

X𝑔𝑙,10−90 = {𝑥 ∈ X𝑔𝑙|𝑃10 (X𝑔𝑙) ≤ 𝑥 ≤ 𝑃90 (X𝑔𝑙)}

ThenX𝑔𝑙,10−90 is the set of 𝑁𝑣,10−90 ≤ 𝑁𝑣 voxels inX𝑔𝑙 whose intensities fall in the interval

bounded by the 10th and 90th percentiles ofX𝑔𝑙. The robustmean absolute deviation is then:

𝐹stat.rmad = 1

𝑁𝑣,10−90

𝑁𝑣,10−90

∑
𝑘=1

∣𝑋𝑔𝑙,10−90,𝑘 − 𝑋𝑔𝑙,10−90∣

𝑋𝑔𝑙,10−90 denotes the sample mean ofXgl,10−90.

data value tol. consensus

dig. phantom 1.11 — very strong

config. A 27.7 0.8 very strong

config. B 27.3 0.8 strong

config. C 66.8 3.5 very strong

config. D 46.8 3.6 strong

config. E 46.5 3.7 strong

Table Ҏ.ҏɰ | Reference values for the robust mean absolute deviation feature.

3.3.14 Intensity-based median absolute deviation N72L

Median absolute deviation is similar in concept to the intensity-based mean absolute deviation,

but measures dispersion from the median intensity instead of the mean intensity. Thus:

𝐹stat.medad = 1

𝑁𝑣

𝑁𝑣

∑
𝑘=1

∣𝑋𝑔𝑙,𝑘 − 𝑀∣

Here, median 𝑀 = 𝐹stat.median .
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data value tol. consensus

dig. phantom 1.15 — very strong

config. A 64.3 1 strong

config. B 63.8 1 strong

config. C 119 4 strong

config. D 94.7 3.8 strong

config. E 97.9 3.9 strong

Table Ҏ.ҏҍ | Reference values for themedian absolute deviation feature.

3.3.15 Intensity-based coefficient of variation 7TET

The coefficient of variationmeasures the dispersion ofX𝑔𝑙. It is defined as:

𝐹stat.cov = 𝜎
𝜇

Here𝜎 = 𝐹stat.var
1/2

and𝜇 = 𝐹stat.mean are the standard deviation andmean of the intensity

distribution, respectively.

data value tol. consensus

dig. phantom 0.812 — very strong

config. A 8.9 4.98 strong

config. B 10.4 5.2 strong

config. C −4.59 0.29 strong

config. D −7.7 1.01 strong

config. E −8.28 0.95 strong

Table Ҏ.ҏҎ | Reference values for the coefficient of variation feature.

3.3.16 Intensity-based quartile coefficient of dispersion 9S40

The quartile coefficient of dispersion is a more robust alternative to the intensity-based coeffi-

cient of variance. It is defined as:

𝐹stat.qcod = 𝑃75 − 𝑃25

𝑃75 + 𝑃25

𝑃25 and 𝑃75 are the 25
th and 75th percentile ofX𝑔𝑙, respectively.

data value tol. consensus

dig. phantom 0.6 — very strong

config. A 0.636 0.008 strong

config. B 0.591 0.008 strong

config. C 1.03 0.4 strong

config. D 0.74 0.011 strong

config. E 0.795 0.337 strong

Table Ҏ.ҏҏ | Reference values for the quartile coefficient of dispersion feature.
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3.3.17 Intensity-based energy N8CA

The energy 1 ofX𝑔𝑙 is defined as:

𝐹stat.energy =
𝑁𝑣

∑
𝑘=1

𝑋2
𝑔𝑙,𝑘

data value tol. consensus

dig. phantom 567 — very strong

config. A 1.65 × 109 2 × 107 very strong

config. B 3.98 × 108 1.1 × 107 strong

config. C 2.44 × 109 1.2 × 108 strong

config. D 1.48 × 109 1.4 × 108 strong

config. E 1.58 × 109 1.4 × 108 strong

Table Ҏ.ҏҐ | Reference values for the energy feature.

3.3.18 Root mean square intensity 5ZWQ

The root mean square intensity feature 1, which is also called the quadratic mean, of X𝑔𝑙 is

defined as:

𝐹stat.rms = √∑𝑁𝑣
𝑘=1

𝑋2
𝑔𝑙,𝑘

𝑁𝑣

data value tol. consensus

dig. phantom 2.77 — very strong

config. A 120 2 very strong

config. B 121 2 strong

config. C 230 4 strong

config. D 183 7 strong

config. E 189 7 strong

Table Ҏ.ҏґ | Reference values for the root mean square feature.
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3.4 Intensity histogram features ZVCW

An intensity histogram is generated by discretising the original intensity distribution X𝑔𝑙
into intensity bins. Approaches to discretisation are described in Section 2.7.

Let X𝑑 = {𝑋𝑑,1, 𝑋𝑑,2, … , 𝑋𝑑,𝑁𝑣} be the set of 𝑁𝑔 discretised intensities of the 𝑁𝑣 voxels

in the ROI intensity mask. LetH = {𝑛1, 𝑛2, … , 𝑛𝑁𝑔} be the histogram with frequency count

𝑛𝑖 of each discretised intensity 𝑖 in X𝑑. The occurrence probability 𝑝𝑖 for each discretised

intensity 𝑖 is then approximated as 𝑝𝑖 = 𝑛𝑖/𝑁𝑣.

Aggregating features

We recommend calculating intensity histogram features using the 3D volume (DHQ4).

An approach that computes features per slice and subsequently averages (3IDG) is not re-

commended.

3.4.1 Mean discretised intensity X6K6

Themean 1 ofX𝑑 is calculated as:

𝐹ih.mean = 1

𝑁𝑣

𝑁𝑣

∑
𝑘=1

𝑋𝑑,𝑘

An equivalent definition is:

𝐹ih.mean =
𝑁𝑔

∑
𝑖=1

𝑖 𝑝𝑖

data value tol. consensus

dig. phantom 2.15 — very strong

config. A 21.1 0.1 strong

config. B 18.9 0.3 strong

config. C 38.6 0.2 strong

config. D 18.5 0.5 strong

config. E 21.7 0.3 strong

Table Ҏ.ҏɦ | Reference values for themean feature.

3.4.2 Discretised intensity variance CH89

The variance 1 ofX𝑑 is defined as:

𝐹ih.var = 1

𝑁𝑣

𝑁𝑣

∑
𝑘=1

(𝑋𝑑,𝑘 − 𝜇)2

Here 𝜇 = 𝐹ih.mean . This definition is equivalent to:

𝐹ih.var =
𝑁𝑔

∑
𝑖=1

(𝑖 − 𝜇)2 𝑝𝑖
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Note that no bias-correction is applied when computing the variance.

data value tol. consensus

dig. phantom 3.05 — strong

config. A 22.8 0.6 strong

config. B 18.7 0.2 strong

config. C 81.1 2.1 strong

config. D 21.7 0.4 strong

config. E 30.4 0.8 strong

Table Ҏ.ҏҒ | Reference values for the variance feature.

3.4.3 Discretised intensity skewness 88K1

The skewness 1 ofX𝑑 is defined as:

𝐹ih.skew =
1

𝑁𝑣
∑𝑁𝑣

𝑘=1
(𝑋𝑑,𝑘 − 𝜇)3

( 1
𝑁𝑣

∑𝑁𝑣
𝑘=1

(𝑋𝑑,𝑘 − 𝜇)2)
3/2

Here 𝜇 = 𝐹ih.mean . This definition is equivalent to:

𝐹ih.skew =
∑𝑁𝑔

𝑖=1
(𝑖 − 𝜇)3 𝑝𝑖

(∑𝑁𝑔
𝑖=1

(𝑖 − 𝜇)2 𝑝𝑖)
3/2

If the discretised intensity variance 𝐹ih.var = 0, 𝐹ih.skew = 0.

data value tol. consensus

dig. phantom 1.08 — very strong

config. A −2.46 0.05 strong

config. B −2.47 0.05 strong

config. C −2.14 0.05 strong

config. D −2.27 0.06 strong

config. E −2.29 0.07 strong

Table Ҏ.ҏғ | Reference values for the skewness feature.

3.4.4 (Excess) discretised intensity kurtosis C3I7

Kurtosis 1, or technically excess kurtosis, measures the peakedness of theX𝑑 distribution:

𝐹ih.kurt =
1

𝑁𝑣
∑𝑁𝑣

𝑘=1
(𝑋𝑑,𝑘 − 𝜇)4

( 1
𝑁𝑣

∑𝑁𝑣
𝑘=1

(𝑋𝑑,𝑘 − 𝜇)2)
2

− 3

Here 𝜇 = 𝐹ih.mean . An alternative, but equivalent, definition is:

𝐹ih.kurt =
∑𝑁𝑔

𝑖=1
(𝑖 − 𝜇)4 𝑝𝑖

(∑𝑁𝑔
𝑖=1

(𝑖 − 𝜇)2 𝑝𝑖)
2

− 3
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Note that kurtosis is corrected by a Fisher correction of -3 to center kurtosis on 0 for normal

distributions. If the discretised intensity variance 𝐹ih.var = 0, 𝐹ih.kurt = 0.

data value tol. consensus

dig. phantom −0.355 — very strong

config. A 5.9 0.24 strong

config. B 5.84 0.24 strong

config. C 3.52 0.23 strong

config. D 4.31 0.32 strong

config. E 4.4 0.33 strong

Table Ҏ.ҐҔ | Reference values for the (excess) kurtosis feature.

3.4.5 Median discretised intensity WIFQ

Themedian 𝐹ih.median is the sample median ofX𝑑
1.

data value tol. consensus

dig. phantom 1 — very strong

config. A 22 — strong

config. B 20 0.3 strong

config. C 42 — strong

config. D 20 0.5 strong

config. E 24 0.2 strong

Table Ҏ.Ґɰ | Reference values for themedian feature.

3.4.6 Minimum discretised intensity 1PR8

Theminimum discretised intensity 1 is equal to the lowest discretised intensity present inX𝑑,

i.e.:

𝐹ih.min = min(X𝑑)

For fixed bin number discretisation 𝐹ih.min = 1 by definition, but 𝐹ih.min > 1 is possible for

fixed bin size discretisation.

data value tol. consensus

dig. phantom 1 — very strong

config. A 1 — strong

config. B 1 — strong

config. C 3 0.16 strong

config. D 1 — strong

config. E 1 — strong

Table Ҏ.Ґҍ | Reference values for theminimum feature.
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3.4.7 10th discretised intensity percentile GPMT

𝑃10 is the 10
th percentile ofX𝑑.

data value tol. consensus

dig. phantom 1 — very strong

config. A 15 0.4 strong

config. B 14 0.5 strong

config. C 24 0.7 strong

config. D 11 0.7 strong

config. E 13 0.7 strong

Table Ҏ.ҐҎ | Reference values for the ɰҔth percentile feature.

3.4.8 90th discretised intensity percentile OZ0C

𝑃90 is the 90
th percentile ofX𝑑 and is defined as 𝐹ih.P90 .

data value tol. consensus

dig. phantom 4 — strong

config. A 24 — strong

config. B 22 0.3 strong

config. C 44 — strong

config. D 21 0.5 strong

config. E 25 0.2 strong

Table Ҏ.Ґҏ | Reference values for the ғҔth percentile feature.

Note that the 90th discretised intensity percentile obtained for the digital phantommay dif-

fer from the above reference value depending on the software implementation used to com-

pute it. For example, some implementations were found to produce a value of 4.2 instead

of 4 for this feature.

3.4.9 Maximum discretised intensity 3NCY

The maximum discretised intensity 1 is equal to the highest discretised intensity present in

X𝑑, i.e.:

𝐹ih.max = max(X𝑑)

By definition, 𝐹ih.max = 𝑁𝑔.
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data value tol. consensus

dig. phantom 6 — very strong

config. A 36 0.4 strong

config. B 32 — strong

config. C 56 0.5 strong

config. D 32 — strong

config. E 32 — strong

Table Ҏ.ҐҐ | Reference values for themaximum feature.

3.4.10 Intensity histogrammode AMMC

The mode of X𝑑 𝐹ih.mode is the most common discretised intensity present, i.e. the value 𝑖
for with the highest count 𝑛𝑖. The mode may not be uniquely defined. When the highest

count is found in multiple bins, the value 𝑖 of the bin closest to themean discretised intensity

is chosen as intensity histogram mode. In pathological cases with two such bins equidistant

to the mean, the bin to the left of the mean is selected.

data value tol. consensus

dig. phantom 1 — very strong

config. A 23 — strong

config. B 20 0.3 strong

config. C 43 0.1 strong

config. D 20 0.4 strong

config. E 24 0.1 strong

Table Ҏ.Ґґ | Reference values for themode feature.

3.4.11 Discretised intensity interquartile range WR0O

The interquartile range (IQR) ofX𝑑 is defined as:

𝐹ih.iqr = 𝑃75 − 𝑃25

𝑃25 and 𝑃75 are the 25
th and 75th percentile ofX𝑑, respectively.

data value tol. consensus

dig. phantom 3 — very strong

config. A 2 — strong

config. B 2 — strong

config. C 3 0.21 strong

config. D 2 0.06 strong

config. E 1 0.06 strong

Table Ҏ.Ґɦ | Reference values for the interquartile range feature.
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3.4.12 Discretised intensity range 5Z3W

The discretised intensity range 1 is defined as:

𝐹ih.range = max(X𝑑) − min(X𝑑)

For fixed bin number discretisation, the discretised intensity range equals 𝑁𝑔 by definition.

data value tol. consensus

dig. phantom 5 — very strong

config. A 35 0.4 strong

config. B 31 — strong

config. C 53 0.6 strong

config. D 31 — strong

config. E 31 — strong

Table Ҏ.ҐҒ | Reference values for the range feature.

3.4.13 Intensity histogrammean absolute deviation D2ZX

Themean absolute deviation 1 is a measure of dispersion from the mean ofX𝑑:

𝐹ih.mad = 1

𝑁𝑣

𝑁𝑣

∑
𝑖=1

∣𝑋𝑑,𝑖 − 𝜇∣

Here 𝜇 = 𝐹ih.mean .

data value tol. consensus

dig. phantom 1.55 — very strong

config. A 2.94 0.06 strong

config. B 2.67 0.03 strong

config. C 6.32 0.15 strong

config. D 3.15 0.05 strong

config. E 3.69 0.1 strong

Table Ҏ.Ґғ | Reference values for themean absolute deviation feature.

3.4.14 Intensity histogram robust mean absolute deviation WRZB

Intensity histogram mean absolute deviation may be affected by outliers. To increase robust-

ness, the set of discretised intensities under consideration can be restricted to those which

are closer to the center of the distribution. Let

X𝑑,10−90 = {𝑥 ∈ X𝑑|𝑃10 (X𝑑) ≤ 𝑥 ≤ 𝑃90 (X𝑑)}

In short, X𝑑,10−90 is the set of 𝑁𝑣,10−90 ≤ 𝑁𝑣 voxels in X𝑑 whose discretised intensities fall

in the interval bounded by the 10th and 90th percentiles of X𝑑. The robust mean absolute
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deviation is then:

𝐹ih.rmad = 1

𝑁𝑣,10−90

𝑁𝑣,10−90

∑
𝑘=1

∣𝑋𝑑,10−90,𝑘 − 𝑋𝑑,10−90∣

𝑋𝑑,10−90 denotes the sample mean ofX𝑑,10−90.

data value tol. consensus

dig. phantom 1.11 — very strong

config. A 1.18 0.04 strong

config. B 1.03 0.03 moderate

config. C 2.59 0.14 strong

config. D 1.33 0.06 strong

config. E 1.46 0.09 moderate

Table Ҏ.ґҔ | Reference values for the robust mean absolute deviation feature.

3.4.15 Intensity histogrammedian absolute deviation 4RNL

Histogram median absolute deviation is conceptually similar to histogram mean absolute devi-

ation, but measures dispersion from the median instead of mean. Thus:

𝐹ih.medad = 1

𝑁𝑣

𝑁𝑣

∑
𝑘=1

∣𝑋𝑑,𝑘 − 𝑀∣

Here, median 𝑀 = 𝐹ih.median .

data value tol. consensus

dig. phantom 1.15 — very strong

config. A 2.58 0.05 strong

config. B 2.28 0.02 strong

config. C 4.75 0.12 strong

config. D 2.41 0.04 strong

config. E 2.89 0.07 strong

Table Ҏ.ґɰ | Reference values for themedian absolute deviation feature.

3.4.16 Intensity histogram coefficient of variation CWYJ

The coefficient of variationmeasures the dispersion of the discretised intensity distribution.

It is defined as:

𝐹ih.cov = 𝜎
𝜇

Here 𝜎 = 𝐹ih.var
1/2

and 𝜇 = 𝐹ih.mean are the standard deviation andmean of the discretised

intensity distribution, respectively.
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data value tol. consensus

dig. phantom 0.812 — very strong

config. A 0.227 0.004 strong

config. B 0.229 0.004 strong

config. C 0.234 0.005 strong

config. D 0.252 0.006 strong

config. E 0.254 0.006 strong

Table Ҏ.ґҍ | Reference values for the coefficient of variation feature.

3.4.17 Intensity histogram quartile coefficient of dispersion SLWD

The quartile coefficient of dispersion is amore robust alternative to the intensity histogram coef-

ficient of variance. It is defined as:

𝐹ih.qcod = 𝑃75 − 𝑃25

𝑃75 + 𝑃25

𝑃25 and 𝑃75 are the 25
th and 75th percentile ofX𝑑, respectively.

data value tol. consensus

dig. phantom 0.6 — very strong

config. A 0.0455 — strong

config. B 0.05 0.0005 strong

config. C 0.0361 0.0027 strong

config. D 0.05 0.0021 strong

config. E 0.0213 0.0015 strong

Table Ҏ.ґҎ | Reference values for the quartile coefficient of dispersion feature.

3.4.18 Discretised intensity entropy TLU2

Entropy 1 is an information-theoretic concept that gives a metric for the information con-

tained withinX𝑑. The particular metric used is Shannon entropy, which is defined as:

𝐹ih.entropy = −
𝑁𝑔

∑
𝑖=1

𝑝𝑖 log
2
𝑝𝑖

Note that entropy can only be meaningfully defined for discretised intensities as it will

tend to − log
2
𝑁𝑣 for continuous intensity distributions.



CHAPTER 3. IMAGE FEATURES 53

data value tol. consensus

dig. phantom 1.27 — very strong

config. A 3.36 0.03 very strong

config. B 3.16 0.01 strong

config. C 3.73 0.04 strong

config. D 2.94 0.01 strong

config. E 3.22 0.02 strong

Table Ҏ.ґҏ | Reference values for the entropy feature.

3.4.19 Discretised intensity uniformity BJ5W

Uniformity 1 ofX𝑑 is defined as:

𝐹ih.uniformity =
𝑁𝑔

∑
𝑖=1

𝑝2
𝑖

Forhistogramswheremost intensities are contained in a single bin, uniformity approaches

1. The lower bound is 1/𝑁𝑔.

Note that this feature is sometimes referred to as energy.

data value tol. consensus

dig. phantom 0.512 — very strong

config. A 0.15 0.002 very strong

config. B 0.174 0.001 strong

config. C 0.14 0.003 strong

config. D 0.229 0.003 strong

config. E 0.184 0.001 strong

Table Ҏ.ґҐ | Reference values for the uniformity feature.

3.4.20 Maximum histogram gradient 12CE

The histogram gradientH′ of intensity histogramH can be calculated as:

𝐻′
𝑖 =

⎧{{
⎨{{⎩

𝑛2 − 𝑛1 𝑖 = 1

(𝑛𝑖+1 − 𝑛𝑖−1) /2 1 < 𝑖 < 𝑁𝑔

𝑛𝑁𝑔 − 𝑛𝑁𝑔−1 𝑖 = 𝑁𝑔

�

Histogram H should be non-sparse, i.e. bins where 𝑛𝑖 = 0 should not be omitted. Ostens-

ibly, the histogram gradient can be calculated in different ways. The method above has the

advantages of being easy to implement and leading to a gradient H′ with same size as H.

This helps maintain a direct correspondence between the discretised intensities inH and

the bins ofH′. Themaximum histogram gradient80 is:

𝐹ih.max .grad = max (H′)
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data value tol. consensus

dig. phantom 8 — very strong

config. A 1.1 × 104 100 strong

config. B 3.22 × 103 50 strong

config. C 4.75 × 103 30 strong

config. D 7.26 × 103 200 strong

config. E 6.01 × 103 130 strong

Table Ҏ.ґґ | Reference values for themaximum histogram gradient feature.

3.4.21 Maximum histogram gradient intensity 8E6O

Themaximum histogram gradient intensity 80 𝐹ih.max .grad.gl is the discretised intensity corres-

ponding to themaximum histogram gradient, i.e. the value 𝑖 inH for whichH′ is maximal.

data value tol. consensus

dig. phantom 3 — strong

config. A 21 — strong

config. B 19 0.3 strong

config. C 41 — strong

config. D 19 0.4 strong

config. E 23 0.2 moderate

Table Ҏ.ґɦ | Reference values for themaximum histogram gradient intensity feature.

3.4.22 Minimum histogram gradient VQB3

Theminimum histogram gradient80 is:

𝐹ih.min.grad = min (H′)

data value tol. consensus

dig. phantom −50 — very strong

config. A −1.01 × 104 100 strong

config. B −3.02 × 103 50 strong

config. C −4.68 × 103 50 strong

config. D −6.67 × 103 230 strong

config. E −6.11 × 103 180 strong

Table Ҏ.ґҒ | Reference values for theminimum histogram gradient feature.
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3.4.23 Minimum histogram gradient intensity RHQZ

The minimum histogram gradient intensity 80 𝐹ih.min.grad.gl is the discretised intensity corres-

ponding to theminimum histogram gradient, i.e. the value 𝑖 inH for whichH′ is minimal.

data value tol. consensus

dig. phantom 1 — strong

config. A 24 — strong

config. B 22 0.3 strong

config. C 44 — strong

config. D 22 0.4 strong

config. E 25 0.2 strong

Table Ҏ.ґғ | Reference values for theminimum histogram gradient intensity feature.
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3.5 Intensity-volume histogram features P88C

The (cumulative) intensity-volume histogram (IVH) of the set X𝑔𝑙 of voxel intensities in

the ROI intensity mask describes the relationship between discretised intensity 𝑖 and the

fraction of the volume containing at least intensity 𝑖, 𝜈27.

Depending on the imagingmodality, the calculation of IVH features requires discretising

X𝑔𝑙 to generate a new voxel setX𝑑,𝑔𝑙 with discretised intensities. Moreover, the total range

G of discretised intensities and the discretisation interval 𝑤𝑑 should be provided or de-

termined. The total rangeG determines the range of discretised intensities to be included

in the IVH, whereas the discretisation interval determines the intensity difference between

adjacent discretised intensities in the IVH.

Recommendations for discretisation parameters differ depending on what type of data

the image represents, and how it is represented. These recommendations are described

below.

Discrete calibrated image intensities

Some imagingmodalities by default generate voxelswith calibrated, discrete intensities

– for example CT. In this case, the discretisedROI voxel setX𝑑,𝑔𝑙 = X𝑔𝑙, i.e. no discretisation

required. If a re-segmentation range is provided (see Section 2.5), the total rangeG is equal

to the re-segmentation range. In the case of a half-open re-segmentation range, the upper

limit of the range is max(X𝑔𝑙). When no range is provided,G = [min(X𝑔𝑙),max(X𝑔𝑙)]. The
discretisation interval is 𝑤𝑑 = 1.

Continuous calibrated image intensities

Imaging with calibrated, continuous intensities such as PET requires discretisation to

determine the IVH, while preserving the quantitative intensity information. The use of a

fixed bin size discretisation method is thus recommended, see Section 2.7. This method re-

quires a minimum intensity 𝑋𝑔𝑙,𝑚𝑖𝑛, a maximum intensity 𝑋𝑔𝑙,𝑚𝑎𝑥 and the bin width 𝑤𝑏. If

a re-segmentation range is defined (see Section 2.5), 𝑋𝑔𝑙,𝑚𝑖𝑛 is set to the lower bound of the

re-segmentation range and 𝑋𝑔𝑙,𝑚𝑎𝑥 to the upper bound; otherwise 𝑋𝑔𝑙,𝑚𝑖𝑛 = min(X𝑔𝑙) and
𝑋𝑔𝑙,𝑚𝑎𝑥 = max(X𝑔𝑙) (i.e. the minimum and maximum intensities in the imaging volume

prior to discretisation). The bin width 𝑤𝑏 is modality dependent, but should be small relat-

ive to the intensity range, e.g. 0.10 SUV for 18F-FDG-PET.

Next, fixed bin size discretisation produces the voxel setX𝑑 of bin numbers, which needs

to be converted to bin centers in order to maintain a direct relationship with the original

intensities. We thus replace bin numbers X𝑑 with the intensity corresponding to the bin

center:

X𝑑,𝑔𝑙 = 𝑋𝑔𝑙,𝑚𝑖𝑛 + (X𝑑 − 0.5) 𝑤𝑏

The total range is thenG = [𝑋𝑔𝑙,𝑚𝑖𝑛+0.5𝑤𝑏, 𝑋𝑔𝑙,𝑚𝑎𝑥−0.5𝑤𝑏]. In this case, the discretisation

interval matches the bin width, i.e. 𝑤𝑑 = 𝑤𝑏.

Arbitrary intensity units

Some imaging modalities, such as many MRI sequences, produce arbitrary intensities.

In such cases, a fixed bin number discretisation method with 𝑁𝑔 = 1000 bins is recommen-

ded, see Section 2.7. The discretisation bin width is 𝑤𝑏 = (𝑋𝑔𝑙,𝑚𝑎𝑥 − 𝑋𝑔𝑙,𝑚𝑖𝑛) /𝑁𝑔, with

𝑋𝑔𝑙,𝑚𝑎𝑥 = max (X𝑔𝑙) and 𝑋𝑔𝑙,𝑚𝑖𝑛 = min (X𝑔𝑙), as re-segmentation ranges generally can-

not be provided for non-calibrated intensities. The fixed bin number discretisation produces
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𝑖 𝛾 𝜈
1 0.0 1.000

2 0.2 0.324

3 0.4 0.324

4 0.6 0.311

5 0.8 0.095

6 1.0 0.095

Table Ҏ.ɦҔ | Example intensity-volume histogram evaluated at discrete intensities 𝑖 of the digital
phantom. The total range G = [1, 6], with discretisation interval 𝑤 = 1. Thus 𝛾 is the intensity
fraction and 𝜈 is the corresponding volume fraction that contains intensity 𝑖 or greater.

the voxel set X𝑑 ∈ {1, 2, … , 𝑁𝑔}. Because of the lack of calibration, X𝑑,𝑔𝑙 = X𝑑, and con-

sequentially the discretisation interval is 𝑤𝑑 = 1 and the total range isG = [1, 𝑁𝑔]

Calculating the IV histogram

We useX𝑑,𝑔𝑙 to calculate fractional volumes and fractional intensities.

As voxels for the same image stack generally all have the same dimensions, we may

define fractional volume 𝜈 for discretised intensity 𝑖:

𝜈𝑖 = 1 − 1

𝑁𝑣

𝑁𝑣

∑
𝑘=1

[𝑋𝑑,𝑔𝑙,𝑘 < 𝑖]

Here […] is an Iversonbracket, yielding 1 if the condition is true and0otherwise. In essence,

we count the voxels containing a discretised intensity smaller than 𝑖, divide by the total

number of voxels, and then subtract this volume fraction to find 𝜈𝑖.

The intensity fraction 𝛾 for discretised intensity 𝑖 in the rangeG is calculated as:

𝛾𝑖 = 𝑖 − min (G)
max (G) − min (G)

Note that intensity fractions are also calculated for discretised intensities that are absent

inX𝑑,𝑔𝑙. For example intensities 2 and 5 are absent in the digital phantom (see Chapter 5),

but are still evaluated to determine both the fractional volume and the intensity fraction.

An example IVH for the digital phantom is shown in Table 3.70.

Aggregating features

We recommend calculating intensity-volume histogram features using the 3D volume

(DHQ4). Computing features per slice and subsequently averaging (3IDG) is not recommen-

ded.

3.5.1 Volume at intensity fraction BC2M

The volume at intensity fraction 𝑉𝑥 is the largest volume fraction 𝜈 that has an intensity frac-

tion 𝛾 of at least 𝑥%. This differs from conceptually similar dose-volume histograms used

in radiotherapy planning, where 𝑉10 would indicate the volume fraction receiving at least

10 Gy planned dose. El Naqa et al. 27 defined both 𝑉10 and 𝑉90 as features. In the context of

this work, these two features are defined as 𝐹ivh.V10 and 𝐹ivh.V90 , respectively.
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data value tol. consensus

dig. phantom 0.324 — very strong

config. A 0.978 0.001 strong

config. B 0.977 0.001 strong

config. C 0.998 0.001 moderate

config. D 0.972 0.003 strong

config. E 0.975 0.002 strong

Table Ҏ.ɦɰ | Reference values for the volume fraction at ɰҔ% intensity feature.

data value tol. consensus

dig. phantom 0.0946 — very strong

config. A 6.98 × 10−5 1.03 × 10−5 strong

config. B 7.31 × 10−5 1.03 × 10−5 strong

config. C 0.000152 2 × 10−5 strong

config. D 9 × 10−5 0.000415 strong

config. E 0.000157 0.000248 strong

Table Ҏ.ɦҍ | Reference values for the volume fraction at ғҔ% intensity feature.

3.5.2 Intensity at volume fraction GBPN

The intensity at volume fraction 𝐼𝑥 is the minimum discretised intensity 𝑖 present in at most

𝑥% of the volume. El Naqa et al. 27 defined both 𝐼10 and 𝐼90 as features. In the context of this

work, these two features are defined as 𝐹ivh.I10 and 𝐹ivh.I90 , respectively.

data value tol. consensus

dig. phantom 5 — very strong

config. A 96 — strong

config. B 92 — strong

config. C 88.8 0.2 moderate

config. D 87 0.1 strong

config. E 770 5 moderate

Table Ҏ.ɦҎ | Reference values for the intensity at ɰҔ% volume feature.
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data value tol. consensus

dig. phantom 2 — very strong

config. A −128 8 strong

config. B −135 8 strong

config. C −421 14 strong

config. D −303 20 strong

config. E 399 17 moderate

Table Ҏ.ɦҏ | Reference values for the intensity at ғҔ% volume feature.

3.5.3 Volume fraction difference between intensity fractions DDTU

This feature is the difference between the volume fractions at two different intensity frac-

tions, e.g. 𝑉10 − 𝑉90
27. In the context of this work, this feature is defined as 𝐹ivh.V10minusV90 .

data value tol. consensus

dig. phantom 0.23 — very strong

config. A 0.978 0.001 strong

config. B 0.977 0.001 strong

config. C 0.997 0.001 strong

config. D 0.971 0.001 strong

config. E 0.974 0.001 strong

Table Ҏ.ɦҐ | Reference values for the volume fraction difference between ɰҔ% and ғҔ% intensity
feature.

3.5.4 Intensity fraction difference between volume fractions CNV2

This feature is the difference between discretised intensities at two different fractional

volumes, e.g. 𝐼10 −𝐼90
27. In the context of this work, this feature is defined as 𝐹ivh.I10minusI90 .

data value tol. consensus

dig. phantom 3 — very strong

config. A 224 8 strong

config. B 227 8 strong

config. C 510 14 strong

config. D 390 20 strong

config. E 371 13 moderate

Table Ҏ.ɦґ | Reference values for the intensity difference between ɰҔ% and ғҔ% volume feature.

3.5.5 Area under the IVH curve 9CMM

Note: This feature currently has no reference values and should not be used.

The area under the IVH curve 𝐹ivh.auc was defined by van Velden et al. 82 . The area under the

IVH curve can be approximated by calculating the Riemann sum using the trapezoidal rule.

Note that if there is only one discretised intensity in the ROI, we define the area under the

IVH curve 𝐹ivh.auc = 0.
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3.6 Grey level co-occurrence based features LFYI

In image analysis, texture is one of the defining sets of features. Texture features were

originally designed to assess surface texture in 2D images. Texture analysis is however not

restricted to 2D slices and can be extended to 3D objects. Image intensities are generally

discretised before calculation of texture features, see Section 2.7.

The grey level co-occurrence matrix (GLCM) is a matrix that expresses how combina-

tions of discretised intensities (grey levels) of neighbouring pixels, or voxels in a 3D volume,

are distributed along one of the image directions. Generally, the neighbourhood for GLCM

is a 26-connected neighbourhood in 3D and a 8-connected neighbourhood in 2D. Thus, in

3D there are 13 unique direction vectors within the neighbourhood for Chebyshev distance

𝛿 = 1, i.e. (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (0, 1, −1), (1, 0, 1), (1, 0, −1), (1, 1, 0), (1, −1, 0),
(1, 1, 1), (1, 1, −1), (1, −1, 1) and (1, −1, −1), whereas in 2D the direction vectors are (1, 0, 0),
(1, 1, 0), (0, 1, 0) and (−1, 1, 0).

A GLCM is calculated for each direction vector, as follows. Let Mm be the 𝑁𝑔 × 𝑁𝑔 grey

level co-occurrencematrix, with𝑁𝑔 the number of discretised grey levels present in the ROI

intensity mask, and m the particular direction vector. Element (𝑖, 𝑗) of the GLCM contains

the frequency atwhich combinations of discretised grey levels 𝑖 and 𝑗 occur inneighbouring
voxels along directionm+ = m and along directionm− = −m. Then,Mm = Mm+ + Mm− =
Mm++M𝑇

m+
36. As a consequence theGLCMmatrixMm is symmetric. An example of the cal-

culation of a GLCM is shown in Table 3.77. Corresponding grey level co-occurrencematrices

for each direction are shown in Table 3.78.

1 2 2 3

1 2 3 3

4 2 4 1

4 1 2 3

(a) Grey levels

𝑗

𝑖

0 3 0 0

0 1 3 1

0 0 1 0

2 1 0 0

(b)Mm+=→

𝑗

𝑖

0 0 0 2

3 1 0 1

0 3 1 0

0 1 0 0

(c)Mm−=←

Table Ҏ.ɦɦ | Grey levels (a) and corresponding grey level co-occurrence matrices for the 0∘ (b) and
180∘ directions (c). In vector notation these directions are m+ = (1, 0) and m− = (−1, 0). To
calculate the symmetrical co-occurrence matrixMm both matrices are summed by element.

GLCM features rely on the probability distribution for the elements of the GLCM. Let us

considerMm=(1,0) from the example, as shown in Table 3.79. We derive a probability distri-

bution for grey level co-occurrences, Pm, by normalising Mm by the sum of its elements.

Each element 𝑝𝑖𝑗 ofPm is then the joint probability of grey levels 𝑖 and 𝑗 occurring in neigh-

bouring voxels along direction m. Then 𝑝𝑖. = ∑𝑁𝑔
𝑗=1

𝑝𝑖𝑗 is the row marginal probability, and

𝑝.𝑗 = ∑𝑁𝑔
𝑖=1

𝑝𝑖𝑗 is the columnmarginal probability. AsPm is by definition symmetric, 𝑝𝑖. = 𝑝.𝑗.

Furthermore, let us consider diagonal and cross-diagonal probabilities 𝑝𝑖−𝑗 and 𝑝𝑖+𝑗
36,74:

𝑝𝑖−𝑗,𝑘 =
𝑁𝑔

∑
𝑖=1

𝑁𝑔

∑
𝑗=1

𝑝𝑖𝑗 [𝑘 = |𝑖 − 𝑗|] 𝑘 = 0, … , 𝑁𝑔 − 1

𝑝𝑖+𝑗,𝑘 =
𝑁𝑔

∑
𝑖=1

𝑁𝑔

∑
𝑗=1

𝑝𝑖𝑗 [𝑘 = 𝑖 + 𝑗] 𝑘 = 2, … , 2𝑁𝑔

Here, […] is an Iverson bracket, which equals 1 when the condition within the brackets is
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𝑗

𝑖

0 3 0 2

3 2 3 2

0 3 2 0

2 2 0 0

(a)Mm=→

𝑗

𝑖

0 2 0 1

2 2 1 2

0 1 2 1

1 2 1 0

(b)Mm=↗

𝑗

𝑖

2 1 2 1

1 4 1 1

2 1 2 1

1 1 1 2

(c)Mm=↑

𝑗

𝑖

0 2 1 1

2 2 2 1

1 2 0 1

1 1 1 0

(d)Mm=↖

Table Ҏ.ɦҒ |Grey level co-occurrencematrices for the 0∘ (a), 45∘ (b), 90∘ (c) and 135∘ (d) directions.
In vector notation these directions are m = (1, 0), m = (1, 1), m = (0, 1) and m = (−1, 1),
respectively.

true and 0 otherwise. In effect we select only combinations of elements (𝑖, 𝑗) for which the

condition holds.

It should be noted that while a distance 𝛿 = 1 is commonly used for GLCM, other dis-

tances are possible. However, this does not change the number of For example, for 𝛿 = 3

(in 3D) the voxels at (0, 0, 3), (0, 3, 0), (3, 0, 0), (0, 3, 3), (0, 3, −3), (3, 0, 3), (3, 0, −3), (3, 3, 0),
(3, −3, 0), (3, 3, 3), (3, 3, −3), (3, −3, 3) and (3, −3, −3) from the center voxel are considered.

Aggregating features

To improve rotational invariance, GLCM feature values are computed by aggregating in-

formation from the different underlying directional matrices23. Five methods can be used

to aggregate GLCMs and arrive at a single feature value. A schematic example is shown in

Figure 3.3. A feature may be aggregated as follows:

1. Features are computed from each 2D directional matrix and averaged over 2D direc-

tions and slices (BTW3).

2. Features are computed from a singlematrix after merging 2D directional matrices per

slice, and then averaged over slices (SUJT).

3. Features are computed from a singlematrix after merging 2D directional matrices per

direction, and then averaged over directions (JJUI).

4. The feature is computed from a singlematrix aftermerging all 2D directionalmatrices

(ZW7Z).

5. Features are computed from each 3D directional matrix and averaged over the 3D dir-

ections (ITBB).

6. The feature is computed from a singlematrix aftermerging all 3D directionalmatrices

(IAZD).
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In methods 2,3,4 and 6, matrices are merged by summing the co-occurrence counts in each

matrix element (𝑖, 𝑗) over the differentmatrices. Probability distributions are subsequently

calculated for the merged GLCM, which is then used to calculate GLCM features. Feature

values may dependent strongly on the aggregation method.

𝑗 ∑𝑗

𝑖

0 3 0 2 5

3 2 3 2 10

0 3 2 0 5

2 2 0 0 4

∑𝑖 5 10 5 4 24

(a)Mm=(1,0) with margins

𝑗 𝑝𝑖.

𝑖

0.00 0.13 0.00 0.08 0.21

0.13 0.08 0.13 0.08 0.42

0.00 0.13 0.08 0.00 0.21

0.08 0.08 0.00 0.00 0.17

𝑝.𝑗 0.21 0.42 0.21 0.17 1.00

(b) Pm=(1,0) with margins

𝑘 = |𝑖 − 𝑗| 0 1 2 3

𝑝𝑖−𝑗 0.17 0.50 0.17 0.17

(c) Diagonal probability for Pm=(1,0)

𝑘 = 𝑖 + 𝑗 2 3 4 5 6 7 8

𝑝𝑖+𝑗 0.00 0.25 0.08 0.42 0.25 0.00 0.00

(d) Cross-diagonal probability for Pm=(1,0)

Table Ҏ.ɦғ | Grey level co-occurrence matrix for the 0∘ direction (a); its corresponding probability
matrixPm=(1,0) withmarginal probabilities 𝑝𝑖. and 𝑝.𝑗(b); the diagonal probabilities 𝑝𝑖−𝑗 (c); and the
cross-diagonal probabilities 𝑝𝑖+𝑗 (d). Discrepancies in panels b, c, and d are due to rounding errors
caused by showing only two decimal places. Also, note that due to GLCM symmetry marginal
probabilities 𝑝𝑖. and 𝑝.𝑗 are the same in both row and column margins of panel b.

Distances and distance weighting

The default neighbourhood includes all voxels within Chebyshev distance 1. The corres-

ponding direction vectors aremultiplied by the desired distance𝛿. From a technical point-

of-view, direction vectors may also be determined differently, using any distance norm. In

this case, direction vectors are the vectors to the voxels at 𝛿, or between 𝛿 and 𝛿 − 1 for

the Euclidean norm. Such usage is however rare and we caution against it due to potential

reproducibility issues.

GLCMs may be weighted for distance by multiplying M with a weighting factor 𝑤. By

default 𝑤 = 1, but 𝑤 may also be an inverse distance function to weight each GLCM, e.g.

𝑤 = ‖m‖−1
or𝑤 = exp(−‖m‖2)81, with ‖m‖ the length of direction vector𝑚. Whether distance

weighting yields different feature values depends on several factors. When aggregating the

feature values, matrices have to be merged first, otherwise weighting has no effect. Also,

it has no effect if the default neighbourhood is used and the Chebyshev norm is using for

weighting. Nor does weighting have an effect if either Manhattan or Chebyshev norms are

used both for constructing a non-default neighbourhood and for weighting. Weightingmay

furthermore have no effect for distance 𝛿 = 1, dependent on distance norms. Because of

these exceptions, we recommend against using distance weighting for GLCM.
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(a) ҍD: by slice, without merging (b) ҍD: by slice, with merging by slice

(c) ҍ.ҐD: by slice, with merging by direction (d) ҍ.ҐD: by slice, with full merging

(e) ҎD: as volume, without merging (f) ҎD: as volume, with full merging

Figure Ҏ.Ҏ | Approaches to calculating grey level co-occurrence matrix-based features. MΔ𝑘 are
texture matrices calculated for direction Δ in slice 𝑘 (if applicable), and 𝑓Δ𝑘 is the corresponding
feature value. In (b-d) and (e) the matrices are merged prior to feature calculation.

3.6.1 Joint maximum GYBY

Jointmaximum35 is theprobability corresponding to themost commongrey level co-occurrence

in the GLCM:

𝐹cm.joint.max = max(𝑝𝑖𝑗)

data aggr. method value tol. consensus

dig. phantom 2D, averaged 0.519 — very strong

dig. phantom 2D, slice-merged 0.512 — strong

dig. phantom 2.5D, direction-merged 0.489 — strong

dig. phantom 2.5D, merged 0.492 — strong

dig. phantom 3D, averaged 0.503 — very strong

dig. phantom 3D, merged 0.509 — very strong

config. A 2D, averaged 0.109 0.001 strong

config. A 2D, slice-merged 0.109 0.001 strong

config. A 2.5D, direction-merged 0.0943 0.0008 strong

config. A 2.5D, merged 0.0943 0.0008 strong

config. B 2D, averaged 0.156 0.002 strong

config. B 2D, slice-merged 0.156 0.002 strong

config. B 2.5D, direction-merged 0.126 0.002 strong
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config. B 2.5D, merged 0.126 0.002 strong

config. C 3D, averaged 0.111 0.002 strong

config. C 3D, merged 0.111 0.002 very strong

config. D 3D, averaged 0.232 0.007 strong

config. D 3D, merged 0.232 0.007 strong

config. E 3D, averaged 0.153 0.003 moderate

config. E 3D, merged 0.153 0.003 strong

Table Ҏ.ҒҔ | Reference values for the joint maximum feature.

3.6.2 Joint average 60VM

Joint average74 is the grey level weighted sum of joint probabilities:

𝐹cm.joint.avg =
𝑁𝑔

∑
𝑖=1

𝑁𝑔

∑
𝑗=1

𝑖 𝑝𝑖𝑗

data aggr. method value tol. consensus

dig. phantom 2D, averaged 2.14 — very strong

dig. phantom 2D, slice-merged 2.14 — strong

dig. phantom 2.5D, direction-merged 2.2 — strong

dig. phantom 2.5D, merged 2.2 — strong

dig. phantom 3D, averaged 2.14 — very strong

dig. phantom 3D, merged 2.15 — very strong

config. A 2D, averaged 20.6 0.1 strong

config. A 2D, slice-merged 20.6 0.1 strong

config. A 2.5D, direction-merged 21.3 0.1 strong

config. A 2.5D, merged 21.3 0.1 strong

config. B 2D, averaged 18.7 0.3 strong

config. B 2D, slice-merged 18.7 0.3 strong

config. B 2.5D, direction-merged 19.2 0.3 strong

config. B 2.5D, merged 19.2 0.3 strong

config. C 3D, averaged 39 0.2 strong

config. C 3D, merged 39 0.2 strong

config. D 3D, averaged 18.9 0.5 strong

config. D 3D, merged 18.9 0.5 strong

config. E 3D, averaged 22.1 0.3 strong

config. E 3D, merged 22.1 0.3 strong

Table Ҏ.Ғɰ | Reference values for the joint average feature.
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3.6.3 Joint variance UR99

The joint variance74, which is also called sum of squares36, is defined as:

𝐹cm.joint.var =
𝑁𝑔

∑
𝑖=1

𝑁𝑔

∑
𝑗=1

(𝑖 − 𝜇)2 𝑝𝑖𝑗

Here 𝜇 is equal to the value of 𝐹cm.joint.avg , which was defined above.

data aggr. method value tol. consensus

dig. phantom 2D, averaged 2.69 — very strong

dig. phantom 2D, slice-merged 2.71 — strong

dig. phantom 2.5D, direction-merged 3.22 — strong

dig. phantom 2.5D, merged 3.24 — strong

dig. phantom 3D, averaged 3.1 — very strong

dig. phantom 3D, merged 3.13 — very strong

config. A 2D, averaged 27 0.4 strong

config. A 2D, slice-merged 27 0.4 strong

config. A 2.5D, direction-merged 18.6 0.5 strong

config. A 2.5D, merged 18.6 0.5 strong

config. B 2D, averaged 21 0.3 strong

config. B 2D, slice-merged 21 0.3 strong

config. B 2.5D, direction-merged 14.2 0.1 strong

config. B 2.5D, merged 14.2 0.1 strong

config. C 3D, averaged 73.7 2 strong

config. C 3D, merged 73.8 2 very strong

config. D 3D, averaged 17.6 0.4 strong

config. D 3D, merged 17.6 0.4 strong

config. E 3D, averaged 24.4 0.9 moderate

config. E 3D, merged 24.4 0.9 strong

Table Ҏ.Ғҍ | Reference values for the joint variance feature.

3.6.4 Joint entropy TU9B

Joint entropy 36 is defined as:

𝐹cm.joint.entr = −
𝑁𝑔

∑
𝑖=1

𝑁𝑔

∑
𝑗=1

𝑝𝑖𝑗 log
2
𝑝𝑖𝑗

data aggr. method value tol. consensus

dig. phantom 2D, averaged 2.05 — very strong

dig. phantom 2D, slice-merged 2.24 — strong

dig. phantom 2.5D, direction-merged 2.48 — strong

dig. phantom 2.5D, merged 2.61 — strong
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dig. phantom 3D, averaged 2.4 — very strong

dig. phantom 3D, merged 2.57 — very strong

config. A 2D, averaged 5.82 0.04 strong

config. A 2D, slice-merged 5.9 0.04 strong

config. A 2.5D, direction-merged 5.78 0.04 strong

config. A 2.5D, merged 5.79 0.04 strong

config. B 2D, averaged 5.26 0.02 strong

config. B 2D, slice-merged 5.45 0.01 strong

config. B 2.5D, direction-merged 5.45 0.01 strong

config. B 2.5D, merged 5.46 0.01 strong

config. C 3D, averaged 6.39 0.06 strong

config. C 3D, merged 6.42 0.06 very strong

config. D 3D, averaged 4.95 0.03 strong

config. D 3D, merged 4.96 0.03 strong

config. E 3D, averaged 5.6 0.03 strong

config. E 3D, merged 5.61 0.03 strong

Table Ҏ.ҒҎ | Reference values for the joint entropy feature.

3.6.5 Difference average TF7R

The difference average74 for the diagonal probabilities is defined as:

𝐹cm.diff .avg =
𝑁𝑔−1

∑
𝑘=0

𝑘 𝑝𝑖−𝑗,𝑘

By definition difference average is equivalent to the dissimilarity feature81.

data aggr. method value tol. consensus

dig. phantom 2D, averaged 1.42 — very strong

dig. phantom 2D, slice-merged 1.4 — strong

dig. phantom 2.5D, direction-merged 1.46 — strong

dig. phantom 2.5D, merged 1.44 — strong

dig. phantom 3D, averaged 1.43 — very strong

dig. phantom 3D, merged 1.38 — very strong

config. A 2D, averaged 1.58 0.03 strong

config. A 2D, slice-merged 1.57 0.03 strong

config. A 2.5D, direction-merged 1.35 0.03 strong

config. A 2.5D, merged 1.35 0.03 strong

config. B 2D, averaged 1.81 0.01 strong

config. B 2D, slice-merged 1.81 0.01 strong

config. B 2.5D, direction-merged 1.47 0.01 strong

config. B 2.5D, merged 1.47 0.01 strong

config. C 3D, averaged 2.17 0.05 strong

config. C 3D, merged 2.16 0.05 strong

config. D 3D, averaged 1.29 0.01 strong
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config. D 3D, merged 1.29 0.01 strong

config. E 3D, averaged 1.7 0.01 strong

config. E 3D, merged 1.7 0.01 strong

Table Ҏ.Ғҏ | Reference values for the difference average feature.

3.6.6 Difference variance D3YU

The difference variance for the diagonal probabilities36 is defined as:

𝐹cm.diff .var =
𝑁𝑔−1

∑
𝑘=0

(𝑘 − 𝜇)2𝑝𝑖−𝑗,𝑘

Here 𝜇 is equal to the value of difference average.

data aggr. method value tol. consensus

dig. phantom 2D, averaged 2.9 — very strong

dig. phantom 2D, slice-merged 3.06 — strong

dig. phantom 2.5D, direction-merged 3.11 — strong

dig. phantom 2.5D, merged 3.23 — strong

dig. phantom 3D, averaged 3.06 — very strong

dig. phantom 3D, merged 3.21 — very strong

config. A 2D, averaged 4.94 0.19 strong

config. A 2D, slice-merged 4.96 0.19 strong

config. A 2.5D, direction-merged 4.12 0.2 strong

config. A 2.5D, merged 4.14 0.2 strong

config. B 2D, averaged 7.74 0.05 strong

config. B 2D, slice-merged 7.76 0.05 strong

config. B 2.5D, direction-merged 6.48 0.06 strong

config. B 2.5D, merged 6.48 0.06 strong

config. C 3D, averaged 14.4 0.5 strong

config. C 3D, merged 14.4 0.5 strong

config. D 3D, averaged 5.37 0.11 strong

config. D 3D, merged 5.38 0.11 strong

config. E 3D, averaged 8.22 0.06 strong

config. E 3D, merged 8.23 0.06 strong

Table Ҏ.ҒҐ | Reference values for the difference variance feature.

3.6.7 Difference entropy NTRS

The difference entropy for the diagonal probabilities36 is defined as:

𝐹cm.diff .entr = −
𝑁𝑔−1

∑
𝑘=0

𝑝𝑖−𝑗,𝑘 log
2
𝑝𝑖−𝑗,𝑘
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data aggr. method value tol. consensus

dig. phantom 2D, averaged 1.4 — very strong

dig. phantom 2D, slice-merged 1.49 — strong

dig. phantom 2.5D, direction-merged 1.61 — strong

dig. phantom 2.5D, merged 1.67 — strong

dig. phantom 3D, averaged 1.56 — very strong

dig. phantom 3D, merged 1.64 — very strong

config. A 2D, averaged 2.27 0.03 strong

config. A 2D, slice-merged 2.28 0.03 strong

config. A 2.5D, direction-merged 2.16 0.03 strong

config. A 2.5D, merged 2.16 0.03 strong

config. B 2D, averaged 2.35 0.01 strong

config. B 2D, slice-merged 2.38 0.01 strong

config. B 2.5D, direction-merged 2.24 0.01 moderate

config. B 2.5D, merged 2.24 0.01 strong

config. C 3D, averaged 2.64 0.03 strong

config. C 3D, merged 2.64 0.03 very strong

config. D 3D, averaged 2.13 0.01 strong

config. D 3D, merged 2.14 0.01 strong

config. E 3D, averaged 2.39 0.01 strong

config. E 3D, merged 2.4 0.01 strong

Table Ҏ.Ғґ | Reference values for the difference entropy feature.

3.6.8 Sum average ZGXS

The sum average for the cross-diagonal probabilities36 is defined as:

𝐹cm.sum.avg =
2𝑁𝑔

∑
𝑘=2

𝑘 𝑝𝑖+𝑗,𝑘

By definition, 𝐹cm.sum.avg = 2𝐹cm.joint.avg
81.

data aggr. method value tol. consensus

dig. phantom 2D, averaged 4.28 — very strong

dig. phantom 2D, slice-merged 4.29 — strong

dig. phantom 2.5D, direction-merged 4.41 — strong

dig. phantom 2.5D, merged 4.41 — strong

dig. phantom 3D, averaged 4.29 — very strong

dig. phantom 3D, merged 4.3 — very strong

config. A 2D, averaged 41.3 0.1 strong

config. A 2D, slice-merged 41.3 0.1 strong

config. A 2.5D, direction-merged 42.7 0.1 strong

config. A 2.5D, merged 42.7 0.1 strong

config. B 2D, averaged 37.4 0.5 strong
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config. B 2D, slice-merged 37.4 0.5 strong

config. B 2.5D, direction-merged 38.5 0.6 strong

config. B 2.5D, merged 38.5 0.6 strong

config. C 3D, averaged 78 0.3 strong

config. C 3D, merged 78 0.3 strong

config. D 3D, averaged 37.7 0.8 strong

config. D 3D, merged 37.7 0.8 strong

config. E 3D, averaged 44.3 0.4 strong

config. E 3D, merged 44.3 0.4 strong

Table Ҏ.Ғɦ | Reference values for the sum average feature.

3.6.9 Sum variance OEEB

The sum variance for the cross-diagonal probabilities36 is defined as:

𝐹cm.sum.var =
2𝑁𝑔

∑
𝑘=2

(𝑘 − 𝜇)2𝑝𝑖+𝑗,𝑘

Here 𝜇 is equal to the value of sum average. Sum variance is mathematically identical to the

cluster tendency feature81.

data aggr. method value tol. consensus

dig. phantom 2D, averaged 5.47 — very strong

dig. phantom 2D, slice-merged 5.66 — strong

dig. phantom 2.5D, direction-merged 7.48 — strong

dig. phantom 2.5D, merged 7.65 — strong

dig. phantom 3D, averaged 7.07 — very strong

dig. phantom 3D, merged 7.41 — very strong

config. A 2D, averaged 100 1 strong

config. A 2D, slice-merged 100 1 strong

config. A 2.5D, direction-merged 68.5 1.3 strong

config. A 2.5D, merged 68.5 1.3 strong

config. B 2D, averaged 72.1 1 strong

config. B 2D, slice-merged 72.3 1 strong

config. B 2.5D, direction-merged 48.1 0.4 strong

config. B 2.5D, merged 48.1 0.4 strong

config. C 3D, averaged 276 8 strong

config. C 3D, merged 276 8 very strong

config. D 3D, averaged 63.4 1.3 strong

config. D 3D, merged 63.5 1.3 strong

config. E 3D, averaged 86.6 3.3 moderate

config. E 3D, merged 86.7 3.3 strong

Table Ҏ.ҒҒ | Reference values for the sum variance feature.
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3.6.10 Sum entropy P6QZ

The sum entropy for the cross-diagonal probabilities36 is defined as:

𝐹cm.sum.entr = −
2𝑁𝑔

∑
𝑘=2

𝑝𝑖+𝑗,𝑘 log
2
𝑝𝑖+𝑗,𝑘

data aggr. method value tol. consensus

dig. phantom 2D, averaged 1.6 — very strong

dig. phantom 2D, slice-merged 1.79 — strong

dig. phantom 2.5D, direction-merged 2.01 — strong

dig. phantom 2.5D, merged 2.14 — strong

dig. phantom 3D, averaged 1.92 — very strong

dig. phantom 3D, merged 2.11 — very strong

config. A 2D, averaged 4.19 0.03 strong

config. A 2D, slice-merged 4.21 0.03 strong

config. A 2.5D, direction-merged 4.17 0.03 strong

config. A 2.5D, merged 4.18 0.03 strong

config. B 2D, averaged 3.83 0.01 strong

config. B 2D, slice-merged 3.89 0.01 strong

config. B 2.5D, direction-merged 3.91 0.01 strong

config. B 2.5D, merged 3.91 0.01 strong

config. C 3D, averaged 4.56 0.04 strong

config. C 3D, merged 4.56 0.04 very strong

config. D 3D, averaged 3.68 0.02 strong

config. D 3D, merged 3.68 0.02 strong

config. E 3D, averaged 3.96 0.02 strong

config. E 3D, merged 3.97 0.02 strong

Table Ҏ.Ғғ | Reference values for the sum entropy feature.

3.6.11 Angular second moment 8ZQL

The angular second moment36, which represents the energy of PΔ, is defined as:

𝐹cm.energy =
𝑁𝑔

∑
𝑖=1

𝑁𝑔

∑
𝑗=1

𝑝2
𝑖𝑗

This feature is also called energy 1,74 and uniformity 18.

data aggr. method value tol. consensus

dig. phantom 2D, averaged 0.368 — very strong

dig. phantom 2D, slice-merged 0.352 — strong

dig. phantom 2.5D, direction-merged 0.286 — strong

dig. phantom 2.5D, merged 0.277 — strong
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dig. phantom 3D, averaged 0.303 — very strong

dig. phantom 3D, merged 0.291 — very strong

config. A 2D, averaged 0.045 0.0008 strong

config. A 2D, slice-merged 0.0446 0.0008 strong

config. A 2.5D, direction-merged 0.0429 0.0007 strong

config. A 2.5D, merged 0.0427 0.0007 strong

config. B 2D, averaged 0.0678 0.0006 strong

config. B 2D, slice-merged 0.0669 0.0006 strong

config. B 2.5D, direction-merged 0.0581 0.0006 strong

config. B 2.5D, merged 0.058 0.0006 strong

config. C 3D, averaged 0.045 0.001 strong

config. C 3D, merged 0.0447 0.001 very strong

config. D 3D, averaged 0.11 0.003 strong

config. D 3D, merged 0.109 0.003 strong

config. E 3D, averaged 0.0638 0.0009 strong

config. E 3D, merged 0.0635 0.0009 strong

Table Ҏ.ғҔ | Reference values for the angular second moment feature.

3.6.12 Contrast ACUI

Contrast assesses grey level variations36. Hence elements of MΔ that represent large grey

level differences receive greater weight. Contrast is defined as 18:

𝐹cm.contrast =
𝑁𝑔

∑
𝑖=1

𝑁𝑔

∑
𝑗=1

(𝑖 − 𝑗)2 𝑝𝑖𝑗

Note that the original definition byHaralick et al. 36 is seeminglymore complex, but rearran-

ging and simplifying terms leads to the above formulation of contrast.

data aggr. method value tol. consensus

dig. phantom 2D, averaged 5.28 — very strong

dig. phantom 2D, slice-merged 5.19 — strong

dig. phantom 2.5D, direction-merged 5.39 — strong

dig. phantom 2.5D, merged 5.29 — strong

dig. phantom 3D, averaged 5.32 — very strong

dig. phantom 3D, merged 5.12 — very strong

config. A 2D, averaged 7.85 0.26 strong

config. A 2D, slice-merged 7.82 0.26 strong

config. A 2.5D, direction-merged 5.96 0.27 strong

config. A 2.5D, merged 5.95 0.27 strong

config. B 2D, averaged 11.9 0.1 strong

config. B 2D, slice-merged 11.8 0.1 strong

config. B 2.5D, direction-merged 8.66 0.09 strong

config. B 2.5D, merged 8.65 0.09 strong

config. C 3D, averaged 19.2 0.7 strong
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config. C 3D, merged 19.1 0.7 very strong

config. D 3D, averaged 7.07 0.13 strong

config. D 3D, merged 7.05 0.13 strong

config. E 3D, averaged 11.1 0.1 strong

config. E 3D, merged 11.1 0.1 strong

Table Ҏ.ғɰ | Reference values for the contrast feature.

3.6.13 Dissimilarity 8S9J

Dissimilarity 18 is conceptually similar to the contrast feature, and is defined as:

𝐹cm.dissimilarity =
𝑁𝑔

∑
𝑖=1

𝑁𝑔

∑
𝑗=1

|𝑖 − 𝑗| 𝑝𝑖𝑗

By definition dissimilarity is equivalent to the difference average feature81.

data aggr. method value tol. consensus

dig. phantom 2D, averaged 1.42 — very strong

dig. phantom 2D, slice-merged 1.4 — strong

dig. phantom 2.5D, direction-merged 1.46 — strong

dig. phantom 2.5D, merged 1.44 — strong

dig. phantom 3D, averaged 1.43 — very strong

dig. phantom 3D, merged 1.38 — very strong

config. A 2D, averaged 1.58 0.03 strong

config. A 2D, slice-merged 1.57 0.03 strong

config. A 2.5D, direction-merged 1.35 0.03 strong

config. A 2.5D, merged 1.35 0.03 strong

config. B 2D, averaged 1.81 0.01 strong

config. B 2D, slice-merged 1.81 0.01 strong

config. B 2.5D, direction-merged 1.47 0.01 strong

config. B 2.5D, merged 1.47 0.01 strong

config. C 3D, averaged 2.17 0.05 strong

config. C 3D, merged 2.16 0.05 very strong

config. D 3D, averaged 1.29 0.01 strong

config. D 3D, merged 1.29 0.01 strong

config. E 3D, averaged 1.7 0.01 strong

config. E 3D, merged 1.7 0.01 strong

Table Ҏ.ғҍ | Reference values for the dissimilarity feature.

3.6.14 Inverse difference IB1Z

Inverse difference is a measure of homogeneity 18. Grey level co-occurrences with a large

difference in levels areweighed less, thus lowering the total feature value. The feature score
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is maximal if all grey levels are the same. Inverse difference is defined as:

𝐹cm.inv .diff =
𝑁𝑔

∑
𝑖=1

𝑁𝑔

∑
𝑗=1

𝑝𝑖𝑗
1 + |𝑖 − 𝑗|

The equation above may also be expressed in terms of diagonal probabilities81:

𝐹cm.inv .diff =
𝑁𝑔−1

∑
𝑘=0

𝑝𝑖−𝑗,𝑘
1 + 𝑘

data aggr. method value tol. consensus

dig. phantom 2D, averaged 0.678 — very strong

dig. phantom 2D, slice-merged 0.683 — strong

dig. phantom 2.5D, direction-merged 0.668 — strong

dig. phantom 2.5D, merged 0.673 — strong

dig. phantom 3D, averaged 0.677 — very strong

dig. phantom 3D, merged 0.688 — very strong

config. A 2D, averaged 0.581 0.003 strong

config. A 2D, slice-merged 0.581 0.003 strong

config. A 2.5D, direction-merged 0.605 0.003 strong

config. A 2.5D, merged 0.605 0.003 strong

config. B 2D, averaged 0.592 0.001 strong

config. B 2D, slice-merged 0.593 0.001 strong

config. B 2.5D, direction-merged 0.628 0.001 strong

config. B 2.5D, merged 0.628 0.001 strong

config. C 3D, averaged 0.582 0.004 strong

config. C 3D, merged 0.583 0.004 very strong

config. D 3D, averaged 0.682 0.003 strong

config. D 3D, merged 0.682 0.003 strong

config. E 3D, averaged 0.608 0.001 moderate

config. E 3D, merged 0.608 0.001 strong

Table Ҏ.ғҎ | Reference values for the inverse difference feature.

3.6.15 Normalised inverse difference NDRX

Clausi 18 suggested normalising inverse difference to improve classification ability. The nor-

malised feature is then defined as:

𝐹cm.inv .diff .norm =
𝑁𝑔

∑
𝑖=1

𝑁𝑔

∑
𝑗=1

𝑝𝑖𝑗
1 + |𝑖 − 𝑗|/𝑁𝑔

Note that in Clausi’s definition, |𝑖 − 𝑗|2/𝑁2
𝑔 is used instead of |𝑖 − 𝑗|/𝑁𝑔, which is likely an

oversight, as this exactly matches the definition of the normalised inverse difference moment

feature.
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The equation may also be expressed in terms of diagonal probabilities81:

𝐹cm.inv .diff .norm =
𝑁𝑔−1

∑
𝑘=0

𝑝𝑖−𝑗,𝑘
1 + 𝑘/𝑁𝑔

data aggr. method value tol. consensus

dig. phantom 2D, averaged 0.851 — very strong

dig. phantom 2D, slice-merged 0.854 — strong

dig. phantom 2.5D, direction-merged 0.847 — strong

dig. phantom 2.5D, merged 0.85 — strong

dig. phantom 3D, averaged 0.851 — very strong

dig. phantom 3D, merged 0.856 — very strong

config. A 2D, averaged 0.961 0.001 strong

config. A 2D, slice-merged 0.961 0.001 strong

config. A 2.5D, direction-merged 0.966 0.001 strong

config. A 2.5D, merged 0.966 0.001 strong

config. B 2D, averaged 0.952 0.001 strong

config. B 2D, slice-merged 0.952 0.001 strong

config. B 2.5D, direction-merged 0.96 0.001 strong

config. B 2.5D, merged 0.96 0.001 strong

config. C 3D, averaged 0.966 0.001 strong

config. C 3D, merged 0.966 0.001 very strong

config. D 3D, averaged 0.965 0.001 strong

config. D 3D, merged 0.965 0.001 strong

config. E 3D, averaged 0.955 0.001 strong

config. E 3D, merged 0.955 0.001 strong

Table Ҏ.ғҏ | Reference values for the normalised inverse difference feature.

3.6.16 Inverse difference moment WF0Z

Inverse difference moment36 is similar in concept to the inverse difference feature, but with

lower weights for elements that are further from the diagonal:

𝐹cm.inv .diff .mom =
𝑁𝑔

∑
𝑖=1

𝑁𝑔

∑
𝑗=1

𝑝𝑖𝑗

1 + (𝑖 − 𝑗)2

The equation above may also be expressed in terms of diagonal probabilities81:

𝐹cm.inv .diff .mom =
𝑁𝑔−1

∑
𝑘=0

𝑝𝑖−𝑗,𝑘
1 + 𝑘2

This feature is also called homogeneity 74.
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data aggr. method value tol. consensus

dig. phantom 2D, averaged 0.619 — very strong

dig. phantom 2D, slice-merged 0.625 — strong

dig. phantom 2.5D, direction-merged 0.606 — strong

dig. phantom 2.5D, merged 0.613 — strong

dig. phantom 3D, averaged 0.618 — very strong

dig. phantom 3D, merged 0.631 — very strong

config. A 2D, averaged 0.544 0.003 strong

config. A 2D, slice-merged 0.544 0.003 strong

config. A 2.5D, direction-merged 0.573 0.003 strong

config. A 2.5D, merged 0.573 0.003 strong

config. B 2D, averaged 0.557 0.001 strong

config. B 2D, slice-merged 0.558 0.001 strong

config. B 2.5D, direction-merged 0.6 0.001 strong

config. B 2.5D, merged 0.6 0.001 strong

config. C 3D, averaged 0.547 0.004 strong

config. C 3D, merged 0.548 0.004 very strong

config. D 3D, averaged 0.656 0.003 strong

config. D 3D, merged 0.657 0.003 strong

config. E 3D, averaged 0.576 0.001 strong

config. E 3D, merged 0.577 0.001 strong

Table Ҏ.ғҐ | Reference values for the inverse difference moment feature.

3.6.17 Normalised inverse difference moment 1QCO

Clausi 18 suggested normalising inverse differencemoment to improve classification perform-

ance. This leads to the following definition:

𝐹cm.inv .diff .mom.norm =
𝑁𝑔

∑
𝑖=1

𝑁𝑔

∑
𝑗=1

𝑝𝑖𝑗

1 + (𝑖 − 𝑗)2 /𝑁2𝑔

The equation above may also be expressed in terms of diagonal probabilities81:

𝐹cm.inv .diff .mom.norm =
𝑁𝑔−1

∑
𝑘=0

𝑝𝑖−𝑗,𝑘

1 + (𝑘/𝑁𝑔)2

data aggr. method value tol. consensus

dig. phantom 2D, averaged 0.899 — very strong

dig. phantom 2D, slice-merged 0.901 — strong

dig. phantom 2.5D, direction-merged 0.897 — strong

dig. phantom 2.5D, merged 0.899 — strong

dig. phantom 3D, averaged 0.898 — very strong

dig. phantom 3D, merged 0.902 — very strong
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config. A 2D, averaged 0.994 0.001 strong

config. A 2D, slice-merged 0.994 0.001 strong

config. A 2.5D, direction-merged 0.996 0.001 strong

config. A 2.5D, merged 0.996 0.001 strong

config. B 2D, averaged 0.99 0.001 strong

config. B 2D, slice-merged 0.99 0.001 strong

config. B 2.5D, direction-merged 0.992 0.001 strong

config. B 2.5D, merged 0.992 0.001 strong

config. C 3D, averaged 0.994 0.001 strong

config. C 3D, merged 0.994 0.001 very strong

config. D 3D, averaged 0.994 0.001 strong

config. D 3D, merged 0.994 0.001 strong

config. E 3D, averaged 0.99 0.001 strong

config. E 3D, merged 0.99 0.001 strong

Table Ҏ.ғґ | Reference values for the normalised inverse difference moment feature.

3.6.18 Inverse variance E8JP

The inverse variance 1 feature is defined as:

𝐹cm.inv .var = 2

𝑁𝑔

∑
𝑖=1

𝑁𝑔

∑
𝑗>𝑖

𝑝𝑖𝑗

(𝑖 − 𝑗)2

The equation above may also be expressed in terms of diagonal probabilities. Note that

in this case, summation starts at 𝑘 = 1 instead of 𝑘 = 081:

𝐹cm.inv .var =
𝑁𝑔−1

∑
𝑘=1

𝑝𝑖−𝑗,𝑘
𝑘2

data aggr. method value tol. consensus

dig. phantom 2D, averaged 0.0567 — very strong

dig. phantom 2D, slice-merged 0.0553 — strong

dig. phantom 2.5D, direction-merged 0.0597 — strong

dig. phantom 2.5D, merged 0.0582 — strong

dig. phantom 3D, averaged 0.0604 — very strong

dig. phantom 3D, merged 0.0574 — very strong

config. A 2D, averaged 0.441 0.001 strong

config. A 2D, slice-merged 0.441 0.001 strong

config. A 2.5D, direction-merged 0.461 0.002 strong

config. A 2.5D, merged 0.461 0.002 strong

config. B 2D, averaged 0.401 0.002 strong

config. B 2D, slice-merged 0.401 0.002 strong

config. B 2.5D, direction-merged 0.424 0.003 strong

config. B 2.5D, merged 0.424 0.003 strong

config. C 3D, averaged 0.39 0.003 strong
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config. C 3D, merged 0.39 0.003 very strong

config. D 3D, averaged 0.341 0.005 strong

config. D 3D, merged 0.34 0.005 strong

config. E 3D, averaged 0.41 0.004 strong

config. E 3D, merged 0.41 0.004 strong

Table Ҏ.ғɦ | Reference values for the inverse variance feature.

3.6.19 Correlation NI2N

Correlation36 is defined as:

𝐹cm.corr = 1

𝜎𝑖. 𝜎.𝑗
⎛⎜
⎝

−𝜇𝑖. 𝜇.𝑗 +
𝑁𝑔

∑
𝑖=1

𝑁𝑔

∑
𝑗=1

𝑖 𝑗 𝑝𝑖𝑗
⎞⎟
⎠

𝜇𝑖. = ∑𝑁𝑔
𝑖=1

𝑖 𝑝𝑖. and 𝜎𝑖. = (∑𝑁𝑔
𝑖=1

(𝑖 − 𝜇𝑖.)2𝑝𝑖.)
1/2

are the mean and standard deviation of

row marginal probability 𝑝𝑖., respectively. Likewise, 𝜇.𝑗 and 𝜎.𝑗 are the mean and standard

deviation of the columnmarginal probability 𝑝.𝑗, respectively. The calculation of correlation

can be simplified since PΔ is symmetrical:

𝐹cm.corr = 1

𝜎2
𝑖.

⎛⎜
⎝

−𝜇2
𝑖. +

𝑁𝑔

∑
𝑖=1

𝑁𝑔

∑
𝑗=1

𝑖 𝑗 𝑝𝑖𝑗
⎞⎟
⎠

An equivalent formulation of correlation is:

𝐹cm.corr = 1

𝜎𝑖. 𝜎.𝑗

𝑁𝑔

∑
𝑖=1

𝑁𝑔

∑
𝑗=1

(𝑖 − 𝜇𝑖.) (𝑗 − 𝜇.𝑗) 𝑝𝑖𝑗

Again, simplifying due to matrix symmetry yields:

𝐹cm.corr = 1

𝜎2
𝑖.

𝑁𝑔

∑
𝑖=1

𝑁𝑔

∑
𝑗=1

(𝑖 − 𝜇𝑖.) (𝑗 − 𝜇𝑖.) 𝑝𝑖𝑗

data aggr. method value tol. consensus

dig. phantom 2D, averaged −0.0121 — very strong

dig. phantom 2D, slice-merged 0.0173 — strong

dig. phantom 2.5D, direction-merged 0.178 — strong

dig. phantom 2.5D, merged 0.182 — strong

dig. phantom 3D, averaged 0.157 — very strong

dig. phantom 3D, merged 0.183 — very strong

config. A 2D, averaged 0.778 0.002 strong

config. A 2D, slice-merged 0.78 0.002 strong

config. A 2.5D, direction-merged 0.839 0.003 strong

config. A 2.5D, merged 0.84 0.003 strong

config. B 2D, averaged 0.577 0.002 strong

config. B 2D, slice-merged 0.58 0.002 strong

config. B 2.5D, direction-merged 0.693 0.003 strong
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config. B 2.5D, merged 0.695 0.003 strong

config. C 3D, averaged 0.869 0.001 strong

config. C 3D, merged 0.871 0.001 strong

config. D 3D, averaged 0.798 0.005 strong

config. D 3D, merged 0.8 0.005 strong

config. E 3D, averaged 0.771 0.006 moderate

config. E 3D, merged 0.773 0.006 strong

Table Ҏ.ғҒ | Reference values for the correlation feature.

3.6.20 Autocorrelation QWB0

Soh and Tsatsoulis 63 defined autocorrelation as:

𝐹cm.auto.corr =
𝑁𝑔

∑
𝑖=1

𝑁𝑔

∑
𝑗=1

𝑖 𝑗 𝑝𝑖𝑗

data aggr. method value tol. consensus

dig. phantom 2D, averaged 5.09 — very strong

dig. phantom 2D, slice-merged 5.14 — strong

dig. phantom 2.5D, direction-merged 5.4 — strong

dig. phantom 2.5D, merged 5.45 — strong

dig. phantom 3D, averaged 5.06 — very strong

dig. phantom 3D, merged 5.19 — very strong

config. A 2D, averaged 455 2 strong

config. A 2D, slice-merged 455 2 strong

config. A 2.5D, direction-merged 471 2 strong

config. A 2.5D, merged 471 2 strong

config. B 2D, averaged 369 11 strong

config. B 2D, slice-merged 369 11 strong

config. B 2.5D, direction-merged 380 11 strong

config. B 2.5D, merged 380 11 strong

config. C 3D, averaged 1.58 × 103 10 strong

config. C 3D, merged 1.58 × 103 10 strong

config. D 3D, averaged 370 16 strong

config. D 3D, merged 370 16 strong

config. E 3D, averaged 509 8 strong

config. E 3D, merged 509 8 strong

Table Ҏ.ғғ | Reference values for the autocorrelation feature.
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3.6.21 Cluster tendency DG8W

Cluster tendency 1 is defined as:

𝐹cm.clust.tend =
𝑁𝑔

∑
𝑖=1

𝑁𝑔

∑
𝑗=1

(𝑖 + 𝑗 − 𝜇𝑖. − 𝜇.𝑗)
2 𝑝𝑖𝑗

Here𝜇𝑖. = ∑𝑁𝑔
𝑖=1

𝑖 𝑝𝑖. and𝜇.𝑗 = ∑𝑁𝑔
𝑗=1

𝑗 𝑝.𝑗. Because of the symmetric nature ofPΔ, the feature

can also be formulated as:

𝐹cm.clust.tend =
𝑁𝑔

∑
𝑖=1

𝑁𝑔

∑
𝑗=1

(𝑖 + 𝑗 − 2𝜇𝑖.)2 𝑝𝑖𝑗

Cluster tendency is mathematically equal to the sum variance feature81.

data aggr. method value tol. consensus

dig. phantom 2D, averaged 5.47 — very strong

dig. phantom 2D, slice-merged 5.66 — strong

dig. phantom 2.5D, direction-merged 7.48 — strong

dig. phantom 2.5D, merged 7.65 — strong

dig. phantom 3D, averaged 7.07 — very strong

dig. phantom 3D, merged 7.41 — very strong

config. A 2D, averaged 100 1 strong

config. A 2D, slice-merged 100 1 strong

config. A 2.5D, direction-merged 68.5 1.3 strong

config. A 2.5D, merged 68.5 1.3 strong

config. B 2D, averaged 72.1 1 strong

config. B 2D, slice-merged 72.3 1 strong

config. B 2.5D, direction-merged 48.1 0.4 strong

config. B 2.5D, merged 48.1 0.4 strong

config. C 3D, averaged 276 8 strong

config. C 3D, merged 276 8 very strong

config. D 3D, averaged 63.4 1.3 strong

config. D 3D, merged 63.5 1.3 strong

config. E 3D, averaged 86.6 3.3 moderate

config. E 3D, merged 86.7 3.3 strong

Table Ҏ.ɰҔҔ | Reference values for the cluster tendency feature.

3.6.22 Cluster shade 7NFM

Cluster shade74 is defined as:

𝐹cm.clust.shade =
𝑁𝑔

∑
𝑖=1

𝑁𝑔

∑
𝑗=1

(𝑖 + 𝑗 − 𝜇𝑖. − 𝜇.𝑗)
3 𝑝𝑖𝑗
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As with cluster tendency, 𝜇𝑖. = ∑𝑁𝑔
𝑖=1

𝑖 𝑝𝑖. and 𝜇.𝑗 = ∑𝑁𝑔
𝑗=1

𝑗 𝑝.𝑗. Because of the symmetric

nature of PΔ, the feature can also be formulated as:

𝐹cm.clust.shade =
𝑁𝑔

∑
𝑖=1

𝑁𝑔

∑
𝑗=1

(𝑖 + 𝑗 − 2𝜇𝑖.)3 𝑝𝑖𝑗

data aggr. method value tol. consensus

dig. phantom 2D, averaged 7 — very strong

dig. phantom 2D, slice-merged 6.98 — strong

dig. phantom 2.5D, direction-merged 16.6 — strong

dig. phantom 2.5D, merged 16.4 — strong

dig. phantom 3D, averaged 16.6 — very strong

dig. phantom 3D, merged 17.4 — very strong

config. A 2D, averaged −1.04 × 103 20 strong

config. A 2D, slice-merged −1.05 × 103 20 strong

config. A 2.5D, direction-merged −1.49 × 103 30 strong

config. A 2.5D, merged −1.49 × 103 30 strong

config. B 2D, averaged −668 17 strong

config. B 2D, slice-merged −673 17 strong

config. B 2.5D, direction-merged −905 19 strong

config. B 2.5D, merged −906 19 strong

config. C 3D, averaged −1.06 × 104 300 strong

config. C 3D, merged −1.06 × 104 300 very strong

config. D 3D, averaged −1.27 × 103 40 strong

config. D 3D, merged −1.28 × 103 40 strong

config. E 3D, averaged −2.07 × 103 70 moderate

config. E 3D, merged −2.08 × 103 70 strong

Table Ҏ.ɰҔɰ | Reference values for the cluster shade feature.

3.6.23 Cluster prominence AE86

Cluster prominence74 is defined as:

𝐹cm.clust.prom =
𝑁𝑔

∑
𝑖=1

𝑁𝑔

∑
𝑗=1

(𝑖 + 𝑗 − 𝜇𝑖. − 𝜇.𝑗)
4 𝑝𝑖𝑗

As before, 𝜇𝑖. = ∑𝑁𝑔
𝑖=1

𝑖 𝑝𝑖. and 𝜇.𝑗 = ∑𝑁𝑔
𝑗=1

𝑗 𝑝.𝑗. Because of the symmetric nature of PΔ, the

feature can also be formulated as:

𝐹cm.clust.prom =
𝑁𝑔

∑
𝑖=1

𝑁𝑔

∑
𝑗=1

(𝑖 + 𝑗 − 2𝜇𝑖.)4 𝑝𝑖𝑗
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data aggr. method value tol. consensus

dig. phantom 2D, averaged 79.1 — very strong

dig. phantom 2D, slice-merged 80.4 — strong

dig. phantom 2.5D, direction-merged 147 — strong

dig. phantom 2.5D, merged 142 — strong

dig. phantom 3D, averaged 145 — very strong

dig. phantom 3D, merged 147 — very strong

config. A 2D, averaged 5.27 × 104 500 strong

config. A 2D, slice-merged 5.28 × 104 500 strong

config. A 2.5D, direction-merged 4.76 × 104 700 strong

config. A 2.5D, merged 4.77 × 104 700 strong

config. B 2D, averaged 2.94 × 104 1.4 × 103 strong

config. B 2D, slice-merged 2.95 × 104 1.4 × 103 strong

config. B 2.5D, direction-merged 2.52 × 104 1 × 103 strong

config. B 2.5D, merged 2.53 × 104 1 × 103 strong

config. C 3D, averaged 5.69 × 105 1.1 × 104 strong

config. C 3D, merged 5.7 × 105 1.1 × 104 very strong

config. D 3D, averaged 3.57 × 104 1.4 × 103 strong

config. D 3D, merged 3.57 × 104 1.5 × 103 strong

config. E 3D, averaged 6.89 × 104 2.1 × 103 moderate

config. E 3D, merged 6.9 × 104 2.1 × 103 strong

Table Ҏ.ɰҔҍ | Reference values for the cluster prominence feature.

3.6.24 Information correlation 1 R8DG

Information theoretic correlation is estimated using two different measures36. For symmetric

PΔ the first measure is defined as:

𝐹cm.info.corr .1 = HXY − HXY1

HX

HXY = − ∑𝑁𝑔
𝑖=1

∑𝑁𝑔
𝑗=1

𝑝𝑖𝑗 log
2
𝑝𝑖𝑗 is the entropy for the joint probability. HX = − ∑𝑁𝑔

𝑖=1
𝑝𝑖. log

2
𝑝𝑖.

is the entropy for the row marginal probability, which due to symmetry is equal to the en-

tropy of the column marginal probability. HXY 1 is a type of entropy that is defined as:

HXY 1 = −
𝑁𝑔

∑
𝑖=1

𝑁𝑔

∑
𝑗=1

𝑝𝑖𝑗 log
2 (𝑝𝑖.𝑝.𝑗)

data aggr. method value tol. consensus

dig. phantom 2D, averaged −0.155 — very strong

dig. phantom 2D, slice-merged −0.0341 — strong

dig. phantom 2.5D, direction-merged −0.124 — strong

dig. phantom 2.5D, merged −0.0334 — strong

dig. phantom 3D, averaged −0.157 — very strong
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dig. phantom 3D, merged −0.0288 — very strong

config. A 2D, averaged −0.236 0.001 strong

config. A 2D, slice-merged −0.214 0.001 strong

config. A 2.5D, direction-merged −0.231 0.001 strong

config. A 2.5D, merged −0.228 0.001 strong

config. B 2D, averaged −0.239 0.001 strong

config. B 2D, slice-merged −0.181 0.001 strong

config. B 2.5D, direction-merged −0.188 0.001 strong

config. B 2.5D, merged −0.185 0.001 strong

config. C 3D, averaged −0.236 0.001 strong

config. C 3D, merged −0.228 0.001 strong

config. D 3D, averaged −0.231 0.003 strong

config. D 3D, merged −0.225 0.003 strong

config. E 3D, averaged −0.181 0.003 moderate

config. E 3D, merged −0.175 0.003 strong

Table Ҏ.ɰҔҎ | Reference values for the information correlation ɰ feature.

3.6.25 Information correlation 2 JN9H

The second measure of information theoretic correlation36 is estimated as follows for symmet-

ric PΔ:

𝐹cm.info.corr .2 = √1 − exp (−2 (HXY 2 − HXY ))

As earlier, HXY = − ∑𝑁𝑔
𝑖=1

∑𝑁𝑔
𝑗=1

𝑝𝑖𝑗 log
2
𝑝𝑖𝑗. HXY 2 is a type of entropy defined as:

HXY 2 = −
𝑁𝑔

∑
𝑖=1

𝑁𝑔

∑
𝑗=1

𝑝𝑖.𝑝.𝑗 log
2 (𝑝𝑖.𝑝.𝑗)

data aggr. method value tol. consensus

dig. phantom 2D, averaged 0.487 — strong

dig. phantom 2D, slice-merged 0.263 — strong

dig. phantom 2.5D, direction-merged 0.487 — strong

dig. phantom 2.5D, merged 0.291 — strong

dig. phantom 3D, averaged 0.52 — very strong

dig. phantom 3D, merged 0.269 — very strong

config. A 2D, averaged 0.863 0.003 strong

config. A 2D, slice-merged 0.851 0.002 strong

config. A 2.5D, direction-merged 0.879 0.001 strong

config. A 2.5D, merged 0.88 0.001 strong

config. B 2D, averaged 0.837 0.001 strong

config. B 2D, slice-merged 0.792 0.001 strong

config. B 2.5D, direction-merged 0.821 0.001 strong

config. B 2.5D, merged 0.819 0.001 strong



CHAPTER 3. IMAGE FEATURES 83

config. C 3D, averaged 0.9 0.001 strong

config. C 3D, merged 0.899 0.001 strong

config. D 3D, averaged 0.845 0.003 strong

config. D 3D, merged 0.846 0.003 strong

config. E 3D, averaged 0.813 0.004 moderate

config. E 3D, merged 0.813 0.004 strong

Table Ҏ.ɰҔҏ | Reference values for the information correlation ҍ feature.
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3.7 Grey level run length based features TP0I

The grey level run length matrix (GLRLM) was introduced by Galloway 30 to define various

texture features. Like the grey level co-occurrence matrix, GLRLM also assesses the dis-

tribution of discretised grey levels in an image or in a stack of images. However, whereas

GLCM assesses co-occurrence of grey levels within neighbouring pixels or voxels, GLRLM

assesses run lengths. A run length is defined as the length of a consecutive sequence of

pixels or voxels with the same grey level along direction m, which was previously defined

in Section 3.6. The GLRLM then contains the occurrences of runs with length 𝑗 for a dis-

cretised grey level 𝑖.

A complete example for GLRLM construction from a 2D image is shown in Table 3.105.

LetMm be the 𝑁𝑔 × 𝑁𝑟 grey level run length matrix, where 𝑁𝑔 is the number of discretised

grey levels present in the ROI intensitymask and𝑁𝑟 themaximal possible run length along

direction m. Matrix element 𝑟𝑖𝑗 of the GLRLM is the occurrence of grev level 𝑖 with run

length 𝑗. Then, let 𝑁𝑣 be the total number of voxels in the ROI intensity mask, and 𝑁𝑠 =
∑𝑁𝑔

𝑖=1
∑𝑁𝑟

𝑗=1
𝑟𝑖𝑗 the sumover all elements inMm. Marginal sums are also defined. Let 𝑟𝑖. be the

marginal sum of the runs over run lengths 𝑗 for grey value 𝑖, that is 𝑟𝑖. = ∑𝑁𝑟
𝑗=1

𝑟𝑖𝑗. Similarly,

the marginal sum of the runs over the grey values 𝑖 for run length 𝑗 is 𝑟.𝑗 = ∑𝑁𝑔
𝑖=1

𝑟𝑖𝑗.

Aggregating features

To improve rotational invariance, GLRLM feature values are computed by aggregating in-

formation from the different underlying directional matrices23. Five methods can be used

to aggregate GLRLMs and arrive at a single feature value. A schematic example was previ-

ously shown in Figure 3.3. A feature may be aggregated as follows:

1. Features are computed from each 2D directional matrix and averaged over 2D direc-

tions and slices (BTW3).

2. Features are computed from a singlematrix after merging 2D directional matrices per

slice, and then averaged over slices (SUJT).

3. Features are computed from a singlematrix after merging 2D directional matrices per

direction, and then averaged over directions (JJUI).

4. The feature is computed from a singlematrix aftermerging all 2D directionalmatrices

(ZW7Z).

5. Features are computed from each 3D directional matrix and averaged over the 3D dir-

ections (ITBB).

6. The feature is computed from a singlematrix aftermerging all 3D directionalmatrices

(IAZD).

In methods 2,3,4 and 6 matrices are merged by summing the run counts of each matrix

element (𝑖, 𝑗) over the different matrices. Note that when matrices are merged, 𝑁𝑣 should

likewise be summed to retain consistency. Feature values may dependent strongly on the

aggregation method.

Distance weighting

GLRLMs may be weighted for distance by multiplying the run lengths with a weighting

factor 𝑤. By default 𝑤 = 1, but 𝑤 may also be an inverse distance function, e.g. 𝑤 = ‖m‖−1
or
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𝑤 = exp(−‖m‖2)81, with ‖m‖ the length of direction vector 𝑚. Whether distance weighting

yields different feature values depends on several factors. When aggregating the feature

values, matrices have to be merged first, otherwise weighting has no effect. It also has no

effect if the Chebyshev norm is used for weighting. Distance weighting is non-standard

use, and we caution against it due to potential reproducibility issues.

1 2 2 3

1 2 3 3

4 2 4 1

4 1 2 3

(a) Grey levels

Run length 𝑗
1 2 3 4

𝑖

1 4 0 0 0

2 3 1 0 0

3 2 1 0 0

4 3 0 0 0

(b)Mm=→

Run length 𝑗
1 2 3 4

𝑖

1 4 0 0 0

2 3 1 0 0

3 2 1 0 0

4 3 0 0 0

(c)Mm=↗

Run length 𝑗
1 2 3 4

𝑖

1 2 1 0 0

2 2 0 1 0

3 2 1 0 0

4 1 1 0 0

(d)Mm=↑

Run length 𝑗
1 2 3 4

𝑖

1 4 0 0 0

2 3 1 0 0

3 4 0 0 0

4 3 0 0 0

(e)Mm=↖

Table Ҏ.ɰҔҐ | Grey level run length matrices for the 0∘ (a), 45∘ (b), 90∘ (c) and 135∘ (d) directions.
In vector notation these directions are m = (1, 0), m = (1, 1), m = (0, 1) and m = (−1, 1),
respectively.

3.7.1 Short runs emphasis 22OV

This feature emphasises short run lengths30. It is defined as:

𝐹rlm.sre = 1

𝑁𝑠

𝑁𝑟

∑
𝑗=1

𝑟.𝑗
𝑗2

data aggr. method value tol. consensus

dig. phantom 2D, averaged 0.641 — very strong

dig. phantom 2D, slice-merged 0.661 — strong

dig. phantom 2.5D, direction-merged 0.665 — strong
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dig. phantom 2.5D, merged 0.68 — strong

dig. phantom 3D, averaged 0.705 — very strong

dig. phantom 3D, merged 0.729 — very strong

config. A 2D, averaged 0.785 0.003 strong

config. A 2D, slice-merged 0.786 0.003 strong

config. A 2.5D, direction-merged 0.768 0.003 strong

config. A 2.5D, merged 0.769 0.003 strong

config. B 2D, averaged 0.781 0.001 strong

config. B 2D, slice-merged 0.782 0.001 strong

config. B 2.5D, direction-merged 0.759 0.001 strong

config. B 2.5D, merged 0.759 0.001 strong

config. C 3D, averaged 0.786 0.003 strong

config. C 3D, merged 0.787 0.003 strong

config. D 3D, averaged 0.734 0.001 strong

config. D 3D, merged 0.736 0.001 strong

config. E 3D, averaged 0.776 0.001 moderate

config. E 3D, merged 0.777 0.001 strong

Table Ҏ.ɰҔґ | Reference values for the short runs emphasis feature.

3.7.2 Long runs emphasis W4KF

This feature emphasises long run lengths30. It is defined as:

𝐹rlm.lre = 1

𝑁𝑠

𝑁𝑟

∑
𝑗=1

𝑗2𝑟.𝑗

data aggr. method value tol. consensus

dig. phantom 2D, averaged 3.78 — very strong

dig. phantom 2D, slice-merged 3.51 — strong

dig. phantom 2.5D, direction-merged 3.46 — strong

dig. phantom 2.5D, merged 3.27 — strong

dig. phantom 3D, averaged 3.06 — very strong

dig. phantom 3D, merged 2.76 — very strong

config. A 2D, averaged 2.91 0.03 strong

config. A 2D, slice-merged 2.89 0.03 strong

config. A 2.5D, direction-merged 3.09 0.03 strong

config. A 2.5D, merged 3.08 0.03 strong

config. B 2D, averaged 3.52 0.04 strong

config. B 2D, slice-merged 3.5 0.04 strong

config. B 2.5D, direction-merged 3.82 0.05 strong

config. B 2.5D, merged 3.81 0.05 strong

config. C 3D, averaged 3.31 0.04 strong

config. C 3D, merged 3.28 0.04 strong

config. D 3D, averaged 6.66 0.18 strong
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config. D 3D, merged 6.56 0.18 strong

config. E 3D, averaged 3.55 0.07 strong

config. E 3D, merged 3.52 0.07 strong

Table Ҏ.ɰҔɦ | Reference values for the long runs emphasis feature.

3.7.3 Low grey level run emphasis V3SW

This feature is a grey level analogue to short runs emphasis 15. Instead of short run lengths,

low grey levels are emphasised. The feature is defined as:

𝐹rlm.lgre = 1

𝑁𝑠

𝑁𝑔

∑
𝑖=1

𝑟𝑖.
𝑖2

data aggr. method value tol. consensus

dig. phantom 2D, averaged 0.604 — very strong

dig. phantom 2D, slice-merged 0.609 — strong

dig. phantom 2.5D, direction-merged 0.58 — strong

dig. phantom 2.5D, merged 0.585 — strong

dig. phantom 3D, averaged 0.603 — very strong

dig. phantom 3D, merged 0.607 — very strong

config. A 2D, averaged 0.0264 0.0003 strong

config. A 2D, slice-merged 0.0264 0.0003 strong

config. A 2.5D, direction-merged 0.0148 0.0004 strong

config. A 2.5D, merged 0.0147 0.0004 strong

config. B 2D, averaged 0.0331 0.0006 strong

config. B 2D, slice-merged 0.033 0.0006 strong

config. B 2.5D, direction-merged 0.0194 0.0006 strong

config. B 2.5D, merged 0.0194 0.0006 strong

config. C 3D, averaged 0.00155 5 × 10−5 strong

config. C 3D, merged 0.00155 5 × 10−5 strong

config. D 3D, averaged 0.0257 0.0012 strong

config. D 3D, merged 0.0257 0.0012 strong

config. E 3D, averaged 0.0204 0.0008 moderate

config. E 3D, merged 0.0204 0.0008 strong

Table Ҏ.ɰҔҒ | Reference values for the low grey level run emphasis feature.

3.7.4 High grey level run emphasis G3QZ

The high grey level run emphasis feature is a grey level analogue to long runs emphasis 15. The

feature emphasises high grey levels, and is defined as:

𝐹rlm.hgre = 1

𝑁𝑠

𝑁𝑔

∑
𝑖=1

𝑖2𝑟𝑖.
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data aggr. method value tol. consensus

dig. phantom 2D, averaged 9.82 — very strong

dig. phantom 2D, slice-merged 9.74 — strong

dig. phantom 2.5D, direction-merged 10.3 — strong

dig. phantom 2.5D, merged 10.2 — strong

dig. phantom 3D, averaged 9.7 — very strong

dig. phantom 3D, merged 9.64 — very strong

config. A 2D, averaged 428 3 strong

config. A 2D, slice-merged 428 3 strong

config. A 2.5D, direction-merged 449 3 strong

config. A 2.5D, merged 449 3 strong

config. B 2D, averaged 342 11 strong

config. B 2D, slice-merged 342 11 strong

config. B 2.5D, direction-merged 356 11 strong

config. B 2.5D, merged 356 11 strong

config. C 3D, averaged 1.47 × 103 10 strong

config. C 3D, merged 1.47 × 103 10 strong

config. D 3D, averaged 326 17 strong

config. D 3D, merged 326 17 strong

config. E 3D, averaged 471 9 strong

config. E 3D, merged 471 9 strong

Table Ҏ.ɰҔғ | Reference values for the high grey level run emphasis feature.

3.7.5 Short run low grey level emphasis HTZT

This feature emphasises runs in the upper left quadrant of the GLRLM, where short run

lengths and low grey levels are located22. It is defined as:

𝐹rlm.srlge = 1

𝑁𝑠

𝑁𝑔

∑
𝑖=1

𝑁𝑟

∑
𝑗=1

𝑟𝑖𝑗
𝑖2𝑗2

data aggr. method value tol. consensus

dig. phantom 2D, averaged 0.294 — very strong

dig. phantom 2D, slice-merged 0.311 — strong

dig. phantom 2.5D, direction-merged 0.296 — strong

dig. phantom 2.5D, merged 0.312 — strong

dig. phantom 3D, averaged 0.352 — very strong

dig. phantom 3D, merged 0.372 — very strong

config. A 2D, averaged 0.0243 0.0003 strong

config. A 2D, slice-merged 0.0243 0.0003 strong

config. A 2.5D, direction-merged 0.0135 0.0004 strong

config. A 2.5D, merged 0.0135 0.0004 strong

config. B 2D, averaged 0.0314 0.0006 strong
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config. B 2D, slice-merged 0.0313 0.0006 strong

config. B 2.5D, direction-merged 0.0181 0.0006 strong

config. B 2.5D, merged 0.0181 0.0006 strong

config. C 3D, averaged 0.00136 5 × 10−5 strong

config. C 3D, merged 0.00136 5 × 10−5 strong

config. D 3D, averaged 0.0232 0.001 strong

config. D 3D, merged 0.0232 0.001 strong

config. E 3D, averaged 0.0187 0.0007 moderate

config. E 3D, merged 0.0186 0.0007 strong

Table Ҏ.ɰɰҔ | Reference values for the short run low grey level emphasis feature.

3.7.6 Short run high grey level emphasis GD3A

This feature emphasises runs in the lower left quadrant of the GLRLM, where short run

lengths and high grey levels are located22. The feature is defined as:

𝐹rlm.srhge = 1

𝑁𝑠

𝑁𝑔

∑
𝑖=1

𝑁𝑟

∑
𝑗=1

𝑖2𝑟𝑖𝑗
𝑗2

data aggr. method value tol. consensus

dig. phantom 2D, averaged 8.57 — very strong

dig. phantom 2D, slice-merged 8.67 — strong

dig. phantom 2.5D, direction-merged 9.03 — strong

dig. phantom 2.5D, merged 9.05 — strong

dig. phantom 3D, averaged 8.54 — very strong

dig. phantom 3D, merged 8.67 — very strong

config. A 2D, averaged 320 1 strong

config. A 2D, slice-merged 320 1 strong

config. A 2.5D, direction-merged 332 1 strong

config. A 2.5D, merged 333 1 strong

config. B 2D, averaged 251 8 strong

config. B 2D, slice-merged 252 8 strong

config. B 2.5D, direction-merged 257 9 strong

config. B 2.5D, merged 258 9 strong

config. C 3D, averaged 1.1 × 103 10 strong

config. C 3D, merged 1.1 × 103 10 strong

config. D 3D, averaged 219 13 strong

config. D 3D, merged 219 13 strong

config. E 3D, averaged 346 7 strong

config. E 3D, merged 347 7 strong

Table Ҏ.ɰɰɰ | Reference values for the short run high grey level emphasis feature.
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3.7.7 Long run low grey level emphasis IVPO

This feature emphasises runs in the upper right quadrant of the GLRLM, where long run

lengths and low grey levels are located22. The feature is defined as:

𝐹rlm.lrlge = 1

𝑁𝑠

𝑁𝑔

∑
𝑖=1

𝑁𝑟

∑
𝑗=1

𝑗2𝑟𝑖𝑗
𝑖2

data aggr. method value tol. consensus

dig. phantom 2D, averaged 3.14 — very strong

dig. phantom 2D, slice-merged 2.92 — strong

dig. phantom 2.5D, direction-merged 2.79 — strong

dig. phantom 2.5D, merged 2.63 — strong

dig. phantom 3D, averaged 2.39 — very strong

dig. phantom 3D, merged 2.16 — very strong

config. A 2D, averaged 0.0386 0.0003 strong

config. A 2D, slice-merged 0.0385 0.0003 strong

config. A 2.5D, direction-merged 0.0229 0.0004 strong

config. A 2.5D, merged 0.0228 0.0004 strong

config. B 2D, averaged 0.0443 0.0008 strong

config. B 2D, slice-merged 0.0442 0.0008 strong

config. B 2.5D, direction-merged 0.0293 0.0009 strong

config. B 2.5D, merged 0.0292 0.0009 strong

config. C 3D, averaged 0.00317 4 × 10−5 strong

config. C 3D, merged 0.00314 4 × 10−5 strong

config. D 3D, averaged 0.0484 0.0031 strong

config. D 3D, merged 0.0478 0.0031 strong

config. E 3D, averaged 0.0313 0.0016 moderate

config. E 3D, merged 0.0311 0.0016 strong

Table Ҏ.ɰɰҍ | Reference values for the long run low grey level emphasis feature.

3.7.8 Long run high grey level emphasis 3KUM

This feature emphasises runs in the lower right quadrant of the GLRLM, where long run

lengths and high grey levels are located22. The feature is defined as:

𝐹rlm.lrhge = 1

𝑁𝑠

𝑁𝑔

∑
𝑖=1

𝑁𝑟

∑
𝑗=1

𝑖2𝑗2𝑟𝑖𝑗

data aggr. method value tol. consensus

dig. phantom 2D, averaged 17.4 — very strong

dig. phantom 2D, slice-merged 16.1 — strong

dig. phantom 2.5D, direction-merged 17.9 — strong
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dig. phantom 2.5D, merged 17 — strong

dig. phantom 3D, averaged 17.6 — very strong

dig. phantom 3D, merged 15.6 — very strong

config. A 2D, averaged 1.41 × 103 20 strong

config. A 2D, slice-merged 1.4 × 103 20 strong

config. A 2.5D, direction-merged 1.5 × 103 20 strong

config. A 2.5D, merged 1.5 × 103 20 strong

config. B 2D, averaged 1.39 × 103 30 strong

config. B 2D, slice-merged 1.38 × 103 30 strong

config. B 2.5D, direction-merged 1.5 × 103 30 strong

config. B 2.5D, merged 1.5 × 103 30 strong

config. C 3D, averaged 5.59 × 103 80 strong

config. C 3D, merged 5.53 × 103 80 strong

config. D 3D, averaged 2.67 × 103 30 strong

config. D 3D, merged 2.63 × 103 30 strong

config. E 3D, averaged 1.9 × 103 20 moderate

config. E 3D, merged 1.89 × 103 20 strong

Table Ҏ.ɰɰҎ | Reference values for the long run high grey level emphasis feature.

3.7.9 Grey level non-uniformity R5YN

This feature assesses the distribution of runs over the grey values30. The feature value is

low when runs are equally distributed along grey levels. The feature is defined as:

𝐹rlm.glnu = 1

𝑁𝑠

𝑁𝑔

∑
𝑖=1

𝑟2
𝑖.

data aggr. method value tol. consensus

dig. phantom 2D, averaged 5.2 — very strong

dig. phantom 2D, slice-merged 20.5 — strong

dig. phantom 2.5D, direction-merged 19.5 — strong

dig. phantom 2.5D, merged 77.1 — strong

dig. phantom 3D, averaged 21.8 — very strong

dig. phantom 3D, merged 281 — very strong

config. A 2D, averaged 432 1 strong

config. A 2D, slice-merged 1.73 × 103 10 strong

config. A 2.5D, direction-merged 9.85 × 103 10 strong

config. A 2.5D, merged 3.94 × 104 100 strong

config. B 2D, averaged 107 1 strong

config. B 2D, slice-merged 427 1 strong

config. B 2.5D, direction-merged 2.4 × 103 10 strong

config. B 2.5D, merged 9.6 × 103 20 strong

config. C 3D, averaged 3.18 × 103 10 strong

config. C 3D, merged 4.13 × 104 100 strong
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config. D 3D, averaged 3.29 × 103 10 strong

config. D 3D, merged 4.28 × 104 200 strong

config. E 3D, averaged 4 × 103 10 moderate

config. E 3D, merged 5.19 × 104 200 strong

Table Ҏ.ɰɰҏ | Reference values for the grey level non-uniformity feature.

3.7.10 Normalised grey level non-uniformity OVBL

This is a normalised version of the grey level non-uniformity feature. It is defined as:

𝐹rlm.glnu.norm = 1

𝑁2𝑠

𝑁𝑔

∑
𝑖=1

𝑟2
𝑖.

data aggr. method value tol. consensus

dig. phantom 2D, averaged 0.46 — very strong

dig. phantom 2D, slice-merged 0.456 — strong

dig. phantom 2.5D, direction-merged 0.413 — strong

dig. phantom 2.5D, merged 0.412 — strong

dig. phantom 3D, averaged 0.43 — very strong

dig. phantom 3D, merged 0.43 — very strong

config. A 2D, averaged 0.128 0.003 strong

config. A 2D, slice-merged 0.128 0.003 strong

config. A 2.5D, direction-merged 0.126 0.003 strong

config. A 2.5D, merged 0.126 0.003 strong

config. B 2D, averaged 0.145 0.001 strong

config. B 2D, slice-merged 0.145 0.001 strong

config. B 2.5D, direction-merged 0.137 0.001 strong

config. B 2.5D, merged 0.137 0.001 strong

config. C 3D, averaged 0.102 0.003 strong

config. C 3D, merged 0.102 0.003 very strong

config. D 3D, averaged 0.133 0.002 strong

config. D 3D, merged 0.134 0.002 strong

config. E 3D, averaged 0.135 0.003 strong

config. E 3D, merged 0.135 0.003 strong

Table Ҏ.ɰɰҐ | Reference values for the normalised grey level non-uniformity feature.

3.7.11 Run length non-uniformity W92Y

This features assesses the distribution of runs over the run lengths30. The feature value is

low when runs are equally distributed along run lengths. It is defined as:

𝐹rlm.rlnu = 1

𝑁𝑠

𝑁𝑟

∑
𝑗=1

𝑟2
.𝑗
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data aggr. method value tol. consensus

dig. phantom 2D, averaged 6.12 — very strong

dig. phantom 2D, slice-merged 21.6 — strong

dig. phantom 2.5D, direction-merged 22.3 — strong

dig. phantom 2.5D, merged 83.2 — strong

dig. phantom 3D, averaged 26.9 — very strong

dig. phantom 3D, merged 328 — very strong

config. A 2D, averaged 1.65 × 103 10 strong

config. A 2D, slice-merged 6.6 × 103 30 strong

config. A 2.5D, direction-merged 4.27 × 104 200 strong

config. A 2.5D, merged 1.71 × 105 1 × 103 strong

config. B 2D, averaged 365 3 strong

config. B 2D, slice-merged 1.46 × 103 10 strong

config. B 2.5D, direction-merged 9.38 × 103 70 strong

config. B 2.5D, merged 3.75 × 104 300 strong

config. C 3D, averaged 1.8 × 104 500 strong

config. C 3D, merged 2.34 × 105 6 × 103 strong

config. D 3D, averaged 1.24 × 104 200 strong

config. D 3D, merged 1.6 × 105 3 × 103 strong

config. E 3D, averaged 1.66 × 104 300 strong

config. E 3D, merged 2.15 × 105 4 × 103 strong

Table Ҏ.ɰɰґ | Reference values for the run length non-uniformity feature.

3.7.12 Normalised run length non-uniformity IC23

This is normalised version of the run length non-uniformity feature. It is defined as:

𝐹rlm.rlnu.norm = 1

𝑁2𝑠

𝑁𝑟

∑
𝑗=1

𝑟2
.𝑗

data aggr. method value tol. consensus

dig. phantom 2D, averaged 0.492 — very strong

dig. phantom 2D, slice-merged 0.441 — strong

dig. phantom 2.5D, direction-merged 0.461 — strong

dig. phantom 2.5D, merged 0.445 — strong

dig. phantom 3D, averaged 0.513 — very strong

dig. phantom 3D, merged 0.501 — very strong

config. A 2D, averaged 0.579 0.003 strong

config. A 2D, slice-merged 0.579 0.003 strong

config. A 2.5D, direction-merged 0.548 0.003 strong

config. A 2.5D, merged 0.548 0.003 strong

config. B 2D, averaged 0.578 0.001 strong

config. B 2D, slice-merged 0.578 0.001 strong
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config. B 2.5D, direction-merged 0.533 0.001 strong

config. B 2.5D, merged 0.534 0.001 strong

config. C 3D, averaged 0.574 0.004 strong

config. C 3D, merged 0.575 0.004 strong

config. D 3D, averaged 0.5 0.001 strong

config. D 3D, merged 0.501 0.001 strong

config. E 3D, averaged 0.559 0.001 moderate

config. E 3D, merged 0.56 0.001 strong

Table Ҏ.ɰɰɦ | Reference values for the normalised run length non-uniformity feature.

3.7.13 Run percentage 9ZK5

This feature measures the fraction of the number of realised runs and the maximum num-

ber of potential runs30. Strongly linear or highly uniform ROI volumes produce a low run

percentage. It is defined as:

𝐹rlm.r .perc = 𝑁𝑠
𝑁𝑣

As noted before, when this feature is calculated using a merged GLRLM, 𝑁𝑣 should be the

sum of the number of voxels of the underlying matrices to allow proper normalisation.

data aggr. method value tol. consensus

dig. phantom 2D, averaged 0.627 — very strong

dig. phantom 2D, slice-merged 0.627 — strong

dig. phantom 2.5D, direction-merged 0.632 — strong

dig. phantom 2.5D, merged 0.632 — strong

dig. phantom 3D, averaged 0.68 — very strong

dig. phantom 3D, merged 0.68 — very strong

config. A 2D, averaged 0.704 0.003 strong

config. A 2D, slice-merged 0.704 0.003 strong

config. A 2.5D, direction-merged 0.68 0.003 strong

config. A 2.5D, merged 0.68 0.003 strong

config. B 2D, averaged 0.681 0.002 strong

config. B 2D, slice-merged 0.681 0.002 strong

config. B 2.5D, direction-merged 0.642 0.002 strong

config. B 2.5D, merged 0.642 0.002 strong

config. C 3D, averaged 0.679 0.003 strong

config. C 3D, merged 0.679 0.003 strong

config. D 3D, averaged 0.554 0.005 strong

config. D 3D, merged 0.554 0.005 strong

config. E 3D, averaged 0.664 0.003 moderate

config. E 3D, merged 0.664 0.003 strong

Table Ҏ.ɰɰҒ | Reference values for the run percentage feature.
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3.7.14 Grey level variance 8CE5

This feature estimates the variance in runs over the grey levels. Let 𝑝𝑖𝑗 = 𝑟𝑖𝑗/𝑁𝑠 be the joint

probability estimate for finding discretised grey level 𝑖 with run length 𝑗. Grey level variance
is then defined as:

𝐹rlm.gl.var =
𝑁𝑔

∑
𝑖=1

𝑁𝑟

∑
𝑗=1

(𝑖 − 𝜇)2𝑝𝑖𝑗

Here, 𝜇 = ∑𝑁𝑔
𝑖=1

∑𝑁𝑟
𝑗=1

𝑖 𝑝𝑖𝑗.

data aggr. method value tol. consensus

dig. phantom 2D, averaged 3.35 — very strong

dig. phantom 2D, slice-merged 3.37 — strong

dig. phantom 2.5D, direction-merged 3.58 — strong

dig. phantom 2.5D, merged 3.59 — strong

dig. phantom 3D, averaged 3.46 — very strong

dig. phantom 3D, merged 3.48 — very strong

config. A 2D, averaged 33.7 0.6 strong

config. A 2D, slice-merged 33.7 0.6 strong

config. A 2.5D, direction-merged 29.1 0.6 strong

config. A 2.5D, merged 29.1 0.6 strong

config. B 2D, averaged 28.3 0.3 strong

config. B 2D, slice-merged 28.3 0.3 strong

config. B 2.5D, direction-merged 25.7 0.2 strong

config. B 2.5D, merged 25.7 0.2 strong

config. C 3D, averaged 101 3 strong

config. C 3D, merged 101 3 very strong

config. D 3D, averaged 31.5 0.4 strong

config. D 3D, merged 31.4 0.4 strong

config. E 3D, averaged 39.8 0.9 moderate

config. E 3D, merged 39.7 0.9 strong

Table Ҏ.ɰɰғ | Reference values for the grey level variance feature.

3.7.15 Run length variance SXLW

This feature estimates the variance in runs over the run lengths. As before let 𝑝𝑖𝑗 = 𝑟𝑖𝑗/𝑁𝑠.

The feature is defined as:

𝐹rlm.rl.var =
𝑁𝑔

∑
𝑖=1

𝑁𝑟

∑
𝑗=1

(𝑗 − 𝜇)2𝑝𝑖𝑗

Mean run length is defined as 𝜇 = ∑𝑁𝑔
𝑖=1

∑𝑁𝑟
𝑗=1

𝑗 𝑝𝑖𝑗.
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data aggr. method value tol. consensus

dig. phantom 2D, averaged 0.761 — very strong

dig. phantom 2D, slice-merged 0.778 — strong

dig. phantom 2.5D, direction-merged 0.758 — strong

dig. phantom 2.5D, merged 0.767 — strong

dig. phantom 3D, averaged 0.574 — very strong

dig. phantom 3D, merged 0.598 — very strong

config. A 2D, averaged 0.828 0.008 strong

config. A 2D, slice-merged 0.826 0.008 strong

config. A 2.5D, direction-merged 0.916 0.011 strong

config. A 2.5D, merged 0.914 0.011 strong

config. B 2D, averaged 1.22 0.03 strong

config. B 2D, slice-merged 1.21 0.03 strong

config. B 2.5D, direction-merged 1.39 0.03 strong

config. B 2.5D, merged 1.39 0.03 strong

config. C 3D, averaged 1.12 0.02 strong

config. C 3D, merged 1.11 0.02 strong

config. D 3D, averaged 3.35 0.14 strong

config. D 3D, merged 3.29 0.13 strong

config. E 3D, averaged 1.26 0.05 strong

config. E 3D, merged 1.25 0.05 strong

Table Ҏ.ɰҍҔ | Reference values for the run length variance feature.

3.7.16 Run entropy HJ9O

Run entropy was investigated by Albregtsen et al. 3 . Again, let 𝑝𝑖𝑗 = 𝑟𝑖𝑗/𝑁𝑠. The entropy is

then defined as:

𝐹rlm.rl.entr = −
𝑁𝑔

∑
𝑖=1

𝑁𝑟

∑
𝑗=1

𝑝𝑖𝑗 log
2
𝑝𝑖𝑗

data aggr. method value tol. consensus

dig. phantom 2D, averaged 2.17 — very strong

dig. phantom 2D, slice-merged 2.57 — strong

dig. phantom 2.5D, direction-merged 2.52 — strong

dig. phantom 2.5D, merged 2.76 — strong

dig. phantom 3D, averaged 2.43 — very strong

dig. phantom 3D, merged 2.62 — very strong

config. A 2D, averaged 4.73 0.02 strong

config. A 2D, slice-merged 4.76 0.02 strong

config. A 2.5D, direction-merged 4.87 0.01 strong

config. A 2.5D, merged 4.87 0.01 strong

config. B 2D, averaged 4.53 0.02 strong
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config. B 2D, slice-merged 4.58 0.01 strong

config. B 2.5D, direction-merged 4.84 0.01 strong

config. B 2.5D, merged 4.84 0.01 strong

config. C 3D, averaged 5.35 0.03 strong

config. C 3D, merged 5.35 0.03 very strong

config. D 3D, averaged 5.08 0.02 strong

config. D 3D, merged 5.08 0.02 strong

config. E 3D, averaged 4.87 0.03 strong

config. E 3D, merged 4.87 0.03 strong

Table Ҏ.ɰҍɰ | Reference values for the run entropy feature.
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3.8 Grey level size zone based features 9SAK

The grey level size zone matrix (GLSZM) counts the number of groups (or zones) of linked

voxels71. Voxels are linked if the neighbouring voxel has an identical discretised grey level.

Whether a voxel classifies as a neighbour depends on its connectedness. In a 3D approach

to texture analysis we consider 26-connectedness, which indicates that a center voxel is

linked to all of the 26 neighbouring voxels with the same grey level. In the 2 dimensional

approach, 8-connectedness is used. A potential issue for the 2D approach is that voxels

which may otherwise be considered to belong to the same zone by linking across slices,

are now two or more separate zones within the slice plane. Whether this issue negatively

affects predictive performance of GLSZM-based features or their reproducibility has not

been determined.

LetM be the 𝑁𝑔 × 𝑁𝑧 grey level size zone matrix, where 𝑁𝑔 is the number of discretised

grey levels present in the ROI intensity mask and 𝑁𝑧 the maximum zone size of any group

of linked voxels. Element 𝑠𝑖𝑗 of M is then the number of zones with discretised grey level

𝑖 and size 𝑗. Furthermore, let 𝑁𝑣 be the number of voxels in the intensity mask and 𝑁𝑠 =
∑𝑁𝑔

𝑖=1
∑𝑁𝑧

𝑗=1
𝑠𝑖𝑗 be the total number of zones. Marginal sums can likewise be defined. Let 𝑠𝑖. =

∑𝑁𝑧
𝑗=1

𝑠𝑖𝑗 be the number of zoneswith discretised grey level 𝑖, regardless of size. Likewise, let

𝑠.𝑗 = ∑𝑁𝑔
𝑖=1

𝑠𝑖𝑗 be the number of zones with size 𝑗, regardless of grey level. A two dimensional

example is shown in Table 3.122.

Aggregating features

Three methods can be used to aggregate GLSZMs and arrive at a single feature value. A

schematic example is shown in Figure 3.4. A feature may be aggregated as follows:

1. Features are computed from 2D matrices and averaged over slices (8QNN).

2. The feature is computed from a single matrix after merging all 2D matrices (62GR).

3. The feature is computed from a 3D matrix (KOBO).

Method 2 involves merging GLSZMs by summing the number of zones 𝑠𝑖𝑗 over the GLSZM

for the different slices. Note thatwhenmatrices aremerged,𝑁𝑣 should likewise be summed

to retain consistency. Feature values may dependent strongly on the aggregation method.

Distances

The default neighbourhood for GLSZM is constructed using Chebyshev distance 𝛿 = 1.

Manhattan or Euclidean norms may also be used to construct a neighbourhood, and both

lead to a 6-connected (3D) and 4-connected (2D) neighbourhoods. Larger distances are also

technically possible, but will occasionally cause separate zones with the same intensity

to be considered as belonging to the same zone. Using different neighbourhoods for de-

termining voxel linkage is non-standard use, and we caution against it due to potential

reproducibility issues.

Note on feature references

GLSZM feature definitions are based on the definitions of GLRLM features71. Hence, ref-

erences may be found in the section on GLRLM (3.7).
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1 2 2 3

1 2 3 3

4 2 4 1

4 1 2 3

(a) Grey levels

Zone size 𝑗
1 2 3 4 5

𝑖

1 2 1 0 0 0

2 0 0 0 0 1

3 1 0 1 0 0

4 1 1 0 0 0

(b) Grey level size zone mat-

rix

Table Ҏ.ɰҍҍ | Original image with grey levels (a); and corresponding grey level size zone matrix
(GLSZM) under Ғ-connectedness (b). Element 𝑠(𝑖, 𝑗) of the GLSZM indicates the number of times
a zone of 𝑗 linked pixels and grey level 𝑖 occurs within the image.

(a) ҍD: by slice, without merging (b) ҍ.ҐD: by slice, with merging

(c) ҎD: as volume

Figure Ҏ.ҏ | Approaches to calculating grey level size zone matrix-based features. M𝑘 are texture
matrices calculated for slice 𝑘 (if applicable), and 𝑓𝑘 is the corresponding feature value. In (b) the
matrices from the different slices are merged prior to feature calculation.
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3.8.1 Small zone emphasis 5QRC

This feature emphasises small zones. It is defined as:

𝐹szm.sze = 1

𝑁𝑠

𝑁𝑧

∑
𝑗=1

𝑠.𝑗
𝑗2

data aggr. method value tol. consensus

dig. phantom 2D 0.363 — strong

dig. phantom 2.5D 0.368 — strong

dig. phantom 3D 0.255 — very strong

config. A 2D 0.688 0.003 strong

config. A 2.5D 0.68 0.003 strong

config. B 2D 0.745 0.003 strong

config. B 2.5D 0.741 0.003 strong

config. C 3D 0.695 0.001 strong

config. D 3D 0.637 0.005 strong

config. E 3D 0.676 0.003 strong

Table Ҏ.ɰҍҎ | Reference values for the small zone emphasis feature.

3.8.2 Large zone emphasis 48P8

This feature emphasises large zones. It is defined as:

𝐹szm.lze = 1

𝑁𝑠

𝑁𝑧

∑
𝑗=1

𝑗2𝑠.𝑗

data aggr. method value tol. consensus

dig. phantom 2D 43.9 — strong

dig. phantom 2.5D 34.2 — strong

dig. phantom 3D 550 — very strong

config. A 2D 625 9 strong

config. A 2.5D 675 8 strong

config. B 2D 439 8 strong

config. B 2.5D 444 8 strong

config. C 3D 3.89 × 104 900 strong

config. D 3D 9.91 × 104 2.8 × 103 strong

config. E 3D 5.86 × 104 800 strong

Table Ҏ.ɰҍҏ | Reference values for the large zone emphasis feature.
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3.8.3 Low grey level zone emphasis XMSY

This feature is a grey level analogue to small zone emphasis. Instead of small zone sizes, low

grey levels are emphasised. The feature is defined as:

𝐹szm.lgze = 1

𝑁𝑠

𝑁𝑔

∑
𝑖=1

𝑠𝑖.
𝑖2

data aggr. method value tol. consensus

dig. phantom 2D 0.371 — strong

dig. phantom 2.5D 0.368 — strong

dig. phantom 3D 0.253 — very strong

config. A 2D 0.0368 0.0005 strong

config. A 2.5D 0.0291 0.0005 strong

config. B 2D 0.0475 0.001 strong

config. B 2.5D 0.0387 0.001 strong

config. C 3D 0.00235 6 × 10−5 strong

config. D 3D 0.0409 0.0005 strong

config. E 3D 0.034 0.0004 strong

Table Ҏ.ɰҍҐ | Reference values for the low grey level emphasis feature.

3.8.4 High grey level zone emphasis 5GN9

The high grey level zone emphasis feature is a grey level analogue to large zone emphasis. The

feature emphasises high grey levels, and is defined as:

𝐹szm.hgze = 1

𝑁𝑠

𝑁𝑔

∑
𝑖=1

𝑖2𝑠𝑖.

data aggr. method value tol. consensus

dig. phantom 2D 16.4 — strong

dig. phantom 2.5D 16.2 — strong

dig. phantom 3D 15.6 — very strong

config. A 2D 363 3 strong

config. A 2.5D 370 3 strong

config. B 2D 284 11 strong

config. B 2.5D 284 11 strong

config. C 3D 971 7 strong

config. D 3D 188 10 strong

config. E 3D 286 6 strong

Table Ҏ.ɰҍґ | Reference values for the high grey level emphasis feature.
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3.8.5 Small zone low grey level emphasis 5RAI

This feature emphasises zone counts within the upper left quadrant of the GLSZM, where

small zone sizes and low grey levels are located. It is defined as:

𝐹szm.szlge = 1

𝑁𝑠

𝑁𝑔

∑
𝑖=1

𝑁𝑧

∑
𝑗=1

𝑠𝑖𝑗
𝑖2𝑗2

data aggr. method value tol. consensus

dig. phantom 2D 0.0259 — strong

dig. phantom 2.5D 0.0295 — strong

dig. phantom 3D 0.0256 — very strong

config. A 2D 0.0298 0.0005 strong

config. A 2.5D 0.0237 0.0005 strong

config. B 2D 0.0415 0.0008 strong

config. B 2.5D 0.0335 0.0009 strong

config. C 3D 0.0016 4 × 10−5 strong

config. D 3D 0.0248 0.0004 strong

config. E 3D 0.0224 0.0004 strong

Table Ҏ.ɰҍɦ | Reference values for the small zone low grey level emphasis feature.

3.8.6 Small zone high grey level emphasis HW1V

This feature emphasises zone counts in the lower left quadrant of the GLSZM, where small

zone sizes and high grey levels are located. The feature is defined as:

𝐹szm.szhge = 1

𝑁𝑠

𝑁𝑔

∑
𝑖=1

𝑁𝑧

∑
𝑗=1

𝑖2𝑠𝑖𝑗
𝑗2

data aggr. method value tol. consensus

dig. phantom 2D 10.3 — strong

dig. phantom 2.5D 9.87 — strong

dig. phantom 3D 2.76 — very strong

config. A 2D 226 1 strong

config. A 2.5D 229 1 strong

config. B 2D 190 7 strong

config. B 2.5D 190 7 strong

config. C 3D 657 4 strong

config. D 3D 117 7 strong

config. E 3D 186 4 strong

Table Ҏ.ɰҍҒ | Reference values for the small zone high grey level emphasis feature.
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3.8.7 Large zone low grey level emphasis YH51

This feature emphasises zone counts in the upper right quadrant of the GLSZM, where large

zone sizes and low grey levels are located. The feature is defined as:

𝐹szm.lzlge = 1

𝑁𝑠

𝑁𝑔

∑
𝑖=1

𝑁𝑧

∑
𝑗=1

𝑗2𝑠𝑖𝑗
𝑖2

data aggr. method value tol. consensus

dig. phantom 2D 40.4 — strong

dig. phantom 2.5D 30.6 — strong

dig. phantom 3D 503 — very strong

config. A 2D 1.35 0.03 strong

config. A 2.5D 1.44 0.02 strong

config. B 2D 1.15 0.04 strong

config. B 2.5D 1.16 0.04 strong

config. C 3D 21.6 0.5 strong

config. D 3D 241 14 strong

config. E 3D 105 4 strong

Table Ҏ.ɰҍғ | Reference values for the large zone low grey level emphasis feature.

3.8.8 Large zone high grey level emphasis J17V

This feature emphasises zone counts in the lower right quadrant of the GLSZM, where large

zone sizes and high grey levels are located. The feature is defined as:

𝐹szm.lzhge = 1

𝑁𝑠

𝑁𝑔

∑
𝑖=1

𝑁𝑧

∑
𝑗=1

𝑖2𝑗2𝑠𝑖𝑗

data aggr. method value tol. consensus

dig. phantom 2D 113 — strong

dig. phantom 2.5D 107 — strong

dig. phantom 3D 1.49 × 103 — very strong

config. A 2D 3.16 × 105 5 × 103 strong

config. A 2.5D 3.38 × 105 5 × 103 strong

config. B 2D 1.81 × 105 3 × 103 strong

config. B 2.5D 1.81 × 105 3 × 103 strong

config. C 3D 7.07 × 107 1.5 × 106 strong

config. D 3D 4.14 × 107 3 × 105 strong

config. E 3D 3.36 × 107 3 × 105 strong

Table Ҏ.ɰҎҔ | Reference values for the large zone high grey level emphasis feature.
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3.8.9 Grey level non-uniformity JNSA

This feature assesses the distribution of zone counts over the grey values. The feature value

is lowwhen zone counts are equally distributed along grey levels. The feature is defined as:

𝐹szm.glnu = 1

𝑁𝑠

𝑁𝑔

∑
𝑖=1

𝑠2
𝑖.

data aggr. method value tol. consensus

dig. phantom 2D 1.41 — strong

dig. phantom 2.5D 5.44 — strong

dig. phantom 3D 1.4 — very strong

config. A 2D 82.2 0.1 strong

config. A 2.5D 1.8 × 103 10 strong

config. B 2D 20.5 0.1 strong

config. B 2.5D 437 3 strong

config. C 3D 195 6 strong

config. D 3D 212 6 very strong

config. E 3D 231 6 strong

Table Ҏ.ɰҎɰ | Reference values for the grey level non-uniformity feature.

3.8.10 Normalised grey level non-uniformity Y1RO

This is a normalised version of the grey level non-uniformity feature. It is defined as:

𝐹szm.glnu.norm = 1

𝑁2𝑠

𝑁𝑔

∑
𝑖=1

𝑠2
𝑖.

data aggr. method value tol. consensus

dig. phantom 2D 0.323 — strong

dig. phantom 2.5D 0.302 — strong

dig. phantom 3D 0.28 — very strong

config. A 2D 0.0728 0.0014 strong

config. A 2.5D 0.0622 0.0007 strong

config. B 2D 0.0789 0.001 strong

config. B 2.5D 0.0613 0.0005 strong

config. C 3D 0.0286 0.0003 strong

config. D 3D 0.0491 0.0008 strong

config. E 3D 0.0414 0.0003 strong

Table Ҏ.ɰҎҍ | Reference values for the normalised grey level non-uniformity feature.
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3.8.11 Zone size non-uniformity 4JP3

This features assesses the distribution of zone counts over the different zone sizes. Zone

size non-uniformity is low when zone counts are equally distributed along zone sizes. It is

defined as:

𝐹szm.zsnu = 1

𝑁𝑠

𝑁𝑧

∑
𝑗=1

𝑠2
.𝑗

data aggr. method value tol. consensus

dig. phantom 2D 1.49 — strong

dig. phantom 2.5D 3.44 — strong

dig. phantom 3D 1 — very strong

config. A 2D 479 4 strong

config. A 2.5D 1.24 × 104 100 strong

config. B 2D 140 3 strong

config. B 2.5D 3.63 × 103 70 strong

config. C 3D 3.04 × 103 100 strong

config. D 3D 1.63 × 103 10 strong

config. E 3D 2.37 × 103 40 strong

Table Ҏ.ɰҎҎ | Reference values for the zone size non-uniformity feature.

3.8.12 Normalised zone size non-uniformity VB3A

This is a normalised version of zone size non-uniformity. It is defined as:

𝐹szm.zsnu.norm = 1

𝑁2𝑠

𝑁𝑧

∑
𝑖=1

𝑠2
.𝑗

data aggr. method value tol. consensus

dig. phantom 2D 0.333 — strong

dig. phantom 2.5D 0.191 — strong

dig. phantom 3D 0.2 — very strong

config. A 2D 0.44 0.004 strong

config. A 2.5D 0.427 0.004 strong

config. B 2D 0.521 0.004 strong

config. B 2.5D 0.509 0.004 strong

config. C 3D 0.447 0.001 strong

config. D 3D 0.377 0.006 strong

config. E 3D 0.424 0.004 strong

Table Ҏ.ɰҎҏ | Reference values for the normalised zone size non-uniformity feature.
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3.8.13 Zone percentage P30P

This featuremeasures the fraction of the number of realised zones and themaximumnum-

ber of potential zones. Highly uniform ROIs produce a low zone percentage. It is defined as:

𝐹szm.z .perc = 𝑁𝑠
𝑁𝑣

data aggr. method value tol. consensus

dig. phantom 2D 0.24 — strong

dig. phantom 2.5D 0.243 — strong

dig. phantom 3D 0.0676 — very strong

config. A 2D 0.3 0.003 strong

config. A 2.5D 0.253 0.004 strong

config. B 2D 0.324 0.001 strong

config. B 2.5D 0.26 0.002 strong

config. C 3D 0.148 0.003 very strong

config. D 3D 0.0972 0.0007 strong

config. E 3D 0.126 0.001 strong

Table Ҏ.ɰҎҐ | Reference values for the zone percentage feature.

3.8.14 Grey level variance BYLV

This feature estimates the variance in zone counts over the grey levels. Let 𝑝𝑖𝑗 = 𝑠𝑖𝑗/𝑁𝑠 be

the joint probability estimate for finding zones with discretised grey level 𝑖 and size 𝑗. The
feature is then defined as:

𝐹szm.gl.var =
𝑁𝑔

∑
𝑖=1

𝑁𝑧

∑
𝑗=1

(𝑖 − 𝜇)2𝑝𝑖𝑗

Here, 𝜇 = ∑𝑁𝑔
𝑖=1

∑𝑁𝑧
𝑗=1

𝑖 𝑝𝑖𝑗.

data aggr. method value tol. consensus

dig. phantom 2D 3.97 — strong

dig. phantom 2.5D 3.92 — strong

dig. phantom 3D 2.64 — very strong

config. A 2D 42.7 0.7 strong

config. A 2.5D 47.9 0.4 strong

config. B 2D 36.1 0.3 strong

config. B 2.5D 41 0.7 strong

config. C 3D 106 1 strong

config. D 3D 32.7 1.6 strong

config. E 3D 50.8 0.9 strong

Table Ҏ.ɰҎґ | Reference values for the grey level variance feature.
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3.8.15 Zone size variance 3NSA

This feature estimates the variance in zone counts over the different zone sizes. As before

let 𝑝𝑖𝑗 = 𝑠𝑖𝑗/𝑁𝑠. The feature is defined as:

𝐹szm.zs.var =
𝑁𝑔

∑
𝑖=1

𝑁𝑧

∑
𝑗=1

(𝑗 − 𝜇)2𝑝𝑖𝑗

Mean zone size is defined as 𝜇 = ∑𝑁𝑔
𝑖=1

∑𝑁𝑧
𝑗=1

𝑗 𝑝𝑖𝑗.

data aggr. method value tol. consensus

dig. phantom 2D 21 — strong

dig. phantom 2.5D 17.3 — strong

dig. phantom 3D 331 — very strong

config. A 2D 609 9 strong

config. A 2.5D 660 8 strong

config. B 2D 423 8 strong

config. B 2.5D 429 8 strong

config. C 3D 3.89 × 104 900 strong

config. D 3D 9.9 × 104 2.8 × 103 strong

config. E 3D 5.85 × 104 800 strong

Table Ҏ.ɰҎɦ | Reference values for the zone size variance feature.

3.8.16 Zone size entropy GU8N

Let 𝑝𝑖𝑗 = 𝑠𝑖𝑗/𝑁𝑠. Zone size entropy is then defined as:

𝐹szm.zs.entr = −
𝑁𝑔

∑
𝑖=1

𝑁𝑧

∑
𝑗=1

𝑝𝑖𝑗 log
2
𝑝𝑖𝑗

data aggr. method value tol. consensus

dig. phantom 2D 1.93 — strong

dig. phantom 2.5D 3.08 — strong

dig. phantom 3D 2.32 — very strong

config. A 2D 5.92 0.02 strong

config. A 2.5D 6.39 0.01 strong

config. B 2D 5.29 0.01 strong

config. B 2.5D 5.98 0.02 strong

config. C 3D 7 0.01 strong

config. D 3D 6.52 0.01 strong

config. E 3D 6.57 0.01 strong

Table Ҏ.ɰҎҒ | Reference values for the zone size entropy feature.
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3.9 Grey level distance zone based features VMDZ

The grey level distance zone matrix (GLDZM) counts the number of groups (or zones) of

linked voxels which share a specific discretised grey level value and possess the same dis-

tance to ROI edge71. The GLDZM thus captures the relation between location and grey level.

Two maps are required to calculate the GLDZM. The first is a grey level zone map, which is

identical to the one created for the grey level size zonematrix (GLSZM), see Section 3.8. The

second is a distance map, which will be described in detail later.

As with GSLZM, neighbouring voxels are linked if they share the same grey level value.

Whether a voxel classifies as a neighbour depends on its connectedness. We consider 26-

connectedness for a 3D approach and 8-connectedness in the 2D approach.

The distance to the ROI edge is defined according to 6 and 4-connectedness for 3D and

2D, respectively. Because of the connectedness definition used, the distance of a voxel to

the outer border is equal to the minimum number edges of neighbouring voxels that need

to be crossed to reach the ROI edge. The distance for a linked group of voxels with the same

grey value is equal to the minimum distance for the respective voxels in the distance map.

Our definition deviates from the original by Thibault et al. 71 . The original was defined in

a rectangular 2D image, whereas ROIs are rarely rectangular cuboids. Approximating dis-

tance using Chamfermaps is then no longer a fast and easy solution. Determining distance

iteratively in 6 or 4-connectedness is a relatively efficient solution, implemented as follows:

1. The ROI mask is morphologically eroded using the appropriate (6 or 4-connected)

structure element.

2. All eroded ROI voxels are updated in the distance map by adding 1.

3. The above steps are performed iteratively until the ROI mask is empty.

A second difference with the original definition is that the lowest possible distance is 1 in-

stead of 0 for voxels directly on the ROI edge. This prevents division by 0 for some features.

LetM be the 𝑁𝑔 × 𝑁𝑑 grey level size zone matrix, where 𝑁𝑔 is the number of discretised

grey levels present in the ROI intensity mask and 𝑁𝑑 the largest distance of any zone. Ele-

ment 𝑑𝑖𝑗 = 𝑑(𝑖, 𝑗) ofM is then number of zones with discretised grey level 𝑖 and distance 𝑗.
Furthermore, let 𝑁𝑣 be the number of voxels and 𝑁𝑠 = ∑𝑁𝑔

𝑖=1
∑𝑁𝑑

𝑗=1
𝑑𝑖𝑗 be the total zone count.

Marginal sums can likewise be defined. Let 𝑑𝑖. = ∑𝑁𝑑
𝑗=1

𝑑𝑖𝑗 be the number of zones with

discretised grey level 𝑖, regardless of distance. Likewise, let 𝑑.𝑗 = ∑𝑁𝑔
𝑖=1

𝑑𝑖𝑗 be the number

of zones with distance 𝑗, regardless of grey level. A two dimensional example is shown in

Table 3.139.

Morphological and intensity masks.

The GLDZM is special in that it uses both ROI masks. The distance map is determined

using themorphological ROI mask, whereas the intensitymask is used for determining the

zones, as with the GLSZM.

Aggregating features

Three methods can be used to aggregate GLDZMs and arrive at a single feature value. A

schematic example was previously shown in Figure 3.4. A feature may be aggregated as

follows:
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1 2 2 3

1 2 3 3

4 2 4 1

4 1 2 3

(a) Grey levels

1 1 1 1

1 2 2 1

1 2 2 1

1 1 1 1

(b) Distance

map

𝑗
1 2

𝑖

1 3 0

2 2 0

3 2 0

4 1 1

(c) Grey level

distance zone

matrix

Table Ҏ.ɰҎғ | Original image with grey levels (a); corresponding distance map for distance to bor-
der (b); and corresponding grey level distance zone matrix (GLDZM) under ҏ-connectedness (c).
Element𝑑(𝑖, 𝑗) of theGLDZM indicates the number of times a zonewith grey level 𝑖 and aminimum
distance to border 𝑗 occurs within the image.

1. Features are computed from 2D matrices and averaged over slices (8QNN).

2. The feature is computed from a single matrix after merging all 2D matrices (62GR).

3. The feature is computed from a 3D matrix (KOBO).

Method 2 involves merging GLDZMs by summing the number of zones 𝑑𝑖𝑗 over the GLDZM

for the different slices. Note thatwhenmatrices aremerged,𝑁𝑣 should likewise be summed

to retain consistency. Feature values may dependent strongly on the aggregation method.

Distances

In addition to the use of different distance norms to determine voxel linkage, as de-

scribed in section 3.8, different distance normsmay be used to determine distance of zones

to the boundary. The default is to use theManhattan normwhich allows for a computation-

ally efficient implementation, as described above. A similar implementation is possible us-

ing the Chebyshev norm, as it merely changes connectedness of the structure element. Im-

plementations using an Euclidean distance norm are less efficient as this demands search-

ing for the nearest non-ROI voxel for each of the𝑁𝑣 voxels in the ROI. An added issue is that

Euclidean norms may lead to a wide range of different distances 𝑗 that require rounding

before constructing the grey level distance zone matrixM. Using different distance norms

is non-standard use, and we caution against it due to potential reproducibility issues.

Note on feature references

GLDZM feature definitions are based on the definitions of GLRLM features71. Hence, ref-

erences may be found in the section on GLRLM (3.7).



CHAPTER 3. IMAGE FEATURES 110

3.9.1 Small distance emphasis 0GBI

This feature emphasises small distances. It is defined as:

𝐹dzm.sde = 1

𝑁𝑠

𝑁𝑑

∑
𝑗=1

𝑑.𝑗
𝑗2

data aggr. method value tol. consensus

dig. phantom 2D 0.946 — strong

dig. phantom 2.5D 0.917 — moderate

dig. phantom 3D 1 — very strong

config. A 2D 0.192 0.006 strong

config. A 2.5D 0.168 0.005 strong

config. B 2D 0.36 0.005 strong

config. B 2.5D 0.329 0.004 strong

config. C 3D 0.531 0.006 strong

config. D 3D 0.579 0.004 strong

config. E 3D 0.527 0.004 moderate

Table Ҏ.ɰҏҔ | Reference values for the small distance emphasis feature.

3.9.2 Large distance emphasis MB4I

This feature emphasises large distances. It is defined as:

𝐹dzm.lde = 1

𝑁𝑠

𝑁𝑑

∑
𝑗=1

𝑗2𝑑.𝑗

data aggr. method value tol. consensus

dig. phantom 2D 1.21 — strong

dig. phantom 2.5D 1.33 — moderate

dig. phantom 3D 1 — very strong

config. A 2D 161 1 moderate

config. A 2.5D 178 1 moderate

config. B 2D 31.6 0.2 moderate

config. B 2.5D 34.3 0.2 moderate

config. C 3D 11 0.3 strong

config. D 3D 10.3 0.1 strong

config. E 3D 12.6 0.1 moderate

Table Ҏ.ɰҏɰ | Reference values for the large distance emphasis feature.
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3.9.3 Low grey level zone emphasis S1RA

This feature is a grey level analogue to small distance emphasis. Instead of small zone dis-

tances, low grey levels are emphasised. The feature is defined as:

𝐹dzm.lgze = 1

𝑁𝑠

𝑁𝑔

∑
𝑖=1

𝑑𝑖.
𝑖2

data aggr. method value tol. consensus

dig. phantom 2D 0.371 — strong

dig. phantom 2.5D 0.368 — moderate

dig. phantom 3D 0.253 — very strong

config. A 2D 0.0368 0.0005 strong

config. A 2.5D 0.0291 0.0005 strong

config. B 2D 0.0475 0.001 strong

config. B 2.5D 0.0387 0.001 strong

config. C 3D 0.00235 6 × 10−5 strong

config. D 3D 0.0409 0.0005 strong

config. E 3D 0.034 0.0004 moderate

Table Ҏ.ɰҏҍ | Reference values for the low grey level emphasis feature.

3.9.4 High grey level zone emphasis K26C

The high grey level zone emphasis feature is a grey level analogue to large distance emphasis.

The feature emphasises high grey levels, and is defined as:

𝐹dzm.hgze = 1

𝑁𝑠

𝑁𝑔

∑
𝑖=1

𝑖2𝑑𝑖.

data aggr. method value tol. consensus

dig. phantom 2D 16.4 — strong

dig. phantom 2.5D 16.2 — moderate

dig. phantom 3D 15.6 — very strong

config. A 2D 363 3 strong

config. A 2.5D 370 3 strong

config. B 2D 284 11 strong

config. B 2.5D 284 11 strong

config. C 3D 971 7 strong

config. D 3D 188 10 strong

config. E 3D 286 6 strong

Table Ҏ.ɰҏҎ | Reference values for the high grey level emphasis feature.
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3.9.5 Small distance low grey level emphasis RUVG

This feature emphasises runs in the upper left quadrant of the GLDZM, where small zone

distances and low grey levels are located. It is defined as:

𝐹dzm.sdlge = 1

𝑁𝑠

𝑁𝑔

∑
𝑖=1

𝑁𝑑

∑
𝑗=1

𝑑𝑖𝑗
𝑖2𝑗2

data aggr. method value tol. consensus

dig. phantom 2D 0.367 — strong

dig. phantom 2.5D 0.362 — moderate

dig. phantom 3D 0.253 — very strong

config. A 2D 0.00913 0.00023 strong

config. A 2.5D 0.00788 0.00022 strong

config. B 2D 0.0192 0.0005 strong

config. B 2.5D 0.0168 0.0005 strong

config. C 3D 0.00149 4 × 10−5 strong

config. D 3D 0.0302 0.0006 strong

config. E 3D 0.0228 0.0003 moderate

Table Ҏ.ɰҏҏ | Reference values for the small distance low grey level emphasis feature.

3.9.6 Small distance high grey level emphasis DKNJ

This feature emphasises runs in the lower left quadrant of the GLDZM, where small zone

distances and high grey levels are located. Small distance high grey level emphasis is defined

as:

𝐹dzm.sdhge = 1

𝑁𝑠

𝑁𝑔

∑
𝑖=1

𝑁𝑑

∑
𝑗=1

𝑖2𝑑𝑖𝑗
𝑗2

data aggr. method value tol. consensus

dig. phantom 2D 15.2 — strong

dig. phantom 2.5D 14.3 — moderate

dig. phantom 3D 15.6 — very strong

config. A 2D 60.1 3.3 strong

config. A 2.5D 49.5 2.8 strong

config. B 2D 95.7 5.5 strong

config. B 2.5D 81.4 4.6 strong

config. C 3D 476 11 strong

config. D 3D 99.3 5.1 strong

config. E 3D 136 4 moderate

Table Ҏ.ɰҏҐ | Reference values for the small distance high grey level emphasis feature.



CHAPTER 3. IMAGE FEATURES 113

3.9.7 Large distance low grey level emphasis A7WM

This feature emphasises runs in the upper right quadrant of the GLDZM, where large zone

distances and low grey levels are located. The feature is defined as:

𝐹dzm.ldlge = 1

𝑁𝑠

𝑁𝑔

∑
𝑖=1

𝑁𝑑

∑
𝑗=1

𝑗2𝑑𝑖𝑗
𝑖2

data aggr. method value tol. consensus

dig. phantom 2D 0.386 — strong

dig. phantom 2.5D 0.391 — moderate

dig. phantom 3D 0.253 — very strong

config. A 2D 2.96 0.02 moderate

config. A 2.5D 2.31 0.01 moderate

config. B 2D 0.934 0.018 moderate

config. B 2.5D 0.748 0.017 moderate

config. C 3D 0.0154 0.0005 strong

config. D 3D 0.183 0.004 strong

config. E 3D 0.179 0.004 moderate

Table Ҏ.ɰҏґ | Reference values for the large distance low grey level emphasis feature.

3.9.8 Large distance high grey level emphasis KLTH

This feature emphasises runs in the lower right quadrant of the GLDZM, where large zone

distances and high grey levels are located. The large distance high grey level emphasis feature

is defined as:

𝐹dzm.ldhge = 1

𝑁𝑠

𝑁𝑔

∑
𝑖=1

𝑁𝑑

∑
𝑗=1

𝑖2𝑗2𝑑𝑖𝑗

data aggr. method value tol. consensus

dig. phantom 2D 21.3 — strong

dig. phantom 2.5D 23.7 — moderate

dig. phantom 3D 15.6 — very strong

config. A 2D 7.01 × 104 100 moderate

config. A 2.5D 7.95 × 104 100 moderate

config. B 2D 1.06 × 104 300 strong

config. B 2.5D 1.16 × 104 400 strong

config. C 3D 1.34 × 104 200 strong

config. D 3D 2.62 × 103 110 strong

config. E 3D 4.85 × 103 60 moderate

Table Ҏ.ɰҏɦ | Reference values for the large distance high grey level emphasis feature.
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3.9.9 Grey level non-uniformity VFT7

This feature measures the distribution of zone counts over the grey values. Grey level non-

uniformity is low when zone counts are equally distributed along grey levels. The feature is

defined as:

𝐹dzm.glnu = 1

𝑁𝑠

𝑁𝑔

∑
𝑖=1

𝑑2
𝑖.

data aggr. method value tol. consensus

dig. phantom 2D 1.41 — strong

dig. phantom 2.5D 5.44 — moderate

dig. phantom 3D 1.4 — very strong

config. A 2D 82.2 0.1 strong

config. A 2.5D 1.8 × 103 10 strong

config. B 2D 20.5 0.1 strong

config. B 2.5D 437 3 strong

config. C 3D 195 6 strong

config. D 3D 212 6 strong

config. E 3D 231 6 moderate

Table Ҏ.ɰҏҒ | Reference values for the grey level non-uniformity feature.

3.9.10 Normalised grey level non-uniformity 7HP3

This is a normalised version of the grey level non-uniformity feature. It is defined as:

𝐹dzm.glnu.norm = 1

𝑁2𝑠

𝑁𝑔

∑
𝑖=1

𝑑2
𝑖.

data aggr. method value tol. consensus

dig. phantom 2D 0.323 — strong

dig. phantom 2.5D 0.302 — moderate

dig. phantom 3D 0.28 — very strong

config. A 2D 0.0728 0.0014 strong

config. A 2.5D 0.0622 0.0007 strong

config. B 2D 0.0789 0.001 strong

config. B 2.5D 0.0613 0.0005 strong

config. C 3D 0.0286 0.0003 strong

config. D 3D 0.0491 0.0008 strong

config. E 3D 0.0414 0.0003 moderate

Table Ҏ.ɰҏғ | Reference values for the normalised grey level non-uniformity feature.
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3.9.11 Zone distance non-uniformity V294

Zone distance non-uniformitymeasures the distribution of zone counts over the different zone

distances. Zone distance non-uniformity is low when zone counts are equally distributed

along zone distances. It is defined as:

𝐹dzm.zdnu = 1

𝑁𝑠

𝑁𝑑

∑
𝑗=1

𝑑2
.𝑗

data aggr. method value tol. consensus

dig. phantom 2D 3.79 — strong

dig. phantom 2.5D 14.4 — moderate

dig. phantom 3D 5 — very strong

config. A 2D 64 0.4 moderate

config. A 2.5D 1.57 × 103 10 strong

config. B 2D 39.8 0.3 moderate

config. B 2.5D 963 6 moderate

config. C 3D 1.87 × 103 40 strong

config. D 3D 1.37 × 103 20 strong

config. E 3D 1.5 × 103 30 moderate

Table Ҏ.ɰҐҔ | Reference values for the zone distance non-uniformity feature.

3.9.12 Normalised zone distance non-uniformity IATH

This is a normalised version of the zone distance non-uniformity feature. It is defined as:

𝐹dzm.zdnu.norm = 1

𝑁2𝑠

𝑁𝑑

∑
𝑖=1

𝑑2
.𝑗

data aggr. method value tol. consensus

dig. phantom 2D 0.898 — strong

dig. phantom 2.5D 0.802 — moderate

dig. phantom 3D 1 — very strong

config. A 2D 0.0716 0.0022 strong

config. A 2.5D 0.0543 0.0014 strong

config. B 2D 0.174 0.003 strong

config. B 2.5D 0.135 0.001 strong

config. C 3D 0.274 0.005 strong

config. D 3D 0.317 0.004 strong

config. E 3D 0.269 0.003 moderate

Table Ҏ.ɰҐɰ | Reference values for the normalised zone distance non-uniformity feature.
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3.9.13 Zone percentage VIWW

This featuremeasures the fraction of the number of realised zones and themaximumnum-

ber of potential zones. Highly uniform ROIs produce a low zone percentage. It is defined as:

𝐹dzm.z .perc = 𝑁𝑠
𝑁𝑣

data aggr. method value tol. consensus

dig. phantom 2D 0.24 — strong

dig. phantom 2.5D 0.243 — moderate

dig. phantom 3D 0.0676 — very strong

config. A 2D 0.3 0.003 strong

config. A 2.5D 0.253 0.004 moderate

config. B 2D 0.324 0.001 strong

config. B 2.5D 0.26 0.002 moderate

config. C 3D 0.148 0.003 strong

config. D 3D 0.0972 0.0007 strong

config. E 3D 0.126 0.001 moderate

Table Ҏ.ɰҐҍ | Reference values for the zone percentage feature.

3.9.14 Grey level variance QK93

This feature estimates the variance in zone counts over the grey levels. Let 𝑝𝑖𝑗 = 𝑑𝑖𝑗/𝑁𝑠 be

the joint probability estimate for finding zones with discretised grey level 𝑖 at distance 𝑗.
The feature is then defined as:

𝐹dzm.gl.var =
𝑁𝑔

∑
𝑖=1

𝑁𝑑

∑
𝑗=1

(𝑖 − 𝜇)2𝑝𝑖𝑗

Here, 𝜇 = ∑𝑁𝑔
𝑖=1

∑𝑁𝑑
𝑗=1

𝑖 𝑝𝑖𝑗.

data aggr. method value tol. consensus

dig. phantom 2D 3.97 — strong

dig. phantom 2.5D 3.92 — moderate

dig. phantom 3D 2.64 — very strong

config. A 2D 42.7 0.7 moderate

config. A 2.5D 47.9 0.4 strong

config. B 2D 36.1 0.3 moderate

config. B 2.5D 41 0.7 strong

config. C 3D 106 1 strong

config. D 3D 32.7 1.6 strong

config. E 3D 50.8 0.9 strong

Table Ҏ.ɰҐҎ | Reference values for the grey level variance feature.
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3.9.15 Zone distance variance 7WT1

This feature estimates the variance in zone counts for the different zone distances. As

before let 𝑝𝑖𝑗 = 𝑑𝑖𝑗/𝑁𝑠. The feature is defined as:

𝐹dzm.zd.var =
𝑁𝑔

∑
𝑖=1

𝑁𝑑

∑
𝑗=1

(𝑗 − 𝜇)2𝑝𝑖𝑗

Mean zone size is defined as 𝜇 = ∑𝑁𝑔
𝑖=1

∑𝑁𝑑
𝑗=1

𝑗 𝑝𝑖𝑗.

data aggr. method value tol. consensus

dig. phantom 2D 0.051 — strong

dig. phantom 2.5D 0.0988 — moderate

dig. phantom 3D 0 — very strong

config. A 2D 69.4 0.1 moderate

config. A 2.5D 78.9 0.1 moderate

config. B 2D 13.5 0.1 moderate

config. B 2.5D 15 0.1 moderate

config. C 3D 4.6 0.06 strong

config. D 3D 4.61 0.04 strong

config. E 3D 5.56 0.05 strong

Table Ҏ.ɰҐҏ | Reference values for the zone distance variance feature.

3.9.16 Zone distance entropy GBDU

Again, let 𝑝𝑖𝑗 = 𝑑𝑖𝑗/𝑁𝑠. Zone distance entropy is then defined as:

𝐹dzm.zd.entr = −
𝑁𝑔

∑
𝑖=1

𝑁𝑑

∑
𝑗=1

𝑝𝑖𝑗 log
2
𝑝𝑖𝑗

data aggr. method value tol. consensus

dig. phantom 2D 1.73 — strong

dig. phantom 2.5D 2 — moderate

dig. phantom 3D 1.92 — very strong

config. A 2D 8 0.04 strong

config. A 2.5D 8.87 0.03 strong

config. B 2D 6.47 0.03 strong

config. B 2.5D 7.58 0.01 moderate

config. C 3D 7.56 0.03 strong

config. D 3D 6.61 0.03 strong

config. E 3D 7.06 0.01 moderate

Table Ҏ.ɰҐҐ | Reference values for the zone distance entropy feature.
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3.10 Neighbourhood grey tone difference based features IPET

Amadasun and King 5 introduced an alternative to the grey level co-occurrencematrix. The

neighbourhood grey tone difference matrix (NGTDM) contains the sum of grey level differ-

ences of pixels/voxels with discretised grey level 𝑖 and the average discretised grey level

of neighbouring pixels/voxels within a Chebyshev distance 𝛿. For 3D volumes, we can ex-

tend the original definition by Amadasun and King. Let 𝑋𝑑,𝑘 be the discretised grey level

of a voxel at position k = (𝑘𝑥, 𝑘𝑦, 𝑘𝑧). Then the average grey level within a neighbourhood

centred at (𝑘𝑥, 𝑘𝑦, 𝑘𝑧), but excluding (𝑘𝑥, 𝑘𝑦, 𝑘𝑧) itself is:

𝑋𝑘 = 1

𝑊
𝛿

∑
𝑚𝑧=−𝛿

𝛿
∑

𝑚𝑦=−𝛿

𝛿
∑

𝑚𝑥=−𝛿
𝑋𝑑(𝑘𝑥+𝑚𝑥, 𝑘𝑦+𝑚𝑦, 𝑘𝑧+𝑚𝑧)

(𝑚𝑥, 𝑚𝑦, 𝑚𝑧) ≠ (0, 0, 0)

𝑊 = (2𝛿 + 1)3 − 1 is the size of the 3D neighbourhood. For 2D 𝑊 = (2𝛿 + 1)2 − 1, and

averages are not calculated between different slices. Neighbourhood grey tone difference

𝑠𝑖 for discretised grey level 𝑖 is then:

𝑠𝑖 =
𝑁𝑣

∑
𝑘

|𝑖 − 𝑋𝑘| [𝑋𝑑(k) = 𝑖 and 𝑘 has a valid neighbourhood]

Here, […] is an Iverson bracket, which is 1 if the conditions that the grey level 𝑋𝑑,𝑘 of voxel

𝑘 is equal to 𝑖 and the voxel has a valid neighbourhood are both true; it is 0 otherwise. 𝑁𝑣 is

the number of voxels in the ROI intensity mask.

A 2D example is shown inTable 3.156. A distance of𝛿 = 1 is used in this example, leading

to 8 neighbouring pixels. Entry 𝑠1 = 0 because there are no valid pixels with grey level 1.

Two pixels have grey level 2. The average value of their neighbours are 19/8 and 21/8. Thus

𝑠2 = |2 − 19/8| + |2 − 21/8| = 1. Similarly 𝑠3 = |3 − 19/8| = 0.625 and 𝑠4 = |4 − 17/8| = 1.825.

We deviate from the original definition by Amadasun and King 5 as we do not demand

that valid neighbourhoods are completely inside the ROI. In an irregular ROI mask, valid

neighbourhoods may simply not exist for a distance 𝛿. Instead, we consider a valid neigh-

bourhood to exist if there is at least one neighbouring voxel included in the ROI mask. The

average grey level for voxel 𝑘 within a valid neighbourhood is then:

𝑋𝑘 = 1

𝑊𝑘

𝛿
∑

𝑚𝑧=−𝛿

𝛿
∑

𝑚𝑦=−𝛿

𝛿
∑

𝑚𝑥=−𝛿
𝑋𝑑(k + m)[m ≠ 0 and k + m in ROI]

The neighbourhood size𝑊𝑘 for this voxel is equal to the number of voxels in the neighbour-

hood that are part of the ROI mask:

𝑊𝑘 =
𝛿

∑
𝑚𝑧=−𝛿

𝛿
∑

𝑚𝑦=−𝛿

𝛿
∑

𝑚𝑥=−𝛿
[m ≠ 0 and k + m in ROI]

Under our definition, neighbourhood grey tone difference 𝑠𝑖 for discretised grey level 𝑖 can
be directly expressed using neighbourhood size 𝑊𝑘 of voxel 𝑘:

𝑠𝑖 =
𝑁𝑣

∑
𝑘

|𝑖 − 𝑋𝑘| [𝑋𝑑(k) = 𝑖 and 𝑊𝑘 ≠ 0]

Consequentially, 𝑛𝑖 is the total number of voxels with grey level 𝑖 which have a non-zero
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1 2 2 3

1 2 3 3

4 2 4 1

4 1 2 3

(a) Grey levels

𝑛𝑖 𝑝𝑖 𝑠𝑖

𝑖

1 0 0.00 0.000

2 2 0.50 1.000

3 1 0.25 0.625

4 1 0.25 1.875

(b)Neighbourhood grey tone

difference matrix

Table Ҏ.ɰҐґ | Original image with grey levels (a) and corresponding neighbourhood grey tone dif-
ference matrix (NGTDM) (b). The𝑁𝑣,𝑐 pixels with valid neighbours at distance ɰ are located within
the rectangle in (a). The grey level voxel count 𝑛𝑖, the grey level probability 𝑝𝑖 = 𝑛𝑖/𝑁𝑣,𝑐, and
the neighbourhood grey level difference 𝑠𝑖 for pixels with grey level 𝑖 are included in the NGTDM.
Note that our actual definition deviates from the original definition of Amadasun and King Ґ , which
is used here. In our definition complete neighbourhood are no longer required. In our definition
the NGTDM would be calculated on the entire pixel area, and not solely on those pixels within the
rectangle of panel (a).

neighbourhood size.

Many NGTDM-based features depend on the 𝑁𝑔 grey level probabilities 𝑝𝑖 = 𝑛𝑖/𝑁𝑣,𝑐,

where𝑁𝑔 is the number of discretised grey levels in the ROI intensitymask and𝑁𝑣,𝑐 = ∑ 𝑛𝑖
is total number of voxels that have at least one neighbour. If all voxels have at least one

neighbour 𝑁𝑣,𝑐 = 𝑁𝑣. Furthermore, let 𝑁𝑔,𝑝 ≤ 𝑁𝑔 be the number of discretised grey levels

with 𝑝𝑖 > 0. In the above example, 𝑁𝑔 = 4 and 𝑁𝑔,𝑝 = 3.

Aggregating features

Three methods can be used to aggregate NGTDMs and arrive at a single feature value.

A schematic example was previously shown in Figure 3.4. A feature may be aggregated as

follows:

1. Features are computed from 2D matrices and averaged over slices (8QNN).

2. The feature is computed from a single matrix after merging all 2D matrices (62GR).

3. The feature is computed from a 3D matrix (KOBO).

Method 2 involves merging NGTDMs by summing the neighbourhood grey tone difference

𝑠𝑖 and the number of voxels with a valid neighbourhood 𝑛𝑖 and grey level 𝑖 for NGTDMs of

the different slices. Note that when NGTDMs are merged, 𝑁𝑣,𝑐 and 𝑝𝑖 should be updated

based on the merged NGTDM. Feature values may dependent strongly on the aggregation

method.

Distances and distance weighting

The default neighbourhood is defined using the Chebyshev norm. Manhattan or Euc-

lidean norms may be used as well. This requires a more general definition for the average

grey level 𝑋𝑘:

𝑋𝑘 = 1

𝑊𝑘

𝛿
∑

𝑚𝑧=−𝛿

𝛿
∑

𝑚𝑦=−𝛿

𝛿
∑

𝑚𝑥=−𝛿
𝑋𝑑(k + m)[‖m‖ ≤ 𝛿 andm ≠ 0 and k + m in ROI]
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The neighbourhood size 𝑊𝑘 is:

𝑊𝑘 =
𝛿

∑
𝑚𝑧=−𝛿

𝛿
∑

𝑚𝑦=−𝛿

𝛿
∑

𝑚𝑥=−𝛿
[‖m‖ ≤ 𝛿 andm ≠ 0 and k + m in ROI]

As before, […] is an Iverson bracket.

Distance weighting for NGTDM is relatively straightforward. Let 𝑤 be a weight depend-

ent onm, e.g. 𝑤 = ‖m‖−1
or 𝑤 = exp(−‖m‖2). The average grey level is then:

𝑋𝑘 = 1

𝑊𝑘

𝛿
∑

𝑚𝑧=−𝛿

𝛿
∑

𝑚𝑦=−𝛿

𝛿
∑

𝑚𝑥=−𝛿
𝑤(m)𝑋𝑑(k + m)[‖m‖ ≤ 𝛿 andm ≠ 0 and k + m in ROI]

The neighbourhood size 𝑊𝑘 becomes a general weight:

𝑊𝑘 =
𝛿

∑
𝑚𝑧=−𝛿

𝛿
∑

𝑚𝑦=−𝛿

𝛿
∑

𝑚𝑥=−𝛿
𝑤(m)[‖m‖ ≤ 𝛿 andm ≠ 0 and k + m in ROI]

Employingdifferent distancenormsanddistanceweighting is considerednon-standard

use, and we caution against them due to potential reproducibility issues.

3.10.1 Coarseness QCDE

Grey level differences in coarse textures are generally small due to large-scale patterns.

Summing differences gives an indication of the level of the spatial rate of change in in-

tensity5. Coarseness is defined as:

𝐹ngt.coarseness = 1

∑𝑁𝑔
𝑖=1

𝑝𝑖 𝑠𝑖

Because ∑𝑁𝑔
𝑖=1

𝑝𝑖 𝑠𝑖 potentially evaluates to 0, the maximum coarseness value is set to an

arbitrary number of 106. Amadasun andKing originally circumvented this issue by adding a

unspecified small number 𝜖 to the denominator, but an explicit, though arbitrary, maximum

value should allow for more consistency.

data aggr. method value tol. consensus

dig. phantom 2D 0.121 — strong

dig. phantom 2.5D 0.0285 — strong

dig. phantom 3D 0.0296 — very strong

config. A 2D 0.00629 0.00046 strong

config. A 2.5D 9.06 × 10−5 3.3 × 10−6 strong

config. B 2D 0.0168 0.0005 strong

config. B 2.5D 0.000314 4 × 10−6 strong

config. C 3D 0.000216 4 × 10−6 strong

config. D 3D 0.000208 4 × 10−6 strong

config. E 3D 0.000188 4 × 10−6 strong

Table Ҏ.ɰҐɦ | Reference values for the coarseness feature.
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3.10.2 Contrast 65HE

Contrast depends on the dynamic range of the grey levels as well as the spatial frequency

of intensity changes5. Thus, contrast is defined as:

𝐹ngt.contrast = ⎛⎜
⎝

1

𝑁𝑔,𝑝 (𝑁𝑔,𝑝 − 1)

𝑁𝑔

∑
𝑖1=1

𝑁𝑔

∑
𝑖2=1

𝑝𝑖1
𝑝𝑖2

(𝑖1 − 𝑖2)2⎞⎟
⎠

⎛⎜
⎝

1

𝑁𝑣,𝑐

𝑁𝑔

∑
𝑖=1

𝑠𝑖
⎞⎟
⎠

Grey level probabilities 𝑝𝑖1
and 𝑝𝑖2

are copies of 𝑝𝑖 with different iterators, i.e. 𝑝𝑖1
= 𝑝𝑖2

for

𝑖1 = 𝑖2. The first term considers the grey level dynamic range, whereas the second term is a

measure for intensity changes within the volume. If 𝑁𝑔,𝑝 = 1, 𝐹ngt.contrast = 0.

data aggr. method value tol. consensus

dig. phantom 2D 0.925 — strong

dig. phantom 2.5D 0.601 — strong

dig. phantom 3D 0.584 — very strong

config. A 2D 0.107 0.002 strong

config. A 2.5D 0.0345 0.0009 strong

config. B 2D 0.181 0.001 strong

config. B 2.5D 0.0506 0.0005 strong

config. C 3D 0.0873 0.0019 strong

config. D 3D 0.046 0.0005 strong

config. E 3D 0.0752 0.0019 moderate

Table Ҏ.ɰҐҒ | Reference values for the contrast feature.

3.10.3 Busyness NQ30

Textures with large changes in grey levels between neighbouring voxels are said to be

busy5. Busyness was defined as:

𝐹ngt.busyness =
∑𝑁𝑔

𝑖=1
𝑝𝑖 𝑠𝑖

∑𝑁𝑔
𝑖1=1

∑𝑁𝑔
𝑖2=1

𝑖1 𝑝𝑖1
− 𝑖2 𝑝𝑖2

, 𝑝𝑖1
≠ 0 and 𝑝𝑖2

≠ 0

As before, 𝑝𝑖1
= 𝑝𝑖2

for 𝑖1 = 𝑖2. The original definition was erroneously formulated as the

denominator will always evaluate to 0. Therefore we use a slightly different definition38:

𝐹ngt.busyness =
∑𝑁𝑔

𝑖=1
𝑝𝑖 𝑠𝑖

∑𝑁𝑔
𝑖1=1

∑𝑁𝑔
𝑖2=1

∣𝑖1 𝑝𝑖1
− 𝑖2 𝑝𝑖2

∣
, 𝑝𝑖1

≠ 0 and 𝑝𝑖2
≠ 0

If 𝑁𝑔,𝑝 = 1, 𝐹ngt.busyness = 0.

data aggr. method value tol. consensus

dig. phantom 2D 2.99 — strong

dig. phantom 2.5D 6.8 — strong

dig. phantom 3D 6.54 — very strong
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config. A 2D 0.489 0.001 strong

config. A 2.5D 8.84 0.01 strong

config. B 2D 0.2 0.005 strong

config. B 2.5D 3.45 0.07 strong

config. C 3D 1.39 0.01 very strong

config. D 3D 5.14 0.14 strong

config. E 3D 4.65 0.1 strong

Table Ҏ.ɰҐғ | Reference values for the busyness feature.

3.10.4 Complexity HDEZ

Complex textures are non-uniform and rapid changes in grey levels are common5. Texture

complexity is defined as:

𝐹ntg.complexity = 1

𝑁𝑣,𝑐

𝑁𝑔

∑
𝑖1=1

𝑁𝑔

∑
𝑖2=1

|𝑖1 − 𝑖2|
𝑝𝑖1

𝑠𝑖1
+ 𝑝𝑖2

𝑠𝑖2

𝑝𝑖1
+ 𝑝𝑖2

, 𝑝𝑖1
≠ 0 and 𝑝𝑖2

≠ 0

As before, 𝑝𝑖1
= 𝑝𝑖2

for 𝑖1 = 𝑖2, and likewise 𝑠𝑖1
= 𝑠𝑖2

for 𝑖1 = 𝑖2.

data aggr. method value tol. consensus

dig. phantom 2D 10.4 — strong

dig. phantom 2.5D 14.1 — strong

dig. phantom 3D 13.5 — very strong

config. A 2D 438 9 strong

config. A 2.5D 580 19 strong

config. B 2D 391 7 strong

config. B 2.5D 496 5 strong

config. C 3D 1.81 × 103 60 very strong

config. D 3D 400 5 strong

config. E 3D 574 1 moderate

Table Ҏ.ɰґҔ | Reference values for the complexity feature.
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3.10.5 Strength 1X9X

Amadasun and King 5 defined texture strength as:

𝐹ngt.strength =
∑𝑁𝑔

𝑖1=1
∑𝑁𝑔

𝑖2=1
(𝑝𝑖1

+ 𝑝𝑖2
) (𝑖1 − 𝑖2)2

∑𝑁𝑔
𝑖=1

𝑠𝑖
, 𝑝𝑖1

≠ 0 and 𝑝𝑖2
≠ 0

As before, 𝑝𝑖1
= 𝑝𝑖2

for 𝑖1 = 𝑖2. If ∑𝑁𝑔
𝑖=1

𝑠𝑖 = 0, 𝐹ngt.strength = 0.

data aggr. method value tol. consensus

dig. phantom 2D 2.88 — strong

dig. phantom 2.5D 0.741 — strong

dig. phantom 3D 0.763 — very strong

config. A 2D 3.33 0.08 strong

config. A 2.5D 0.0904 0.0027 strong

config. B 2D 6.02 0.23 strong

config. B 2.5D 0.199 0.009 strong

config. C 3D 0.651 0.015 strong

config. D 3D 0.162 0.008 strong

config. E 3D 0.167 0.006 strong

Table Ҏ.ɰґɰ | Reference values for the strength feature.
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3.11 Neighbouring grey level dependence based features REK0

Sun and Wee 69 defined the neighbouring grey level dependence matrix (NGLDM) as an al-

ternative to the grey level co-occurrence matrix. The NGLDM aims to capture the coarse-

ness of the overall texture and is rotationally invariant.

NGLDM also involves the concept of a neighbourhood around a central voxel. All voxels

within Chebyshev distance 𝛿 are considered to belong to the neighbourhood of the center

voxel. The discretised grey levels of the center voxel 𝑘 at position k and a neighbouring

voxel 𝑚 at k + m are said to be dependent if |𝑋𝑑(k) − 𝑋𝑑(k + m)| ≤ 𝛼, with 𝛼 being a non-

negative integer coarseness parameter. The number of grey level dependent voxels 𝑗within

the neighbourhood is then counted as:

𝑗𝑘 = 1 +
𝛿

∑
𝑚𝑧=−𝛿

𝛿
∑

𝑚𝑦=−𝛿

𝛿
∑

𝑚𝑥=−𝛿
[|𝑋𝑑(k) − 𝑋𝑑(k + m)| ≤ 𝛼 andm ≠ 0]

Here, […] is an Iverson bracket, which is 1 if the aforementioned condition is fulfilled, and 0

otherwise. Note that the minimum dependence 𝑗𝑘 = 1 and not 𝑗𝑘 = 0. This is done because

some feature definitions require a minimum dependence of 1 or are undefined otherwise.

One may therefore also simplify the expression for 𝑗𝑘 by including the center voxel:

𝑗𝑘 =
𝛿

∑
𝑚𝑧=−𝛿

𝛿
∑

𝑚𝑦=−𝛿

𝛿
∑

𝑚𝑥=−𝛿
[|𝑋𝑑(k) − 𝑋𝑑(k + m)| ≤ 𝛼]

Dependence 𝑗𝑘 is iteratively determined for each voxel 𝑘 in the ROI intensity mask. M is

then the𝑁𝑔×𝑁𝑛 neighbouring grey level dependencematrix, where𝑁𝑔 is the number of dis-

cretised grey levels present in the ROI intensitymask and𝑁𝑛 = max(𝑗𝑘) themaximumgrey

level dependence count found. Element 𝑠𝑖𝑗 ofM is then the number of neighbourhoodswith

a center voxel with discretised grey level 𝑖 and a neighbouring voxel dependence 𝑗. Further-
more, let 𝑁𝑣 be the number of voxels in the ROI intensity mask, and 𝑁𝑠 = ∑𝑁𝑔

𝑖=1
∑𝑁𝑛

𝑗=1
𝑠𝑖𝑗 the

number of neighbourhoods. Marginal sums can likewise be defined. Let 𝑠𝑖. = ∑𝑁𝑛
𝑗=1

be the

number of neighbourhoods with discretised grey level 𝑖, and let 𝑠𝑗. = ∑𝑁𝑔
𝑖=1

𝑠𝑖𝑗 be the number

of neighbourhoods with dependence 𝑗, regardless of grey level. A two dimensional example

is shown in Table 3.162.

The definition we actually use deviates from the original by Sun andWee 69 . Because re-

gions of interest are rarely cuboid, omission of neighbourhoods which contain voxels out-

side the ROI mask may lead to inconsistent results, especially for larger distance 𝛿. Hence
the neighbourhoods of all voxels in the within the ROI intensity mask are considered, and

consequently 𝑁𝑣 = 𝑁𝑠. Neighbourhood voxels located outside the ROI do not add to de-

pendence 𝑗:

𝑗𝑘 =
𝛿

∑
𝑚𝑧=−𝛿

𝛿
∑

𝑚𝑦=−𝛿

𝛿
∑

𝑚𝑥=−𝛿
[|𝑋𝑑(k) − 𝑋𝑑(k + m)| ≤ 𝛼 and k + m in ROI]

Note that while 𝛼 = 0 is a typical choice for the coarseness parameter, different 𝛼 are

possible. Likewise, a typical choice for neighbourhood radius𝛿 is Chebyshevdistance𝛿 = 1

but larger values are possible as well.
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1 2 2 3

1 2 3 3

4 2 4 1

4 1 2 3

(a) Grey levels

dependence 𝑘
0 1 2 3

𝑖

1 0 0 0 0

2 0 0 1 1

3 0 0 1 0

4 1 0 0 0

(b) Neighbouring grey

level dependence mat-

rix

Table Ҏ.ɰґҍ | Original image with grey levels and pixels with a complete neighbourhood within

the square (a); corresponding neighbouring grey level dependence matrix for distance 𝑑 = √2
and coarseness parameter 𝑎 = 0 (b). Element 𝑠(𝑖, 𝑗) of the NGLDM indicates the number of
neighbourhoods with a center pixel with grey level 𝑖 and neighbouring grey level dependence 𝑘
within the image. Note that in our definition a complete neighbourhood is no longer required. Thus
every voxel is considered as a center voxel with a neighbourhood, instead of being constrained to
the voxels within the square in panel (a).

Aggregating features

Three methods can be used to aggregate NGLDMs and arrive at a single feature value.

A schematic example was previously shown in Figure 3.4. A feature may be aggregated as

follows:

1. Features are computed from 2D matrices and averaged over slices (8QNN).

2. The feature is computed from a single matrix after merging all 2D matrices (62GR).

3. The feature is computed from a 3D matrix (KOBO).

Method 2 involvesmergingNGLDMs by summing the dependence count 𝑠𝑖𝑗 by element over

the NGLDM of the different slices. Note that when NGLDMs are merged, 𝑁𝑣 and 𝑁𝑠 should

likewise be summed to retain consistency. Feature values may dependent strongly on the

aggregation method.

Distances and distance weighting

Default neighbourhoods are constructed using the Chebyshev norm, but other norms

can be used as well. For this purpose it is useful to generalise the dependence count equa-

tion to:

𝑗𝑘 =
𝛿

∑
𝑚𝑧=−𝛿

𝛿
∑

𝑚𝑦=−𝛿

𝛿
∑

𝑚𝑥=−𝛿
[‖m‖ ≤ 𝛿 and |𝑋𝑑(k) − 𝑋𝑑(k + m)| ≤ 𝛼 and k + m in ROI]

with m the vector between voxels 𝑘 and 𝑚 and ‖m‖ its length according to the particular

norm.

In addition, dependence may be weighted by distance. Let 𝑤 be a weight dependent on

m, e.g. 𝑤 = ‖m‖−1
or 𝑤 = exp(−‖m‖2). The dependence of voxel 𝑘 is then:

𝑗𝑘 =
𝛿

∑
𝑚𝑧=−𝛿

𝛿
∑

𝑚𝑦=−𝛿

𝛿
∑

𝑚𝑥=−𝛿
𝑤(m)[‖m‖ ≤ 𝛿 and |𝑋𝑑(k) − 𝑋𝑑(k + m)| ≤ 𝛼 and k + m in ROI]
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Employingdifferent distancenormsanddistanceweighting is considerednon-standard

use, and we caution against them due to potential reproducibility issues.

Note on feature references

The NGLDM is structured similarly to the GLRLM, GLSZM and GLDZM. NGLDM feature

definitions are therefore based on the definitions of GLRLM features, and referencesmay be

found in Section 3.7, except for the features originally defined by Sun and Wee 69 .

3.11.1 Low dependence emphasis SODN

This feature emphasises low neighbouring grey level dependence counts. Sun and Wee 69

refer to this feature as small number emphasis. It is defined as:

𝐹ngl.lde = 1

𝑁𝑠

𝑁𝑛

∑
𝑗=1

𝑠.𝑗
𝑗2

data aggr. method value tol. consensus

dig. phantom 2D 0.158 — strong

dig. phantom 2.5D 0.159 — strong

dig. phantom 3D 0.045 — very strong

config. A 2D 0.281 0.003 strong

config. A 2.5D 0.243 0.004 strong

config. B 2D 0.31 0.001 strong

config. B 2.5D 0.254 0.002 strong

config. C 3D 0.137 0.003 very strong

config. D 3D 0.0912 0.0007 strong

config. E 3D 0.118 0.001 strong

Table Ҏ.ɰґҎ | Reference values for the low dependence emphasis feature.

3.11.2 High dependence emphasis IMOQ

This feature emphasises high neighbouring grey level dependence counts. Sun and Wee 69

refer to this feature as large number emphasis. It is defined as:

𝐹ngl.hde = 1

𝑁𝑠

𝑁𝑛

∑
𝑗=1

𝑗2𝑠.𝑗

data aggr. method value tol. consensus

dig. phantom 2D 19.2 — strong

dig. phantom 2.5D 18.8 — strong

dig. phantom 3D 109 — very strong

config. A 2D 14.8 0.1 strong

config. A 2.5D 16.1 0.2 strong
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config. B 2D 17.3 0.2 strong

config. B 2.5D 19.6 0.2 strong

config. C 3D 126 2 strong

config. D 3D 223 5 strong

config. E 3D 134 3 strong

Table Ҏ.ɰґҏ | Reference values for the high dependence emphasis feature.

3.11.3 Low grey level count emphasis TL9H

This feature is a grey level analogue to low dependence emphasis. Instead of low neighbour-

ing grey level dependence counts, low grey levels are emphasised. The feature is defined

as:

𝐹ngl.lgce = 1

𝑁𝑠

𝑁𝑔

∑
𝑖=1

𝑠𝑖.
𝑖2

data aggr. method value tol. consensus

dig. phantom 2D 0.702 — strong

dig. phantom 2.5D 0.693 — strong

dig. phantom 3D 0.693 — very strong

config. A 2D 0.0233 0.0003 strong

config. A 2.5D 0.0115 0.0003 strong

config. B 2D 0.0286 0.0004 strong

config. B 2.5D 0.0139 0.0005 strong

config. C 3D 0.0013 4 × 10−5 strong

config. D 3D 0.0168 0.0009 strong

config. E 3D 0.0154 0.0007 strong

Table Ҏ.ɰґҐ | Reference values for the low grey level count emphasis feature.

3.11.4 High grey level count emphasis OAE7

The high grey level count emphasis feature is a grey level analogue to high dependence emphasis.

The feature emphasises high grey levels, and is defined as:

𝐹ngl.hgce = 1

𝑁𝑠

𝑁𝑔

∑
𝑖=1

𝑖2𝑠𝑖.

data aggr. method value tol. consensus

dig. phantom 2D 7.49 — strong

dig. phantom 2.5D 7.66 — strong

dig. phantom 3D 7.66 — very strong

config. A 2D 446 2 strong
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config. A 2.5D 466 2 strong

config. B 2D 359 10 strong

config. B 2.5D 375 11 strong

config. C 3D 1.57 × 103 10 strong

config. D 3D 364 16 strong

config. E 3D 502 8 strong

Table Ҏ.ɰґґ | Reference values for the high grey level count emphasis feature.

3.11.5 Low dependence low grey level emphasis EQ3F

This feature emphasises neighbouring grey level dependence counts in the upper left quad-

rant of the NGLDM, where low dependence counts and low grey levels are located. It is

defined as:

𝐹ngl.ldlge = 1

𝑁𝑠

𝑁𝑔

∑
𝑖=1

𝑁𝑛

∑
𝑗=1

𝑠𝑖𝑗
𝑖2𝑗2

data aggr. method value tol. consensus

dig. phantom 2D 0.0473 — strong

dig. phantom 2.5D 0.0477 — strong

dig. phantom 3D 0.00963 — very strong

config. A 2D 0.0137 0.0002 strong

config. A 2.5D 0.00664 0.0002 strong

config. B 2D 0.0203 0.0003 strong

config. B 2.5D 0.00929 0.00026 strong

config. C 3D 0.000306 1.2 × 10−5 strong

config. D 3D 0.00357 4 × 10−5 strong

config. E 3D 0.00388 4 × 10−5 strong

Table Ҏ.ɰґɦ | Reference values for the low dependence low grey level emphasis feature.

3.11.6 Low dependence high grey level emphasis JA6D

This feature emphasises neighbouring grey level dependence counts in the lower left quad-

rant of the NGLDM, where low dependence counts and high grey levels are located. The

feature is defined as:

𝐹ngl.ldhge = 1

𝑁𝑠

𝑁𝑔

∑
𝑖=1

𝑁𝑛

∑
𝑗=1

𝑖2𝑠𝑖𝑗
𝑗2
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data aggr. method value tol. consensus

dig. phantom 2D 3.06 — strong

dig. phantom 2.5D 3.07 — strong

dig. phantom 3D 0.736 — very strong

config. A 2D 94.2 0.4 strong

config. A 2.5D 91.9 0.5 strong

config. B 2D 78.9 2.2 strong

config. B 2.5D 73.4 2.1 strong

config. C 3D 141 2 strong

config. D 3D 18.9 1.1 strong

config. E 3D 36.7 0.5 strong

Table Ҏ.ɰґҒ | Reference values for the low dependence high grey level emphasis feature.

3.11.7 High dependence low grey level emphasis NBZI

This feature emphasises neighbouring grey level dependence counts in the upper right

quadrant of the NGLDM, where high dependence counts and low grey levels are located.

The feature is defined as:

𝐹ngl.hdlge = 1

𝑁𝑠

𝑁𝑔

∑
𝑖=1

𝑁𝑛

∑
𝑗=1

𝑗2𝑠𝑖𝑗
𝑖2

data aggr. method value tol. consensus

dig. phantom 2D 17.6 — strong

dig. phantom 2.5D 17.2 — strong

dig. phantom 3D 102 — very strong

config. A 2D 0.116 0.001 strong

config. A 2.5D 0.0674 0.0004 strong

config. B 2D 0.108 0.003 strong

config. B 2.5D 0.077 0.0019 strong

config. C 3D 0.0828 0.0003 strong

config. D 3D 0.798 0.072 strong

config. E 3D 0.457 0.031 strong

Table Ҏ.ɰґғ | Reference values for the high dependence low grey level emphasis feature.
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3.11.8 High dependence high grey level emphasis 9QMG

The high dependence high grey level emphasis feature emphasises neighbouring grey level de-

pendence counts in the lower right quadrant of the NGLDM, where high dependence counts

and high grey levels are located. The feature is defined as:

𝐹ngl.hdhge = 1

𝑁𝑠

𝑁𝑔

∑
𝑖=1

𝑁𝑛

∑
𝑗=1

𝑖2𝑗2𝑠𝑖𝑗

data aggr. method value tol. consensus

dig. phantom 2D 49.5 — strong

dig. phantom 2.5D 50.8 — strong

dig. phantom 3D 235 — very strong

config. A 2D 7.54 × 103 60 strong

config. A 2.5D 8.1 × 103 60 strong

config. B 2D 7.21 × 103 130 strong

config. B 2.5D 7.97 × 103 150 strong

config. C 3D 2.27 × 105 3 × 103 strong

config. D 3D 9.28 × 104 1.3 × 103 strong

config. E 3D 7.6 × 104 600 strong

Table Ҏ.ɰɦҔ | Reference values for the high dependence high grey level emphasis feature.

3.11.9 Grey level non-uniformity FP8K

Grey level non-uniformity assesses the distribution of neighbouring grey level dependence

counts over the grey values. The feature value is low when dependence counts are equally

distributed along grey levels. The feature is defined as:

𝐹ngl.glnu = 1

𝑁𝑠

𝑁𝑔

∑
𝑖=1

𝑠2
𝑖.

data aggr. method value tol. consensus

dig. phantom 2D 10.2 — strong

dig. phantom 2.5D 37.9 — strong

dig. phantom 3D 37.9 — very strong

config. A 2D 757 1 strong

config. A 2.5D 1.72 × 104 100 strong

config. B 2D 216 3 strong

config. B 2.5D 4.76 × 103 50 strong

config. C 3D 6.42 × 103 10 strong

config. D 3D 1.02 × 104 300 strong

config. E 3D 8.17 × 103 130 strong

Table Ҏ.ɰɦɰ | Reference values for the grey level non-uniformity feature.
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3.11.10 Normalised grey level non-uniformity 5SPA

This is a normalised version of the grey level non-uniformity feature. It is defined as:

𝐹ngl.glnu.norm = 1

𝑁2𝑠

𝑁𝑔

∑
𝑖=1

𝑠2
𝑖.

The normalised grey level non-uniformity computed from a single 3D NGLDM matrix is equi-

valent to the intensity histogram uniformity feature81.

data aggr. method value tol. consensus

dig. phantom 2D 0.562 — strong

dig. phantom 2.5D 0.512 — strong

dig. phantom 3D 0.512 — very strong

config. A 2D 0.151 0.003 strong

config. A 2.5D 0.15 0.002 strong

config. B 2D 0.184 0.001 strong

config. B 2.5D 0.174 0.001 strong

config. C 3D 0.14 0.003 very strong

config. D 3D 0.229 0.003 strong

config. E 3D 0.184 0.001 strong

Table Ҏ.ɰɦҍ | Reference values for the normalised grey level non-uniformity feature.

3.11.11 Dependence count non-uniformity Z87G

This features assesses the distribution of neighbouring grey level dependence counts over

the different dependence counts. The feature value is low when dependence counts are

equally distributed. Sun andWee 69 refer to this feature as number non-uniformity. It is defined

as:

𝐹ngl.dcnu = 1

𝑁𝑠

𝑁𝑛

∑
𝑗=1

𝑠2
.𝑗

data aggr. method value tol. consensus

dig. phantom 2D 3.96 — strong

dig. phantom 2.5D 12.4 — strong

dig. phantom 3D 4.86 — very strong

config. A 2D 709 2 strong

config. A 2.5D 1.75 × 104 100 strong

config. B 2D 157 1 strong

config. B 2.5D 3.71 × 103 30 strong

config. C 3D 2.45 × 103 60 strong

config. D 3D 1.84 × 103 30 strong

config. E 3D 2.25 × 103 30 strong

Table Ҏ.ɰɦҎ | Reference values for the dependence count non-uniformity feature.



CHAPTER 3. IMAGE FEATURES 132

3.11.12 Normalised dependence count non-uniformity OKJI

This is a normalised version of the dependence count non-uniformity feature. It is defined as:

𝐹ngl.dcnu.norm = 1

𝑁2𝑠

𝑁𝑛

∑
𝑖=1

𝑠2
.𝑗

data aggr. method value tol. consensus

dig. phantom 2D 0.212 — strong

dig. phantom 2.5D 0.167 — strong

dig. phantom 3D 0.0657 — very strong

config. A 2D 0.175 0.001 strong

config. A 2.5D 0.153 0.001 strong

config. B 2D 0.179 0.001 strong

config. B 2.5D 0.136 0.001 strong

config. C 3D 0.0532 0.0005 strong

config. D 3D 0.0413 0.0003 strong

config. E 3D 0.0505 0.0003 strong

Table Ҏ.ɰɦҏ | Reference values for the normalised dependence count non-uniformity feature.

3.11.13 Dependence count percentage 6XV8

This feature measures the fraction of the number of realised neighbourhoods and themax-

imumnumber of potential neighbourhoods. Dependence count percentagemaybecompletely

omitted as it evaluates to 1 when complete neighbourhoods are not required, as is the case

under our definition. It is defined as:

𝐹ngl.dc.perc = 𝑁𝑠
𝑁𝑣

data aggr. method value tol. consensus

dig. phantom 2D 1 — strong

dig. phantom 2.5D 1 — moderate

dig. phantom 3D 1 — strong

config. A 2D 1 — moderate

config. A 2.5D 1 — strong

config. B 2D 1 — moderate

config. B 2.5D 1 — moderate

config. C 3D 1 — strong

config. D 3D 1 — strong

config. E 3D 1 — moderate

Table Ҏ.ɰɦҐ | Reference values for the dependence count percentage feature.
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3.11.14 Grey level variance 1PFV

This feature estimates the variance in dependence counts over the grey levels. Let 𝑝𝑖𝑗 =
𝑠𝑖𝑗/𝑁𝑠 be the joint probability estimate for finding discretised grey level 𝑖 with dependence

𝑗. The feature is then defined as:

𝐹ngl.gl.var =
𝑁𝑔

∑
𝑖=1

𝑁𝑛

∑
𝑗=1

(𝑖 − 𝜇)2𝑝𝑖𝑗

Here, 𝜇 = ∑𝑁𝑔
𝑖=1

∑𝑁𝑛
𝑗=1

𝑖 𝑝𝑖𝑗.

data aggr. method value tol. consensus

dig. phantom 2D 2.7 — strong

dig. phantom 2.5D 3.05 — strong

dig. phantom 3D 3.05 — very strong

config. A 2D 31.1 0.5 strong

config. A 2.5D 22.8 0.6 strong

config. B 2D 25.3 0.4 strong

config. B 2.5D 18.7 0.2 strong

config. C 3D 81.1 2.1 very strong

config. D 3D 21.7 0.4 strong

config. E 3D 30.4 0.8 strong

Table Ҏ.ɰɦґ | Reference values for the grey level variance feature.

3.11.15 Dependence count variance DNX2

This feature estimates the variance in dependence counts over the different possible de-

pendence counts. As before let 𝑝𝑖𝑗 = 𝑠𝑖𝑗/𝑁𝑠. The feature is defined as:

𝐹ngl.dc.var =
𝑁𝑔

∑
𝑖=1

𝑁𝑛

∑
𝑗=1

(𝑗 − 𝜇)2𝑝𝑖𝑗

Mean dependence count is defined as 𝜇 = ∑𝑁𝑔
𝑖=1

∑𝑁𝑛
𝑗=1

𝑗 𝑝𝑖𝑗.

data aggr. method value tol. consensus

dig. phantom 2D 2.73 — strong

dig. phantom 2.5D 3.27 — strong

dig. phantom 3D 22.1 — very strong

config. A 2D 3.12 0.02 strong

config. A 2.5D 3.37 0.01 strong

config. B 2D 4.02 0.05 strong

config. B 2.5D 4.63 0.06 strong

config. C 3D 39.2 0.1 strong



CHAPTER 3. IMAGE FEATURES 134

config. D 3D 63.9 1.3 strong

config. E 3D 39.4 1 strong

Table Ҏ.ɰɦɦ | Reference values for the dependence count variance feature.

3.11.16 Dependence count entropy FCBV

This feature is referred to as entropy by Sun and Wee 69 . Let 𝑝𝑖𝑗 = 𝑠𝑖𝑗/𝑁𝑠. Dependence count

entropy is then defined as:

𝐹ngl.dc.entr = −
𝑁𝑔

∑
𝑖=1

𝑁𝑛

∑
𝑗=1

𝑝𝑖𝑗 log
2
𝑝𝑖𝑗

This definition remedies an error in the definition of Sun andWee 69 , where the termwithin

the logarithm is dependence count 𝑠𝑖𝑗 instead of count probability 𝑝𝑖𝑗.

data aggr. method value tol. consensus

dig. phantom 2D 2.71 — strong

dig. phantom 2.5D 3.36 — strong

dig. phantom 3D 4.4 — very strong

config. A 2D 5.76 0.02 strong

config. A 2.5D 5.93 0.02 strong

config. B 2D 5.38 0.01 strong

config. B 2.5D 5.78 0.01 strong

config. C 3D 7.54 0.03 very strong

config. D 3D 6.98 0.01 strong

config. E 3D 7.06 0.02 strong

Table Ҏ.ɰɦҒ | Reference values for the dependence count entropy feature.

3.11.17 Dependence count energy CAS9

This feature is called second moment by Sun and Wee 69 . Let 𝑝𝑖𝑗 = 𝑠𝑖𝑗/𝑁𝑠. Then dependence

count energy is defined as:

𝐹ngl.dc.energy =
𝑁𝑔

∑
𝑖=1

𝑁𝑛

∑
𝑗=1

𝑝2
𝑖𝑗

This definition also remedies an error in the original definition, where squared dependence

count 𝑠2
𝑖𝑗 is divided by 𝑁𝑠 only, thus leaving a major volume dependency. In the definition

given here, 𝑠2
𝑖𝑗 is normalised by 𝑁2

𝑠 through the use of count probability 𝑝𝑖𝑗.

data aggr. method value tol. consensus

dig. phantom 2D 0.17 — strong

dig. phantom 2.5D 0.122 — strong

dig. phantom 3D 0.0533 — very strong
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config. A 2D 0.0268 0.0004 strong

config. A 2.5D 0.0245 0.0003 strong

config. B 2D 0.0321 0.0002 strong

config. B 2.5D 0.0253 0.0001 moderate

config. C 3D 0.00789 0.00011 strong

config. D 3D 0.0113 0.0002 strong

config. E 3D 0.0106 0.0001 strong

Table Ҏ.ɰɦғ | Reference values for the dependence count energy feature.



Chapter 4

Radiomics reporting guidelines and

nomenclature

Reliable and complete reporting is necessary to ensure reproducibility and validation of

results. To help provide a complete report on image processing and image biomarker ex-

traction, we present the guidelines below, as well as a nomenclature system to uniquely

features.

4.1 Reporting guidelines

These guidelines are partially based on the work of Lambin et al. 41 , Sanduleanu et al. 57 ,

Sollini et al. 64 , Traverso et al. 73 . Additionally, guidelines are derived from the image pro-

cessing and feature calculation steps described within this document. An earlier version

was reported elsewhere79.

topic item description

Patient

Region of interest1 1 Describe the region of interest that is being im-

aged.

Patient preparation 2a Describe specific instructions given to patients

prior to image acquisition, e.g. fasting prior to

imaging.

2b Describe administration of drugs to the patient

prior to image acquisition, e.g. muscle relax-

ants.

2c Describe the use of specific equipment for pa-

tient comfort during scanning, e.g. ear plugs.

Radioactive tracer PET, SPECT 3a Describe which radioactive tracer was admin-

istered to the patient, e.g. 18F-FDG.

PET, SPECT 3b Describe the administration method.

PET, SPECT 3c Describe the injected activity of the radioactive

tracer at administration.

continued on next page

1Also referred to as volume of interest.

136
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topic item description

PET, SPECT 3d Describe the uptake time prior to image acquis-

ition.

PET, SPECT 3e Describe how competing substance levels were

controlled.2

Contrast agent 4a Describe which contrast agent was admin-

istered to the patient.

4b Describe the administration method.

4c Describe the injected quantity of contrast

agent.

4d Describe the uptake time prior to image acquis-

ition.

4e Describe how competing substance levelswere

controlled.

Comorbidities 5 Describe if the patients have comorbidities that

affect imaging.3

Acquisition4

Acquisition protocol 6 Describe whether a standard imaging protocol

was used, and where its description may be

found.

Scanner type 7 Describe the scanner type(s) and vendor(s)

used in the study.

Imaging modality 8 Clearly state the imaging modality that was

used in the study, e.g. CT, MRI.

Static/dynamic scans 9a State if the scans were static or dynamic.

Dynamic scans 9b Describe the acquisition time per time frame.

Dynamic scans 9c Describe any temporal modelling technique

that was used.

Scanner calibration 10 Describe how and when the scanner was calib-

rated.

Patient instructions 11 Describe specific instructions given to the pa-

tient during acquisition, e.g. breath holding.

Anatomical motion

correction

12 Describe the method used to minimise the ef-

fect of anatomical motion.

Scan duration 13 Describe the duration of the complete scan or

the time per bed position.

Tube voltage CT 14 Describe the peak kilo voltage output of the X-

ray source.

Tube current CT 15 Describe the tube current in mA.

Time-of-flight PET 16 State if scanner time-of-flight capabilities are

used during acquisition.

RF coil MRI 17 Describewhat kindRF coil used for acquisition,

incl. vendor.

continued on next page

2An example is glucose present in the blood which competes with the uptake of 18F-FDG tracer in tumour
tissue. To reduce competition with the tracer, patients are usually asked to fast for several hours and a blood
glucose measurement may be conducted prior to tracer administration.

3An example of a comorbidity thatmay affect image quality in 18F-FDG PET scans are type I and type II diabetes
melitus, as well as kidney failure.

4Many acquisition parameters may be extracted from DICOM header meta-data, or calculated from them.
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topic item description

Scanning sequence MRI 18a Describe which scanning sequence was ac-

quired.

MRI 18b Describewhich sequence variantwas acquired.

MRI 18c Describe which scan options apply to the cur-

rent sequence, e.g. flow compensation, cardiac

gating.

Repetition time MRI 19 Describe the time in ms between subsequent

pulse sequences.

Echo time MRI 20 Describe the echo time in ms.

Echo train length MRI 21 Describe thenumber of lines ink-space that are

acquired per excitation pulse.

Inversion time MRI 22 Describe the time in ms between the middle of

the inverting RF pulse to the middle of the ex-

citation pulse.

Flip angle MRI 23 Describe the flip angle produced by the RF

pulses.

Acquisition type MRI 24 Describe the acquisition type of the MRI scan,

e.g. 3D.

k-space traversal MRI 25 Describe the acquisition trajectory of the k-

space.

Number of averages/

excitations

MRI 26 Describe the number of times each point in k-

space is sampled.

Magnetic field strength MRI 27 Describe the nominal strength of the MR mag-

netic field.

Reconstruction5

In-plane resolution 28 Describe the distance betweenpixels, or altern-

atively the field of view and matrix size.

Image slice thickness 29 Describe the slice thickness.

Image slice spacing 30 Describe the distance between image slices.6

Convolution kernel CT 31a Describe the convolution kernel used to recon-

struct the image.

CT 31b Describe settings pertaining to iterative recon-

struction algorithms.

Exposure CT 31c Describe the exposure (in mAs) in slices con-

taining the region of interest.

Reconstruction

method

PET 32a Describe which reconstruction method was

used, e.g. 3D OSEM.

PET 32b Describe the number of iterations for iterative

reconstruction.

PET 32c Describe the number of subsets for iterative re-

construction.

Point spread function

modelling

PET 33 Describe if and how point-spread function

modelling was performed.

Image corrections PET 34a Describe if and how attenuation correctionwas

performed.

continued on next page

5Many reconstruction parameters may be extracted from DICOM header meta-data.
6Spacing between image slicing is commonly, but not necessarily, the same as the slice thickness,.
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topic item description

PET 34b Describe if and how other forms of correction

were performed, e.g. scatter correction, ran-

doms correction, dead time correction etc.

Reconstruction

method

MRI 35a Describe the reconstructionmethod used to re-

construct the image from the k-space informa-

tion.

MRI 35b Describe any artifact suppression methods

used during reconstruction to suppress arti-

facts due to undersampling of k-space.

Diffusion-weighted

imaging

DWI-MRI 36 Describe the b-values used for diffusion-

weighting.

Image registration

Registration method 37 Describe the method used to register multi-

modality imaging.

Image processing - data conversion

SUV normalisation PET 38 Describe which standardised uptake value

(SUV) normalisation method is used.

ADC computation DWI-MRI 39 Describe how apparent diffusion coefficient

(ADC) values were calculated.

Other data conversions 40 Describe any other conversions that are per-

formed to generate e.g. perfusion maps.

Image processing - post-acquisition processing

Anti-aliasing 41 Describe the method used to deal with anti-

aliasing when down-sampling during interpol-

ation.

Noise suppression 42 Describe methods used to suppress image

noise.

Post-reconstruction

smoothing filter

PET 43 Describe the width of the Gaussian filter

(FWHM) to spatially smooth intensities.

Skull stripping MRI (brain) 44 Describe method used to perform skull strip-

ping.

Non-uniformity correc-

tion7

MRI 45 Describe the method and settings used to per-

form non-uniformity correction.

Intensity normalisa-

tion

46 Describe the method and settings used to nor-

malise intensity distributions within a patient

or patient cohort.

Other post-acquisition

processing methods

47 Describe any other methods that were used to

process the image and are not mentioned sep-

arately in this list.

Segmentation

Segmentation method 48a Describe how regions of interest were segmen-

ted, e.g. manually.

48b Describe the number of experts, their expert-

ise and consensus strategies for manual delin-

eation.

continued on next page

7Also known as bias-field correction.
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topic item description

48c Describe methods and settings used for semi-

automatic and fully automatic segmentation.

48d Describe which image was used to define seg-

mentation in case of multi-modality imaging.

Conversion to mask 49 Describe themethod used to convert polygonal

or mesh-based segmentations to a voxel-based

mask.

Image processing - image interpolation

Interpolation method 50a Describe which interpolation algorithm was

used to interpolate the image.

50b Describe how the position of the interpolation

grid was defined, e.g. align by center.

50c Describe how the dimensions of the interpola-

tion grid were defined, e.g. rounded to nearest

integer.

50d Describe howextrapolation beyond the original

image was handled.

Voxel dimensions 51 Describe the size of the interpolated voxels.

Intensity rounding CT 52 Describe how fractional Hounsfield Units are

rounded to integer values after interpolation.

Image processing - ROI interpolation

Interpolation method 53 Describe which interpolation algorithm was

used to interpolate the region of interest mask.

Partially masked

voxels

54 Describe how partially masked voxels after in-

terpolation are handled.

Image processing - re-segmentation

Re-segmentation

methods

55 Describe which methods and settings are used

to re-segment the ROI intensity mask.

Image processing - discretisation

Discretisation method8 56a Describe the method used to discretise image

intensities.

56b Describe the number of bins (FBN) or the bin

size (FBS) used for discretisation.

56c Describe the lowest intensity in the first bin for

FBS discretisation.9

Image processing - image transformation

Image filter10 57 Describe themethods and settings used to filter

images, e.g. Laplacian-of-Gaussian.

Image biomarker computation

continued on next page

8Discretisation may be performed separately to create intensity-volume histograms. If this is indeed the case,
this should be described as well.

9This is typically set by range re-segmentation.
10The IBSI has not introduced image transformation into the standardised image processing scheme, and is in

the process of benchmarking various common filters. This section may therefore be expanded in the future.
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topic item description

Biomarker set 58 Describe which set of image biomarkers is

computed and refer to their definitions or

provide these.

IBSI compliance 59 State if the software used to extract the set of

image biomarkers is able to reproduce the IBSI

feature reference values.11

Robustness 60 Describe how robustness of the image bio-

markers was assessed, e.g. test-retest analysis.

Software availability 61 Describe which software and version was used

to compute image biomarkers.

Image biomarker computation - texture parameters

Texture matrix aggreg-

ation

62 Define how texture-matrix based biomark-

ers were computed from underlying texture

matrices.

Distance weighting 63 Define how CM, RLM, NGTDM and NGLDM

weight distances, e.g. no weighting.

CM symmetry 64 Define whether symmetric or asymmetric co-

occurrence matrices were computed.

CM distance 65 Define the (Chebyshev) distance at which co-

occurrence of intensities is determined, e.g. 1.

SZM linkage distance 66 Define the distance and distance norm for

which voxels with the same intensity are con-

sidered to belong to the same zone for the pur-

pose of constructing an SZM, e.g. Chebyshev

distance of 1.

DZM linkage distance 67 Define the distance and distance norm for

which voxels with the same intensity are con-

sidered to belong to the same zone for the pur-

pose of constructing aDZM, e.g. Chebyshevdis-

tance of 1.

DZM zone distance

norm

68 Define the distance norm for determining the

distance of zones to the border of the ROI, e.g.

Manhattan distance.

NGTDM distance 69 Define the neighbourhood distance and dis-

tance norm for the NGTDM, e.g. Chebyshev dis-

tance of 1.

NGLDM distance 70 Define the neighbourhood distance and dis-

tance norm for the NGLDM, e.g. Chebyshev dis-

tance of 1.

NGLDM coarseness 71 Define the coarseness parameter for the

NGLDM, e.g. 0.

Machine learning and radiomics analysis

Diagnostic and pro-

gnostic modelling

72 See the TRIPOD guidelines for reporting on dia-

gnostic and prognostic modelling.

continued on next page

11A software is compliant if and only if it is able to reproduce image biomarker reference values for the digital
phantom and for one or more image processing configurations using the radiomics CT phantom. Reviewers may
demand that you provide the IBSI compliance spreadsheet for your software.
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topic item description

Comparison with

known factors

73 Describe where performance of radiomics

models is compared with known (clinical)

factors.

Multicollinearity 74 Describe where the multicollinearity between

image biomarkers in the signature is assessed.

Model availability 75 Describe where radiomics models with the

necessary pre-processing information may be

found.

Data availability 76 Describe where imaging data and relevant

meta-data used in the study may be found.

Table ҏ.ɰ | Guidelines for reporting on radiomic studies. Not all items may be applicable.

4.2 Feature nomenclature

Image features may be extracted using a variety of different settings, and may even share

the same name. A feature nomenclature is thus required. Let us take the example of dif-

ferentiating the following features: i) intensity histogram-based entropy, discretised using

a fixed bin size algorithm with 25 HU bins, extracted from a CT image; and ii) grey level run

lengthmatrix entropy, discretised using a fixed bin number algorithmwith 32 bins, extracted

from a PET image. To refer to both as entropywould be ambiguous, whereas to add a full tex-

tual description would be cumbersome. In the nomenclature proposed below, the features

would be called entropyIH, CT, FBS:25HU and entropyRLM, PET, FBN:32, respectively.

Features are thus indicated by a feature name and a subscript. As the nomenclature is

designed to both concise and complete, only details for which ambiguity may exist are to

be explicitly incorporated in the subscript. The subscript of a feature name may contain

the following items to address ambiguous naming:

1. An abbreviation of the feature family (required).

2. The aggregation method of a feature (optional).

3. A descriptor describing the modality the feature is based on, the specific channel (for

microscopy images), the specific imaging data (in the case of repeat imaging or delta-

features) sets, conversions (such as SUV and SUL), and/or the specific ROI. For ex-

ample, one could write PET:SUV to separate it from CT and PET:SUL features (optional).

4. Spatial filters and settings (optional).

5. The interpolation algorithm and uniform interpolation grid spacing (optional).

6. The re-segmentation range and outlier filtering (optional).

7. The discretisationmethod and relevant discretisation parameters, i.e. number of bins

or bin size (optional).

8. Feature specific parameters, such as distance for some texture features (optional).

Optional descriptors are only added to the subscript if there are multiple possibilities. For

example, if only CT data is used, adding the modality to the subscript is not required. Non-

etheless, such details must be reported as well (see section 4.1).
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The sections below have tables with permanent IBSI identifiers for concepts that were

defined within this document.

4.2.1 Abbreviating feature families

The following is a list of the feature families in this document and their suggested abbrevi-

ations:

feature family abbreviation

morphology MORPH HCUG

local intensity LI 9ST6

intensity-based statistics IS, STAT UHIW

intensity histogram IH ZVCW

intensity-volume histogram IVH P88C

grey level co-occurrence matrix GLCM, CM LFYI

grey level run length matrix GLRLM, RLM TP0I

grey level size zone matrix GLSZM, SZM 9SAK

grey level distance zone matrix GLDZM, DZM VMDZ

neighbourhood grey tone difference matrix NGTDM IPET

neighbouring grey level dependence matrix NGLDM REK0

4.2.2 Abbreviating feature aggregation

The following is a list of feature families and the possible aggregation methods:

morphology, LI

– features are 3D by definition DHQ4

IS, IH, IVH

2D averaged over slices (rare) 3IDG

–, 3D calculated over the volume (default) DHQ4

GLCM, GLRLM

2D:avg averaged over slices and directions BTW3

2D:mrg, 2D:smrg merged directions per slice and averaged SUJT

2.5D:avg, 2.5D:dmrg merged per direction and averaged JJUI

2.5D:mrg, 2.5D:vmrg merged over all slices ZW7Z

3D:avg averaged over 3D directions ITBB

3D:mrg merged 3D directions IAZD

GLSZM, GLDZM, NGTDM, NGLDM

2D averaged over slices 8QNN

2.5D merged over all slices 62GR

3D calculated from single 3D matrix KOBO

In the list above, ’–’ signifies an empty entry which does not need to be added to the

subscript. The following examples highlight the nomenclature used above:

• joint maximumCM, 2D:avg: GLCM-based joint maximum feature, calculated by averaging

the feature for every in-slice GLCM.
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• short runs emphasisRLM, 3D:mrg: RLM-based short runs emphasis feature, calculated from

an RLM that was aggregated by merging the RLM of each 3D direction.

• meanIS: intensity statisticalmean feature, calculated over the 3D ROI volume.

• grey level varianceSZM, 2D: SZM-based grey level variance feature, calculated by aver-

aging the feature value from the SZM in each slice over all the slices.

4.2.3 Abbreviating interpolation

The following is a list of interpolation methods and the suggested notation. Note that #

is the interpolation spacing, including units, and dim is 2D for interpolation with the slice

plane and 3D for volumetric interpolation.

interpolation method notation

none INT:–

nearest neighbour interpolation NNB:dim:#

linear interpolation LIN:dim:#

cubic convolution interpolation CCI:dim:#

cubic spline interpolation CSI:dim:#, SI3:dim:#

The dimension attribute and interpolation spacing may be omitted if this is clear from

the context. The following examples highlight the nomenclature introduced above:

• meanIS, LIN:2D:2mm: intensity statistical mean feature, calculated after bilinear interpola-

tion with the slice planes to uniform voxel sizes of 2mm.

• meanIH, NNB:3D:1mm: intensity histogrammean feature, calculated after trilinear interpol-

ation to uniform voxel sizes of 1mm.

• joint maximumCM, 2D:mrg, CSI:2D:2mm: GLCM-based joint maximum feature, calculated by

first merging all GLCM within a slice to single GLCM, calculating the feature and then

averaging the feature values over the slices. GLCMs were determined in the image

interpolated within the slice plane to 2 × 2mm voxels using cubic spline interpolation.

4.2.4 Describing re-segmentation

Re-segmentation can be noted as follows:

re-segmentation method notation

none RS:–

range RS:[#,#] USB3

outlier filtering RS:#𝜎 7ACA

In the table above # signify numbers. A re-segmentation range can be half-open, i.e.

RS:[#,∞). Re-segmentation methods may be combined, i.e. both range and outlier filter-

ing methods may be used. This is noted as RS:[#,#]+#𝜎 or RS:#𝜎+[#,#]. The following are

examples of the application of the above notation:

• meanIS, CT, RS:[-200,150]: intensity statistical mean feature, based on an ROI in a CT image

that was re-segmented within a [-200,150] HU range.
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• meanIS, PET:SUV, RS:[3,∞): intensity statistical mean feature, based on an ROI in a PET im-

age with SUV values, that was re-segmented to contain only SUV of 3 and above.

• meanIS, MRI:T1, RS:3𝜎: intensity statisticalmean feature, based on an ROI in a T1-weighted

MR imagewhere the ROI was re-segmented by removing voxels with an intensity out-

side a 𝜇 ± 3𝜎 range.

4.2.5 Abbreviating discretisation

The following is a list of discretisation methods and the suggested notation. Note that # is

the value of the relevant discretisation parameter, e.g. number of bins or bin size, including

units.

discretisation method notation

none DIS:–

fixed bin size FBS:# Q3RU

fixed bin number FBN:# K15C

histogram equalisation EQ:#

Lloyd-Max, minimummean squared LM:#, MMS:#

In the table above, # signify numbers such as the number of bins or their width. Histo-

gram equalisation of the ROI intensities can be performed before the ”none”, ”fixed bin size”,

”fixed bin number” or ”Lloyd-Max, minimummean squared” algorithms defined above, with

# specifying the number of bins in the histogram to be equalised. The following are ex-

amples of the application of the above notation:

• meanIH,PET:SUV,RS[0,∞],FBS:0.2: intensity histogrammean feature, based on anROI in a SUV-

PET image, with bin-width of 0.2 SUV, and binning from 0.0 SUV.

• grey level varianceSZM,MR:T1,RS:3𝜎,FBN:64: size zonematrix-based grey level variance feature,

based on an ROI in a T1-weightedMR image, with 3𝜎 re-segmentation and subsequent

binning into 64 bins.

4.2.6 Abbreviating feature-specific parameters

Some features and feature families require additional parameters, which may be varied.

These are the following:

grey level co-occurrence matrix

co-occurrence matrix symmetry

–, SYM symmetrical co-occurrence matrices

ASYM asymmetrical co-occurrence matrices (not recommended)

distance

𝛿:#, 𝛿-∞:# Chebyshev (ℓ∞) norm with distance # (default) PVMT

𝛿-2:# Euclidean (ℓ2) norm with distance # G9EV

𝛿-1:# Manhattan (ℓ1) norm with distance # LIFZ

distance weighting

continued on next page
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–, w:1 no weighting (default)

w:f weighting with function 𝑓

grey level run length matrix

distance weighting

–, w:1 no weighting (default)

w:f weighting with function 𝑓

grey level size zone matrix

linkage distance

𝛿:#, 𝛿-∞:# Chebyshev (ℓ∞) norm with distance (default) # PVMT

𝛿-2:# Euclidean (ℓ2) norm with distance # G9EV

𝛿-1:# Manhattan (ℓ1) norm with distance # LIFZ

grey level distance zone matrix

linkage distance

𝛿:#, 𝛿-∞:# Chebyshev (ℓ∞) norm with distance (default) # PVMT

𝛿-2:# Euclidean (ℓ2) norm with distance # G9EV

𝛿-1:# Manhattan (ℓ1) norm with distance # LIFZ

zone distance norm

𝑙-∞:# Chebyshev (ℓ∞) norm PVMT

𝑙-2:# Euclidean (ℓ2) norm G9EV

–, 𝑙-1:# Manhattan (ℓ1) norm (default) LIFZ

neighbourhood grey tone difference matrix

distance

𝛿:#, 𝛿-∞:# Chebyshev (ℓ∞) norm with distance # (default) PVMT

𝛿-2:# Euclidean (ℓ2) norm with distance # G9EV

𝛿-1:# Manhattan (ℓ1) norm with distance # LIFZ

distance weighting

–, w:1 no weighting (default)

w:f weighting with function 𝑓

neighbouring grey level dependence matrix

dependence coarseness

𝛼:# dependence coarseness parameter with value #

distance

𝛿:#, 𝛿-∞:# Chebyshev (ℓ∞) norm with distance # (default) PVMT

𝛿-2:# Euclidean (ℓ2) norm with distance # G9EV

𝛿-1:# Manhattan (ℓ1) norm with distance # LIFZ

distance weighting

–, w:1 no weighting (default)

w:f weighting with function 𝑓
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In the above table, # represents numbers.



Chapter 5

Reference data sets

Reference values for features were obtained using a digital image phantom and the CT im-

age of a lung cancer patient, which are described below. The same data sets can be used to

verify radiomics software implementations. The data sets themselves may be found here:

https://github.com/theibsi/data_sets.

5.1 Digital phantom

A small digital phantom was developed to derive image features manually and compare

these valueswith values obtained from radiomics software implementations. The phantom

is shown in figure 5.1. The phantom has the following characteristics:

• The phantom consists of 5 × 4 × 4 (𝑥, 𝑦, 𝑧) voxels.

• A slice consists of the voxels in (𝑥, 𝑦) plane for a particular slice at position 𝑧. Slices
are therefore stacked in the 𝑧 direction.

• Voxels are 2.0 × 2.0 × 2.0 mm in size.

• Not all voxels are included in the region of interest. Several excluded voxels are loc-

ated on the outside of the ROI, and one internal voxel was excluded as well. Voxels

excluded from the ROI are shown in blue in figure 5.1.

• Some intensities are not present in the phantom. Notably, grey levels 2 and 5 are ab-

sent. 1 is the lowest grey level present in the ROI, and 6 the highest.

5.1.1 Computing image features

The digital phantom was designed to not require image processing prior to calculating the

features. Thus, feature calculation is done directly on the phantom itself. The following

should be taken into account for calculating image features:

• Discretisation is not required. All features are to be calculated using the phantom as

it is. Alternatively, one could use a fixed bin size discretisation of 1 or fixed bin number

discretisation of 6 bins, which does not alter the contents of the phantom.

• Grey level co-occurrence matrices are symmetrical and calculated for (Chebyshev)

distance 𝛿 = 1.

148
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• Neighbouringgrey level dependenceandneighbourhoodgrey tonedifferencematrices

are likewise calculated for (Chebyshev) distance𝛿 = 1. Additionally, the neighbouring

grey level dependence coarseness parameter has the value 𝛼 = 0.

• Because discretisation is lacking, most intensity-based statistical features will match

their intensity histogram-based analogues in value.

• The ROI morphological and intensity masks are identical for the digital phantom, due

to lack of re-segmentation.

5.2 Lung cancer CT image

A small data set of CT images from four non-small-cell lung carcinoma patients was made

publicly available to serve as radiomics phantoms (DOI:10.17195/candat.2016.08.1). We use

the image for the first patient (PATɰ) to obtain feature reference values for different config-

urations of the image processing scheme, as detailed below.

The CT image set is stored as a stack of slices in DICOM format. The image slices can

be identified by the DCM_IMG prefix. The gross tumour volume (GTV) was delineated and

is used as the region of interest (ROI). Contour information is stored as an RT structure set

in the DICOM file starting with DCM_RS. For broader use, both the DICOM set and segment-

ation mask have been converted to the NIfTI format. When using the data in NIfTI format,

both image stacks should be converted to (at least) 32-bit floating point and rounded to the

nearest integer before further processing.

Wedefinedfive imageprocessing configurations to test different imageprocessingmeth-

ods, see Table 5.1. While most settings are self-explanatory, there are several aspects that

require some attention. Configurations are divided in 2D and 3D approaches. For the 2D

configurations (A, B), image interpolation is conducted within the slice, and likewise tex-

ture features are extracted from the in-slice plane, and not volumetrically (3D). For the 3D

configurations (C-E) interpolation is conducted in three dimensions, and features are like-

wise extracted volumetrically. Discretisation is moreover required for texture, intensity

histogram and intensity-volume histogram features, and both fixed bin number and fixed bin

size algorithms are tested.

5.2.1 Notes on interpolation

Interpolation has a major influence on feature values. Different implementations of the

same interpolation method may ostensibly provide the same functionality, but may use

different interpolation grids. It is therefore recommended to read the documentation of

the particular implementation to assess if the implementation allows or implements the

following:

• The spatial origin of the original (input) grid in world coordinates matches the DICOM

origin by definition.

• The size of the interpolation grid is determined by rounding the fractional grid size

towards infinity, i.e. a ceiling operation. This prevents the interpolation grid from

disappearing for very small images, but is otherwise an arbitrary choice.

http://dx.doi.org/10.17195/candat.2016.08.1
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Figure Ґ.ɰ | Exploded view of the test volume. The number in each voxel corresponds with its grey
level. Blue voxels are excluded from the region of interest. The coordinate system is so that 𝑥
increases from left to right, 𝑦 increases from back to front and 𝑧 increases from top to bottom, as
is indicated by the axis definition in the top-left.
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• The centers of the interpolation and original image grids should be aligned, i.e. the

interpolation grid is centered on the center of the original image grid. This prevents

spacing inconsistencies in the interpolation grid and avoids potential issueswith grid

orientation.

• The extent of the interpolation grid is, by definition, always equal or larger than that of

the original grid. Thismeans that intensities at the grid boundary are extrapolated. To

facilitate this process, the image should be sufficiently padded with voxels that take

on the nearest boundary intensity.

• The floating point representation of the image and the ROImasks affects interpolation

precision, and consequentially feature values. Image and ROI masks should at least

be represented at full precision (Ҏҍ-bit) to avoid rounding errors. One example is the

unintended exclusion of voxels from the interpolated ROI mask, which occurs when

interpolation yields 0.4999…instead of 0.5. When images and ROImasks are converted

to full precision from lower precision (e.g. ɰґ-bit), values may require rounding if the

original data were integer values, such as Hounsfield Units or the ROI mask labels.

More details are provided in Section 2.4.

5.2.2 Diagnostic features

Identifying issues with an implementation of the image processing sequence may be chal-

lenging. Multiple steps follow one another and differences propagate. Hence we define a

small number of diagnostic features that describe how the image and ROI masks change

with each image processing step. These diagnostic features also have reference values that

may be found in IBSI compliance check spreadsheet.

Initial image stack. The following featuresmay be used to describe the initial image stack

(i.e. after loading image data for processing):

• Image dimensions. This describes the image dimensions in voxels along the different

image axes.

• Voxel dimensions. This describes the voxel dimensions in mm. The dimension along

the z-axis is equal to the distance between the origin voxels of two adjacent slices, and

is generally equal to the slice thickness.

• Mean intensity. This is the average intensity within the entire image.

• Minimum intensity. This is the lowest intensity within the entire image.

• Maximum intensity. This is the highest intensity within the entire image.

Interpolated image stack. The above featuresmay also be used to describe the image stack

after image interpolation.

Initial region of interest. The following descriptors are used to describe the region of in-

terest (ROI) directly after segmentation of the image:

• ROI intensity mask dimensions. This describes the dimensions, in voxels, of the ROI in-

tensity mask.
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• ROI intensity mask bounding box dimensions. This describes the dimensions, in voxels,

of the bounding box of the ROI intensity mask.

• ROI morphological mask bounding box dimensions. This describes the dimensions, in

voxels, of the bounding box of the ROI morphological mask.

• Number of voxels in the ROI intensity mask. This describes the number of voxels included

in the ROI intensity mask.

• Number of voxels in the ROI morphological mask. This describes the number of voxels

included in the ROI intensity mask.

• Mean ROI intensity. This is the mean intensity of image voxels within the ROI intensity

mask.

• Minimum ROI intensity. This is the lowest intensity of image voxels within the ROI in-

tensity mask.

• Maximum ROI intensity. This is the highest intensity of image voxels within the ROI

intensity mask.

Interpolated region of interest. The same features can be used to describe the ROI after

interpolation of the ROI mask.

Re-segmented region of interest. Again, the same features as above can be used to de-

scribe the ROI after re-segmentation.

5.2.3 Computing image features

Unlike the digital phantom, the lung cancer CT image does require additional image pro-

cessing, which is done according to the processing configurations described in Table 5.1.

The following should be taken into account when calculating image features:

• Grey level co-occurrence matrices are symmetrical and calculated for (Chebyshev)

distance 𝛿 = 1.

• Neighbouringgrey level dependenceandneighbourhoodgrey tonedifferencematrices

are likewise calculated for (Chebyshev) distance𝛿 = 1. Additionally, the neighbouring

grey level dependence coarseness parameter 𝛼 = 0.

• Intensity-based statistical features and their intensityhistogram-basedanalogueswill

differ in value due to discretisation, in contrast to the same features for the digital

phantom.

• Due to re-segmentation, the ROI morphological and intensity masks are not identical.

• Calculation of IVH feature: since by default CT contains calibrated anddiscrete intens-

ities, no separate discretisation prior to the calculation of intensity-volume histogram

features is required. This is the case for configurations A, B and D (i.e. ‘calibrated in-

tensity units – discrete case’). However, for configurations C and E, we re-discretise

the ROI intensities prior to calculation of intensity-volume histogram features to al-

low for testing of of thesemethods. Configuration C simulates the ‘calibrated intensity

units – continuous case’, while configurationE simulates the ‘arbitrary intensity units’
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case where the re-segmentation range is not used. For details, please consult section

3.5.
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Parameter Config. A Config. B Config. C Config. D Config. E

sample identifier PATɰ PATɰ PATɰ PATɰ PATɰ

ROI name GTV-ɰ GTV-ɰ GTV-ɰ GTV-ɰ GTV-ɰ

slice-wise or single volume (3D) 2D 2D 3D 3D 3D

interpolation no yes yes yes yes

resampled voxel spacing (mm) 2 × 2 (axial) 2 × 2 × 2 2 × 2 × 2 2 × 2 × 2

interpolation method bilinear trilinear trilinear tricubic spline

intensity rounding nearest integer nearest integer nearest integer nearest integer

ROI interpolation method bilinear trilinear trilinear trilinear

ROI partial mask volume 0.5 0.5 0.5 0.5
re-segmentation

range (HU) [−500, 400] [−500, 400] [−1000, 400] no [−1000, 400]
outlier filtering no no no 3𝜎 3𝜎

discretisation

texture and IH FBS: 25 HU FBN: 32 bins FBS: 25 HU FBN: 32 bins FBN: 32 bins

IVH no no FBS: 2.5 HU no FBN: 1000 bins

texture parameters

GLCM, NGTDM, NGLDM distance 1 1 1 1 1

GLSZM, GLDZM linkage distance 1 1 1 1 1

NGLDM coarseness 0.0 0.0 0.0 0.0 0.0

Table Ґ.ɰ | Different configurations for image processing. For details, refer to the corresponding sections in chapter ҍ. ROI: region of interest; HU: Hounsfield Unit;
IH: intensity histogram; FBS: fixed bin size; FBN: fixed bin number; IVH: intensity-volume histogram; GLCM: grey level co-occurrencematrix; NGTDM: neighborhood
grey tone difference matrix; NGLDM: neighbouring grey level dependence matrix; GLSZM: grey level size zone matrix; GLDZM: grey level distance zone matrix.



Appendix A

Digital phantom texture matrices

This section contains the texturematrices extracted from the digital phantom for reference

purposes.

A.1 Grey level co-occurrence matrix (2D)

i j n

1.0 1.0 10

1.0 4.0 4

4.0 1.0 4

4.0 4.0 6

4.0 6.0 1

6.0 4.0 1

6.0 6.0 4

(a) x: (Ҕ,ɰ,Ҕ)

slice: ɰ of ҏ

i j n

1.0 1.0 16

1.0 4.0 2

3.0 6.0 2

4.0 1.0 2

4.0 6.0 1

6.0 3.0 2

6.0 4.0 1

(b) x: (Ҕ,ɰ,Ҕ)

slice: ҍ of ҏ

i j n

1.0 1.0 18

1.0 4.0 2

4.0 1.0 2

(c) x: (Ҕ,ɰ,Ҕ)

slice: Ҏ of ҏ

i j n

1.0 1.0 20

1.0 4.0 2

1.0 6.0 1

4.0 1.0 2

6.0 1.0 1

(d) x: (Ҕ,ɰ,Ҕ)

slice: ҏ of ҏ

i j n

1.0 1.0 2

1.0 4.0 4

1.0 6.0 3

4.0 1.0 4

4.0 4.0 4

4.0 6.0 2

6.0 1.0 3

6.0 4.0 2

(e) x: (ɰ,-ɰ,Ҕ)

slice: ɰ of ҏ

i j n

1.0 1.0 6

1.0 3.0 1

1.0 4.0 3

1.0 6.0 3

3.0 1.0 1

3.0 4.0 1

4.0 1.0 3

4.0 3.0 1

6.0 1.0 3

(f) x: (ɰ,-ɰ,Ҕ)

slice: ҍ of ҏ

i j n

1.0 1.0 10

1.0 4.0 2

1.0 6.0 1

4.0 1.0 2

6.0 1.0 1

(g) x: (ɰ,-ɰ,Ҕ)

slice: Ҏ of ҏ

i j n

1.0 1.0 14

1.0 4.0 2

1.0 6.0 1

4.0 1.0 2

6.0 1.0 1

(h) x: (ɰ,-ɰ,Ҕ)

slice: ҏ of ҏ

155
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i j n

1.0 1.0 4

1.0 4.0 6

1.0 6.0 2

4.0 1.0 6

4.0 4.0 4

4.0 6.0 4

6.0 1.0 2

6.0 4.0 4

(i) d: (ɰ,Ҕ,Ҕ)

slice: ɰ of ҏ

i j n

1.0 1.0 10

1.0 3.0 2

1.0 4.0 2

1.0 6.0 3

3.0 1.0 2

4.0 1.0 2

4.0 4.0 4

4.0 6.0 1

6.0 1.0 3

6.0 4.0 1

(j) d: (ɰ,Ҕ,Ҕ)

slice: ҍ of ҏ

i j n

1.0 1.0 16

1.0 4.0 1

1.0 6.0 2

4.0 1.0 1

4.0 4.0 2

6.0 1.0 2

(k) d: (ɰ,Ҕ,Ҕ)

slice: Ҏ of ҏ

i j n

1.0 1.0 20

1.0 4.0 1

1.0 6.0 2

4.0 1.0 1

4.0 4.0 2

6.0 1.0 2

(l) d: (ɰ,Ҕ,Ҕ)

slice: ҏ of ҏ

i j n

1.0 1.0 6

1.0 4.0 3

1.0 6.0 1

4.0 1.0 3

4.0 4.0 2

4.0 6.0 4

6.0 1.0 1

6.0 4.0 4

(m) d: (ɰ,ɰ,Ҕ)

slice: ɰ of ҏ

i j n

1.0 1.0 10

1.0 3.0 2

1.0 4.0 1

1.0 6.0 2

3.0 1.0 2

4.0 1.0 1

4.0 6.0 1

6.0 1.0 2

6.0 4.0 1

(n) d: (ɰ,ɰ,Ҕ)

slice: ҍ of ҏ

i j n

1.0 1.0 12

1.0 4.0 2

1.0 6.0 1

4.0 1.0 2

6.0 1.0 1

(o) d: (ɰ,ɰ,Ҕ)

slice: Ҏ of ҏ

i j n

1.0 1.0 16

1.0 4.0 2

1.0 6.0 1

4.0 1.0 2

6.0 1.0 1

(p) d: (ɰ,ɰ,Ҕ)

slice: ҏ of ҏ

Table A.ɰ | Grey-level co-occurrence matrices extracted from the 𝑥𝑦 plane (ҍD) of the digital
phantom using Chebyshev distance ɰ. x indicates the direction in (𝑥, 𝑦, 𝑧) coordinates.

A.2 Grey level co-occurrence matrix (2D, merged)
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i j n

1.0 1.0 22

1.0 4.0 17

1.0 6.0 6

4.0 1.0 17

4.0 4.0 16

4.0 6.0 11

6.0 1.0 6

6.0 4.0 11

6.0 6.0 4

(a) slice: ɰ of ҏ

i j n

1.0 1.0 42

1.0 3.0 5

1.0 4.0 8

1.0 6.0 8

3.0 1.0 5

3.0 4.0 1

3.0 6.0 2

4.0 1.0 8

4.0 3.0 1

4.0 4.0 4

4.0 6.0 3

6.0 1.0 8

6.0 3.0 2

6.0 4.0 3

(b) slice: ҍ of ҏ

i j n

1.0 1.0 56

1.0 4.0 7

1.0 6.0 4

4.0 1.0 7

4.0 4.0 2

6.0 1.0 4

(c) slice: Ҏ of ҏ

i j n

1.0 1.0 70

1.0 4.0 7

1.0 6.0 5

4.0 1.0 7

4.0 4.0 2

6.0 1.0 5

(d) slice: ҏ of ҏ

TableA.ҍ |Mergedgrey-level co-occurrencematrices extracted from the 𝑥𝑦plane (ҍD) of the digital
phantom using Chebyshev distance ɰ.

A.3 Grey level co-occurrence matrix (3D)

i j n

1.0 1.0 66

1.0 4.0 5

1.0 6.0 1

3.0 6.0 1

4.0 1.0 5

4.0 4.0 16

6.0 1.0 1

6.0 3.0 1

6.0 6.0 8

(a) x: (Ҕ,Ҕ,ɰ)

i j n

1.0 1.0 42

1.0 3.0 1

1.0 4.0 9

1.0 6.0 1

3.0 1.0 1

3.0 6.0 1

4.0 1.0 9

4.0 4.0 2

4.0 6.0 2

6.0 1.0 1

6.0 3.0 1

6.0 4.0 2

6.0 6.0 2

(b) x: (Ҕ,ɰ,-ɰ)

i j n

1.0 1.0 64

1.0 4.0 10

1.0 6.0 1

3.0 6.0 2

4.0 1.0 10

4.0 4.0 6

4.0 6.0 2

6.0 1.0 1

6.0 3.0 2

6.0 4.0 2

6.0 6.0 4

(c) x: (Ҕ,ɰ,Ҕ)

i j n

1.0 1.0 52

1.0 4.0 8

3.0 6.0 2

4.0 1.0 8

4.0 4.0 2

4.0 6.0 1

6.0 3.0 2

6.0 4.0 1

6.0 6.0 2

(d) x: (Ҕ,ɰ,ɰ)
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i j n

1.0 1.0 30

1.0 3.0 2

1.0 4.0 7

1.0 6.0 5

3.0 1.0 2

4.0 1.0 7

4.0 6.0 2

6.0 1.0 5

6.0 4.0 2

(e) x: (ɰ,-ɰ,-ɰ)

i j n

1.0 1.0 32

1.0 3.0 1

1.0 4.0 11

1.0 6.0 8

3.0 1.0 1

3.0 4.0 1

4.0 1.0 11

4.0 3.0 1

4.0 4.0 4

4.0 6.0 2

6.0 1.0 8

6.0 4.0 2

(f) x: (ɰ,-ɰ,Ҕ)

i j n

1.0 1.0 20

1.0 3.0 1

1.0 4.0 10

1.0 6.0 6

3.0 1.0 1

3.0 4.0 1

4.0 1.0 10

4.0 3.0 1

4.0 4.0 2

6.0 1.0 6

(g) x: (ɰ,-ɰ,ɰ)

i j n

1.0 1.0 38

1.0 3.0 1

1.0 4.0 7

1.0 6.0 8

3.0 1.0 1

3.0 4.0 1

4.0 1.0 7

4.0 3.0 1

4.0 4.0 8

4.0 6.0 2

6.0 1.0 8

6.0 4.0 2

(h) x: (ɰ,Ҕ,-ɰ)

i j n

1.0 1.0 50

1.0 3.0 2

1.0 4.0 10

1.0 6.0 9

3.0 1.0 2

4.0 1.0 10

4.0 4.0 12

4.0 6.0 5

6.0 1.0 9

6.0 4.0 5

(i) x: (ɰ,Ҕ,Ҕ)

i j n

1.0 1.0 34

1.0 3.0 2

1.0 4.0 8

1.0 6.0 7

3.0 1.0 2

4.0 1.0 8

4.0 4.0 8

4.0 6.0 3

6.0 1.0 7

6.0 4.0 3

(j) x: (ɰ,Ҕ,ɰ)

i j n

1.0 1.0 32

1.0 3.0 1

1.0 4.0 6

1.0 6.0 4

3.0 1.0 1

3.0 4.0 1

4.0 1.0 6

4.0 3.0 1

4.0 6.0 3

6.0 1.0 4

6.0 4.0 3

(k) x: (ɰ,ɰ,-ɰ)

i j n

1.0 1.0 44

1.0 3.0 2

1.0 4.0 8

1.0 6.0 5

3.0 1.0 2

4.0 1.0 8

4.0 4.0 2

4.0 6.0 5

6.0 1.0 5

6.0 4.0 5

(l) x: (ɰ,ɰ,Ҕ)

i j n

1.0 1.0 32

1.0 3.0 1

1.0 4.0 6

1.0 6.0 6

3.0 1.0 1

3.0 4.0 1

4.0 1.0 6

4.0 3.0 1

4.0 4.0 2

4.0 6.0 1

6.0 1.0 6

6.0 4.0 1

(m) x: (ɰ,ɰ,ɰ)

Table A.Ҏ | Grey-level co-occurrence matrices extracted volumetrically (ҎD) from the digital
phantom using Chebyshev distance ɰ. x indicates the direction in (𝑥, 𝑦, 𝑧) coordinates.
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A.4 Grey level co-occurrence matrix (3D, merged)

i j n

1.0 1.0 536

1.0 3.0 14

1.0 4.0 105

1.0 6.0 61

3.0 1.0 14

3.0 4.0 5

3.0 6.0 6

4.0 1.0 105

4.0 3.0 5

4.0 4.0 64

4.0 6.0 28

6.0 1.0 61

6.0 3.0 6

6.0 4.0 28

6.0 6.0 16

Table A.ҏ | Merged grey-level co-occurrence matrix extracted volumetrically (ҎD) from the digital
phantom using Chebyshev distance ɰ.

A.5 Grey level run length matrix (2D)

i r n

1.0 1.0 1.0

1.0 2.0 2.0

1.0 4.0 1.0

4.0 1.0 2.0

4.0 2.0 3.0

6.0 3.0 1.0

(a) x: (Ҕ,ɰ,Ҕ)

slice: ɰ of ҏ

i r n

1.0 2.0 2.0

1.0 4.0 2.0

3.0 1.0 1.0

4.0 1.0 4.0

6.0 1.0 2.0

(b) x: (Ҕ,ɰ,Ҕ)

slice: ҍ of ҏ

i r n

1.0 1.0 1.0

1.0 3.0 3.0

1.0 4.0 1.0

4.0 1.0 2.0

6.0 1.0 1.0

(c) x: (Ҕ,ɰ,Ҕ)

slice: Ҏ of ҏ

i r n

1.0 2.0 1.0

1.0 3.0 3.0

1.0 4.0 1.0

4.0 1.0 2.0

6.0 1.0 1.0

(d) x: (Ҕ,ɰ,Ҕ)

slice: ҏ of ҏ
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i r n

1.0 1.0 7.0

1.0 2.0 1.0

4.0 1.0 5.0

4.0 3.0 1.0

6.0 1.0 3.0

(e) x: (ɰ,-ɰ,Ҕ)

slice: ɰ of ҏ

i r n

1.0 1.0 6.0

1.0 2.0 3.0

3.0 1.0 1.0

4.0 1.0 4.0

6.0 1.0 2.0

(f) x: (ɰ,-ɰ,Ҕ)

slice: ҍ of ҏ

i r n

1.0 1.0 5.0

1.0 2.0 3.0

1.0 3.0 1.0

4.0 1.0 2.0

6.0 1.0 1.0

(g) x: (ɰ,-ɰ,Ҕ)

slice: Ҏ of ҏ

i r n

1.0 1.0 3.0

1.0 2.0 3.0

1.0 3.0 2.0

4.0 1.0 2.0

6.0 1.0 1.0

(h) x: (ɰ,-ɰ,Ҕ)

slice: ҏ of ҏ

i r n

1.0 1.0 5.0

1.0 2.0 2.0

4.0 1.0 4.0

4.0 2.0 2.0

6.0 1.0 3.0

(i) x: (ɰ,Ҕ,Ҕ)

slice: ɰ of ҏ

i r n

1.0 1.0 2.0

1.0 2.0 5.0

3.0 1.0 1.0

4.0 2.0 2.0

6.0 1.0 2.0

(j) x: (ɰ,Ҕ,Ҕ)

slice: ҍ of ҏ

i r n

1.0 1.0 1.0

1.0 2.0 4.0

1.0 5.0 1.0

4.0 2.0 1.0

6.0 1.0 1.0

(k) x: (ɰ,Ҕ,Ҕ)

slice: Ҏ of ҏ

i r n

1.0 1.0 1.0

1.0 2.0 2.0

1.0 5.0 2.0

4.0 2.0 1.0

6.0 1.0 1.0

(l) x: (ɰ,Ҕ,Ҕ)

slice: ҏ of ҏ

i r n

1.0 1.0 3.0

1.0 2.0 3.0

4.0 1.0 6.0

4.0 2.0 1.0

6.0 1.0 3.0

(m) x: (ɰ,ɰ,Ҕ)

slice: ɰ of ҏ

i r n

1.0 1.0 2.0

1.0 2.0 5.0

3.0 1.0 1.0

4.0 1.0 4.0

6.0 1.0 2.0

(n) x: (ɰ,ɰ,Ҕ)

slice: ҍ of ҏ

i r n

1.0 1.0 3.0

1.0 2.0 4.0

1.0 3.0 1.0

4.0 1.0 2.0

6.0 1.0 1.0

(o) x: (ɰ,ɰ,Ҕ)

slice: Ҏ of ҏ

i r n

1.0 1.0 2.0

1.0 2.0 3.0

1.0 3.0 1.0

1.0 4.0 1.0

4.0 1.0 2.0

6.0 1.0 1.0

(p) x: (ɰ,ɰ,Ҕ)

slice: ҏ of ҏ

Table A.Ґ | Grey-level run length matrices extracted from the 𝑥𝑦 plane (ҍD) of the digital phantom.
x indicates the direction in (𝑥, 𝑦, 𝑧) coordinates.
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A.6 Grey level run length matrix (2D, merged)

i r n

1.0 1.0 16.0

1.0 2.0 8.0

1.0 4.0 1.0

4.0 1.0 17.0

4.0 2.0 6.0

4.0 3.0 1.0

6.0 1.0 9.0

6.0 3.0 1.0

(a) slice: ɰ of ҏ

i r n

1.0 1.0 10.0

1.0 2.0 15.0

1.0 4.0 2.0

3.0 1.0 4.0

4.0 1.0 12.0

4.0 2.0 2.0

6.0 1.0 8.0

(b) slice: ҍ of ҏ

i r n

1.0 1.0 10.0

1.0 2.0 11.0

1.0 3.0 5.0

1.0 4.0 1.0

1.0 5.0 1.0

4.0 1.0 6.0

4.0 2.0 1.0

6.0 1.0 4.0

(c) slice: Ҏ of ҏ

i r n

1.0 1.0 6.0

1.0 2.0 9.0

1.0 3.0 6.0

1.0 4.0 2.0

1.0 5.0 2.0

4.0 1.0 6.0

4.0 2.0 1.0

6.0 1.0 4.0

(d) slice: ҏ of ҏ

Table A.ґ | Merged grey-level run length matrices extracted from the 𝑥𝑦 plane (ҍD) of the digital
phantom.

A.7 Grey level run length matrix (3D)

i r n

1.0 1.0 1.0

1.0 2.0 6.0

1.0 3.0 3.0

1.0 4.0 7.0

3.0 1.0 1.0

4.0 1.0 4.0

4.0 2.0 2.0

4.0 4.0 2.0

6.0 1.0 1.0

6.0 2.0 1.0

6.0 4.0 1.0

(a) x: (Ҕ,Ҕ,ɰ)

i r n

1.0 1.0 11.0

1.0 2.0 15.0

1.0 3.0 3.0

3.0 1.0 1.0

4.0 1.0 14.0

4.0 2.0 1.0

6.0 1.0 5.0

6.0 2.0 1.0

(b) x: (Ҕ,ɰ,-ɰ)

i r n

1.0 1.0 2.0

1.0 2.0 5.0

1.0 3.0 6.0

1.0 4.0 5.0

3.0 1.0 1.0

4.0 1.0 10.0

4.0 2.0 3.0

6.0 1.0 4.0

6.0 3.0 1.0

(c) x: (Ҕ,ɰ,Ҕ)

i r n

1.0 1.0 10.0

1.0 2.0 5.0

1.0 3.0 6.0

1.0 4.0 3.0

3.0 1.0 1.0

4.0 1.0 14.0

4.0 2.0 1.0

6.0 1.0 5.0

6.0 2.0 1.0

(d) x: (Ҕ,ɰ,ɰ)
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i r n

1.0 1.0 22.0

1.0 2.0 11.0

1.0 3.0 2.0

3.0 1.0 1.0

4.0 1.0 16.0

6.0 1.0 7.0

(e) x: (ɰ,-ɰ,-ɰ)

i r n

1.0 1.0 21.0

1.0 2.0 10.0

1.0 3.0 3.0

3.0 1.0 1.0

4.0 1.0 13.0

4.0 3.0 1.0

6.0 1.0 7.0

(f) x: (ɰ,-ɰ,Ҕ)

i r n

1.0 1.0 30.0

1.0 2.0 10.0

3.0 1.0 1.0

4.0 1.0 14.0

4.0 2.0 1.0

6.0 1.0 7.0

(g) x: (ɰ,-ɰ,ɰ)

i r n

1.0 1.0 16.0

1.0 2.0 12.0

1.0 3.0 2.0

1.0 4.0 1.0

3.0 1.0 1.0

4.0 1.0 8.0

4.0 2.0 4.0

6.0 1.0 7.0

(h) x: (ɰ,Ҕ,-ɰ)

i r n

1.0 1.0 9.0

1.0 2.0 13.0

1.0 5.0 3.0

3.0 1.0 1.0

4.0 1.0 4.0

4.0 2.0 6.0

6.0 1.0 7.0

(i) x: (ɰ,Ҕ,Ҕ)

i r n

1.0 1.0 19.0

1.0 2.0 12.0

1.0 3.0 1.0

1.0 4.0 1.0

3.0 1.0 1.0

4.0 1.0 8.0

4.0 2.0 4.0

6.0 1.0 7.0

(j) x: (ɰ,Ҕ,ɰ)

i r n

1.0 1.0 20.0

1.0 2.0 12.0

1.0 3.0 2.0

3.0 1.0 1.0

4.0 1.0 16.0

6.0 1.0 7.0

(k) x: (ɰ,ɰ,-ɰ)

i r n

1.0 1.0 10.0

1.0 2.0 15.0

1.0 3.0 2.0

1.0 4.0 1.0

3.0 1.0 1.0

4.0 1.0 14.0

4.0 2.0 1.0

6.0 1.0 7.0

(l) x: (ɰ,ɰ,Ҕ)

i r n

1.0 1.0 19.0

1.0 2.0 14.0

1.0 3.0 1.0

3.0 1.0 1.0

4.0 1.0 14.0

4.0 2.0 1.0

6.0 1.0 7.0

(m) x: (ɰ,ɰ,ɰ)

Table A.ɦ | Grey-level run length matrices extracted volumetrically (ҎD) from the digital phantom.
x indicates the direction in (𝑥, 𝑦, 𝑧) coordinates.
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A.8 Grey level run length matrix (3D, merged)

i r n

1.0 1.0 190.0

1.0 2.0 140.0

1.0 3.0 31.0

1.0 4.0 18.0

1.0 5.0 3.0

3.0 1.0 13.0

4.0 1.0 149.0

4.0 2.0 24.0

4.0 3.0 1.0

4.0 4.0 2.0

6.0 1.0 78.0

6.0 2.0 3.0

6.0 3.0 1.0

6.0 4.0 1.0

Table A.Ғ | Merged grey-level run length matrix extracted volumetrically (ҎD) from the digital
phantom.

A.9 Grey level size zone matrix (2D)

i s n

1.0 3 1

1.0 6 1

4.0 2 1

4.0 6 1

6.0 3 1

(a) slice: ɰ of ҏ

i s n

1.0 4 1

1.0 8 1

3.0 1 1

4.0 2 2

6.0 1 2

(b) slice: ҍ of ҏ

i s n

1.0 14 1

4.0 2 1

6.0 1 1

(c) slice: Ҏ of ҏ

i s n

1.0 15 1

4.0 2 1

6.0 1 1

(d) slice: ҏ of ҏ

Table A.ғ | Grey level size zone matrices extracted from the 𝑥𝑦 plane (ҍD) of the digital phantom.

A.10 Grey level size zone matrix (3D)

i s n

1.0 50 1

3.0 1 1

4.0 2 1

4.0 14 1

6.0 7 1

Table A.ɰҔ | Grey level size zone matrix extracted volumetrically (ҎD) from the digital phantom.
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A.11 Grey level distance zone matrix (2D)

i d n

1.0 1.0 2

4.0 1.0 2

6.0 1.0 1

(a) slice: ɰ of ҏ

i d n

1.0 1.0 2

3.0 2.0 1

4.0 1.0 2

6.0 1.0 1

6.0 2.0 1

(b) slice: ҍ of ҏ

i d n

1.0 1.0 1

4.0 1.0 1

6.0 1.0 1

(c) slice: Ҏ of ҏ

i d n

1.0 1.0 1

4.0 1.0 1

6.0 1.0 1

(d) slice: ҏ of ҏ

Table A.ɰɰ | Grey level distance zone matrices extracted from the 𝑥𝑦 plane (ҍD) of the digital
phantom.

A.12 Grey level distance zone matrix (3D)

i d n

1.0 1.0 1

3.0 1.0 1

4.0 1.0 2

6.0 1.0 1

Table A.ɰҍ |Grey level distance zonematrix extracted volumetrically (ҎD) from the digital phantom.

A.13 Neighbourhood grey tone difference matrix (2D)

i s n

1.0 14.575 9

4.0 5.775 8

6.0 7.325 3

(a) slice: ɰ of ҏ

i s n

1.0 11.928571 12

3.0 0.375000 1

4.0 4.800000 4

6.0 8.000000 2

(b) slice: ҍ of ҏ

i s n

1.0 7.985714 14

4.0 4.650000 2

6.0 5.000000 1

(c) slice: Ҏ of ҏ

i s n

1.0 7.582143 15

4.0 4.650000 2

6.0 5.000000 1

(d) slice: ҏ of ҏ

Table A.ɰҎ | Neighbourhood grey tone difference matrices extracted from the 𝑥𝑦 plane (ҍD) of the
digital phantom using Chebyshev distance ɰ.

A.14 Neighbourhood grey tone difference matrix (3D)
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i s n

1.0 39.946954 50

3.0 0.200000 1

4.0 20.825401 16

6.0 24.127005 7

Table A.ɰҏ | Neighbourhood grey tone difference matrix extracted volumetrically (ҎD) from the
digital phantom using Chebyshev distance ɰ.

A.15 Neighbouring grey level dependence matrix (2D)

i j s

1.0 2.0 3

1.0 3.0 1

1.0 4.0 3

1.0 5.0 2

4.0 2.0 2

4.0 3.0 4

4.0 4.0 2

6.0 2.0 2

6.0 3.0 1

(a) slice: ɰ of ҏ

i j s

1.0 3.0 2

1.0 4.0 6

1.0 6.0 4

3.0 1.0 1

4.0 2.0 4

6.0 1.0 2

(b) slice: ҍ of ҏ

i j s

1.0 3.0 1

1.0 4.0 5

1.0 5.0 3

1.0 6.0 3

1.0 7.0 2

4.0 2.0 2

6.0 1.0 1

(c) slice: Ҏ of ҏ

i j s

1.0 3.0 1

1.0 4.0 3

1.0 5.0 3

1.0 6.0 4

1.0 7.0 1

1.0 8.0 3

4.0 2.0 2

6.0 1.0 1

(d) slice: ҏ of ҏ

Table A.ɰҐ | Neighbouring grey level dependence matrices extracted from the 𝑥𝑦 plane (ҍD) of the
digital phantom using Chebyshev distance ɰ and coarseness Ҕ.

A.16 Neighbouring grey level dependence matrix (3D)
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i j s

1.0 5.0 2

1.0 6.0 2

1.0 7.0 1

1.0 8.0 6

1.0 9.0 4

1.0 10.0 6

1.0 11.0 5

1.0 12.0 5

1.0 13.0 3

1.0 14.0 2

1.0 15.0 5

1.0 16.0 3

1.0 17.0 3

1.0 18.0 2

1.0 21.0 1

3.0 1.0 1

4.0 2.0 2

4.0 4.0 2

4.0 5.0 6

4.0 6.0 4

4.0 7.0 2

6.0 2.0 1

6.0 3.0 4

6.0 4.0 1

6.0 5.0 1

Table A.ɰґ | Neighbouring grey level dependence matrix extracted volumetrically (ҎD) from the
digital phantom using Chebyshev distance ɰ and coarseness Ҕ.
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