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SUMMARY
Cancer-associatedmutations in genes encoding RNA splicing factors (SFs) commonly occur in leukemias, as
well as in a variety of solid tumors, and confer dependence on wild-type splicing. These observations have
led to clinical efforts to directly inhibit the spliceosome in patients with refractory leukemias. Here, we identify
that inhibiting symmetric or asymmetric dimethylation of arginine, mediated by PRMT5 and type I protein
arginine methyltransferases (PRMTs), respectively, reduces splicing fidelity and results in preferential killing
of SF-mutant leukemias over wild-type counterparts. These data identify genetic subsets of cancer most
likely to respond to PRMT inhibition, synergistic effects of combined PRMT5 and type I PRMT inhibition,
and a mechanistic basis for the therapeutic efficacy of PRMT inhibition in cancer.
Significance

Pharmacologic suppression of PRMT5 and type I PRMTs is being pursued as a cancer treatment approach, and numerous
mechanisms have been proposed for the efficacy of PRMT inhibition. Here we identify that spliceosomal mutant leukemias
are preferentially sensitive to PRMT inhibition and that RNA-binding proteins are the most enriched substrates of PRMT5
and/or type I PRMTs. Accordingly, combined PRMT5 and type I PRMT inhibition resulted in synergistic cell killing and
pronounced effects on splicing compared with inhibiting either enzymatic activity alone. These data provide a rational
combinatorial strategy and a strong basis for ongoing and future clinical trials based on the presence of genetic alterations
impacting RNA splicing.
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INTRODUCTION

Recent genomic analyses of cancers have identified numerous

means by which splicing is altered in cancer (Dvinge et al.,

2016; Kahles et al., 2018; Zhang and Manley, 2013). These

include change-of-function mutations in RNA splicing factors

(SFs) (Harbour et al., 2013; Martin et al., 2013; Wang et al.,

2011; Yoshida et al., 2011), mutations that alter splicing in cis

(Supek et al., 2014), changes in the expression of splicing regu-

latory proteins (Anczuków et al., 2012; Karni et al., 2007), and al-

terations in transcriptional regulators that influence the process

of splicing such as c-MYC (Hsu et al., 2015; Koh et al., 2015).

In parallel, certain genetic subsets of cancer have been identified

to be particularly sensitive to therapeutic inhibition of splicing.

These include cells bearing hotspot change-of-function muta-

tions in the RNA SFs SRSF2, SF3B1, and U2AF1 (from hereon

collectively referred to as SF-mutants) (Lee et al., 2016; Obeng

et al., 2016; Seiler et al., 2018; Shirai et al., 2017), as well as solid

tumors and lymphomas driven by MYC amplification and over-

expression (Hsu et al., 2015; Koh et al., 2015).

Despite the large numbers of proteins involved in splicing, as

well as post-translational modifications of splicing proteins and

protein-protein, protein-RNA, and RNA-RNA interactions that

regulate splicing, clinical efforts to inhibit splicing have largely

utilized drugs inhibiting the interaction of the SF3B complex

with RNA (Folco et al., 2011; Kaida et al., 2007; Kotake et al.,

2007; Seiler et al., 2018). Currently, however, the safety of direct

inhibition of RNA splicing catalysis in patients is unknown. More

recently, a series of compounds that result in proteasomal

degradation of the RNA SF RBM39 have provided an alternative

pharmacologic means to perturb splicing (Han et al., 2017; Ue-

hara et al., 2017). These compounds are effective at degrading

RBM39 in vivo and lead to the deregulation of a splicing network

required for acute myeloid leukemia (AML) survival (Wang

et al., 2019).

PRMT family members regulate the activity of many proteins

and their inhibition may affect splicing activities (Koh et al.,

2015; Zhang et al., 2015b). With the observation that SF-mutant

leukemias are more sensitive to further perturbation of splicing

than their wild-type (WT) counterparts, we seek to identify if in-

hibitors of protein argininemethyltransferases (PRMTs) can pref-

erentially target these leukemias.

RESULTS

Spliceosomal Interacting Proteins Are Targetable
Vulnerabilities in SF-Mutant Cells
In an effort to identify additional means to therapeutically impact

the process of splicing, we sought to identify proteins with func-

tional relationships to components of the core splicing machin-

ery, which might be druggable with available therapies. We built

a network based on protein-protein (protein complexes or

enzyme/substrate relationships), protein-DNA (transcriptional),

and protein-RNA (post-transcriptional) regulation (Shannon

et al., 2003), to obtain a list of 312 genes encoding an extended

network of proteins with known or putative interactions with the

core spliceosome. We then manually selected all druggable tar-

gets and sourced available inhibitors for these proteins (Fig-

ure 1A; Table S1). Given that most of the genes in the network
(71%) were transcriptional regulators, and that splicing is a co-

transcriptional process influenced by transcription, we also

included small molecules inhibiting epigenetic regulatory pro-

teins (chemical probe collection from the SGC, Toronto) as addi-

tional controls.

We assembled a panel of 45 compounds based on the above

criteria, and performed a drug screen using a range of five con-

centrations of each drug for 7 days in isogenic murine AML cells

driven by the MLL-AF9 fusion in the absence or presence of

mutant Srsf2 (MLL-AF9/Vav-cre Srsf2WT or MLL-AF9/Vav-cre

Srsf2P95H cells). The generation of these cells has been

described previously in studies identifying the preferential sensi-

tivity of spliceosomal mutant cells to SF3B1 inhibitory com-

pounds, and their growth rate is equivalent both in vitro and

in vivo, regardless of Srsf2 genotype (Lee et al., 2016). Moreover,

this is a genetically relevantmodel for human AML asSRSF2mu-

tations occur in�10% of adult MLL-rearranged AMLs (Lee et al.,

2016). The hallmark global sequence-specific change in RNA

splicing characteristic of mutant SRSF2 is evident in the context

of both human MLL-rearranged AML and murine MLL/AF9

Srsf2P95H cells (Lee et al., 2016).

We performed an in vitro drug screen and scored cell viability

by MTS assay, after 7 days of drug treatment. Values were

normalized to DMSO controls. Srsf2-mutant cells were more

sensitive thanWT counterpart cells to several inhibitors targeting

components of the extended splicing network, including the

SF3B complex inhibitor E7107 (Figure 1B; Table S1). Moreover,

distinct inhibitors of PRMTs resulted in preferential killing of

Srsf2-mutant AML cells over WT counterpart cells. These

included GSK3203591 (abbreviated GSK591), a selective inhib-

itor of PRMT5 (Duncan et al., 2016), and MS023, a pan type I

PRMTs inhibitor (Eram et al., 2016). Whereas type I PRMTs

include PRMT1, 3, 4, and 6, selective inhibitors for PRMT3,

PRMT4, or PRMT6 did not impair proliferation of Srsf2-mutant

cells, suggesting that PRMT1 was the critical target of MS023

in this context.

PRMT5 and Type I PRMT Inhibition Preferentially Affect
SF-Mutant AMLs
We next evaluated the effects of PRMT inhibitors on Srsf2WT

versus Srsf2P95H cells over a range of drug concentrations to

verify the results of the screen and to determine the half maximal

inhibitory concentration for each compound (Figures 2A and 2B).

As calculated by CellTiter Glo cell viability assay, Srsf2P95H cells

were approximately 10-fold more sensitive than their Srsf2WT

isogenic counterpart to GSK591 (120 versus 12 nM in Srsf2WT

versus Srsf2P95H-mutant cells, respectively) and MS023 (1,100

versus 120 nM in Srsf2WT versus Srsf2P95H-mutant cells, respec-

tively). Similar preferential induction of apoptosis was seen for

Srsf2P95H-mutant versus WT cells for both GSK591- and

MS023-treated cells using a Caspase-Glo 3/7 (Figure S1A).

The SF3B1 inhibitor E7107 was used in the same assays as a

positive control, given previous data demonstrating enhanced

sensitivity of Srsf2P95H cells to E7107 (Lee et al., 2016) (Fig-

ure 2C). Overall, these experiments identified that SF-mutant

AML cells were >10 times more sensitive to either PRMT5 or

type I PRMT inhibition than WT counterparts. The preferential

killing of SF-mutant cells was mirrored by dose-dependent

reductions of symmetric dimethylarginine and asymmetric
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dimethylarginine (SDMA and ADMA), respectively (Figures S1B

and S1C), thereby also validating the on-target efficacy of these

compounds. Moreover, we validated the increased sensitivity of

SF-mutant AMLs to PRMT inhibitors across a panel of 32 genet-

ically annotated human AML samples, half of which contained

hotspot mutations in SF3B1, SRSF2, or U2AF1 (Figure 2D;

Table S2). In this assay, primary AML mononuclear cells were

exposed to GSK591 or DMSO for 6 days and evaluated by the

number of viable cells at the end of culture. SF-mutant AML cells

had a significantly increased sensitivity to GSK591 compared

with SF-WT counterparts, an effect seen in SF3B1-, U2AF1-,

and SRSF2-mutant samples. Similar effects were additionally

observed in drug treatment of nine AML cell lines (four of which

had mutations in SRSF2, U2AF1, or SF3B1; Figures S1D and

S1E). This latter experiment was performed with the type I

PRMT inhibitor GSK3368712, which has very similar potency

and selectivity asMS023 (Fedoriw et al., 2019). Importantly these

two latter experiments demonstrated that the increased sensi-

tivity of SF-mutant AMLs to PRMT inhibitors extends beyond

SRSF2-mutant leukemias to leukemias harboring mutations in

SF3B1 and U2AF1 as well.

PRMT Inhibition Preferentially Affects SF-Mutant AMLs
In Vivo

We next tested the sensitivity of leukemia cells to either PRMT5

or type I PRMT inhibitors based on SF-mutation status in vivo.

We used the orally available PRMT5 inhibitor EPZ015666 dosed

once a day at 200 mg/kg. Equal numbers of Srsf2WT or Srsf2P95H

MLL-AF9-transformed leukemia cells were transplanted into

secondary recipient mice and treatment was started at 8 days

post-transplant to allow tumor engraftment (Figure S2A).

EPZ015666 treatment increased the survival of mice trans-

planted with Srsf2P95H leukemias but not mice transplanted

with Srsf2WT leukemias (Figure 3A). Western blot analysis

demonstrated downregulation of global SDMA levels in spleen

cells from mice treated with EPZ015666 (Figure 3B).

To evaluate the effect of type I PRMT inhibition on leukemias

in vivo, we first identified the pharmacokinetic (PK) properties

of MS023 (Figure S2B) and established an intraperitoneal dose

of 80 mg/kg/day as optimal to downregulate ADMA in most or-

gans (Figure S2C). Similar to that observed upon PRMT5 inhibi-

tion, treatment with MS023 delayed disease progression in mice

transplanted with Srsf2P95H leukemias but not in the case of

Srsf2WT AMLs (Figure 3C). Western blot analysis confirmed

downregulation of global ADMA in bonemarrow and spleen cells

from mice treated with MS023. Concurrent upregulation of

SDMA was observed, in accordance with previous reports of a

scavenging effect by PRMT5 observed upon type I PRMTs inhi-

bition (Dhar et al., 2013) (Figure 3D). Both EPZ015666 and
Figure 1. Spliceosomal Interacting Proteins Are Targetable Vulnerabili

(A) Molecular interaction network generated by Cytoscape 3.4.0 (Shannon et al.

mutated in acute myeloid leukemia (AML) and their nearest neighbors of a given

nodes, which are connected by lines to nodes based on physical or functional inter

those that are druggable targets are indicated in red.

(B) Heatmap of the relative viability ofMLL-AF9/Vav-cre Srsf2WT andMLL-AF9/Va

byMTS assay and reported as a ratio to control DMSO-treated cells. Blue indicate

treated cells. The experiment was conducted in biological triplicate, and each in

See also Table S1.
MS023 were well tolerated in the mouse PK, and in vivo efficacy

studies and no apparent toxicity was observed (Chan-Penebre

et al., 2015) (and data not shown).

Synergistic Effects of Combined PRMT5, Type I PRMT,
and/or SF3B Inhibition
Given the upregulation of SDMA seen with type I PRMT inhibition

and the preferential sensitivity of SF-mutant AMLs to inhibition of

symmetric as well as asymmetric arginine dimethylation, we next

sought to evaluate the effects of simultaneous inhibition of both

axes of PRMT function. To evaluate the synergism between the

two inhibitors, we calculated their combination index (CI), which

quantitatively defines synergism (CI < 1), additive effect (CI = 1)

andantagonism (CI>1)among twodrugs (Chou, 2010).Combined

in vitro treatment of Srsf2WT or Srsf2P95H MLL-AF9 leukemia cells

with MS023 and GSK591, MS023 and E7107, or GSK591 and

E7107, revealed synergistic effects of each combination, regard-

less ofSrsf2mutational status (Figures 4A–4C). A similar synergis-

tic effect was seen in vivowhere combinedMS023 (60mg/kg) and

EPZ015666 (150 mg/kg) treatment (given starting at day 8 after

engraftment for 10days) resulted in significantly increased survival

in recipient mice engrafted with both Srsf2WT and Srsf2P95H MLL-

AF9 leukemia cells (Figure 4D). Consistent with the extended

survival seen with combined MS023 and EPZ015666 treatment,

PRMT inhibition in vivo resulted in reductions in both ADMA and

SDMA levels in splenic tissue (Figure S2D).

We then tested the combinatorial effects of PRMT5 and type I

PRMT inhibition in additional models. First, we assessed the ef-

fect of combined treatment with GSK591 and MS023 in human

AML cell lines (Figures 5A–5C). Importantly, the synergy between

the two drugs extent beyond MLL-AF9-driven malignancies and

was also observed in those with CALM-AF10 (U937) and BCR-

ABL (K562) fusions.

Second, we used induced pluripotent stem cells (iPSCs) with a

SRSF2P95L mutation knocked in by CRISPR and isogenic normal

iPSCs (Chang et al., 2018). We differentiated the iPSCs into

hematopoietic progenitor cells and treated them with PRMT in-

hibitors. The SRSF2-mutant cells were more sensitive than their

isogenic WT control (Figure 5D).

Third, we tested three primary patient AML samples, two had

SRSF2P95H and one had SF3B1Y765C, in vitro and found that

GSK591/MS023 combination treatment resulted in a synergistic

effect of reducing cell viability (Figure 5E; Table S3).

Fourth, we tested the efficacy of drug combination on a spli-

ceosomal WT/MLL-rearranged and one SF3B1K700E/EVI1-rear-

ranged AML PDX models. Treatment with 60 mg/kg MS023

and 150 mg/kg EPZ015666 for 30 days resulted in reduction

of human chimerism only in the SF-mutant AML (Figures

S3A–S3C).
ties in Spliceosomal Mutant Cells

, 2003) displaying proteins involved in RNA splicing, snRNP assembly, and/or

physical entity (e.g., genes or proteins). Genes and proteins are illustrated by

action. Nodes that are RNASFsmutated in cancer are displayed in yellowwhile

v-cre Srsf2P95H to the indicated compounds following 7 days of growth scored

s a reduction, while red indicates an increase in cell viability, relative to DMSO-

dividual run was repeated in technical triplicate.
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Figure 2. Preferential Effects of PRMT5 or Type I PRMT Inhibition on

SF-Mutant AML over WT Counterparts In Vitro

(A–C) Relative cell viability ofMLL-AF9/Vav-cre Srsf2WT andMLL-AF9/Vav-cre

Srsf2P95H treated with GSK591 (A), MS023 (B), or E7107 (C), and normalized to

control (SGC2096a for PRMT5, MS094 for PRMT1, and DMSO for E7107).

Samples were prepared in four to six replicates and averages were calculated,

error bars represent SD. Student’s t test was used for statistical analysis.

(D) Relative viable cell counts of AML patient samples to GSK591 based on

spliceosomal gene mutation status. Primary AML cells with SF-mutations

(n = 16) or WT for SRSF2, U2AF1, and SF3B1 (n = 16) were incubated with

DMSO or GSK591 (0.5 mM) for 6 days. Cells were subjected to flow cytometry

to detect 7-AAD-negative, YO-PRO1-negative, viable cells. Relative viable cell

numbers were compared with Welch’s t test. Boxplot top line of whisker
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Fifth, we extended our observation to isogenic K562 human

leukemia cell lines with knockin mutations of the endogenous

SRSF2 (SRSF2P95H) or SF3B1 (SF3B1K700E) (Figures 5F and

5G). In each case, we observed a strong synergistic effect be-

tween GSK591 and MS023, which was more pronounced in

SF-mutant isogenic cells. The changes in symmetric and asym-

metric dimethylation of arginine in K562 cells, from single and

combinatorial use of MS023 and GSK591, were validated by

western blot (Figure S4).

Finally, given the reported effects of E7107 (Lee et al., 2016),

and the synergy observed upon combining MS023 and

GSK591 (Figures 4B and 4C), we tested the effect of a triple-

drug combination. As expected, triple combination treatment

with MS023, GSK591, and E7107 had a strong effect on cell

viability and preferentially killed the SRSF2-mutant line over the

WT control (Figure 5H). Altogether these experiments confirm

the strong synergy between the drugs impacting different as-

pects of splicing catalysis (type I PRMTs, PRMT5 and SF3B1 in-

hibitors), which was accentuated in the presence of an SF

mutation.

Global Profiling of PRMT Substrates at Single-Site
Resolution by Quantitative Liquid Chromatography-
Tandem Mass Spectrometry
We next set out to explore the mechanistic basis for the link be-

tween inhibition of arginine methylation and preferential effects

on SF-mutant leukemias. Although previous studies have sug-

gested a link between PRMT5 and splicing regulation through

argininemethylation of spliceosome-associated proteins (Braun

et al., 2017; Koh et al., 2015), PRMT5 has numerous substrates

(Guo et al., 2010; Hamard et al., 2018; Jansson et al., 2008; Mu-

siani et al., 2019; Sims et al., 2011; Xu et al., 2001). Similarly,

type I PRMTs have a large number of cellular substrates. As a

consequence, it is currently unclear which PRMT substrate(s)

are most relevant to the observed cellular effects of PRMT inhi-

bition. To address this question, we undertook a proteomic

approach to identify PRMT5 and PRMT type I substrates in leu-

kemia. In particular, we employed a stable isotope labeling with

amino acids in cell culture (SILAC)-mass spectrometry strategy

(Musiani et al., 2019) to characterize the arginine methyl prote-

ome in acute promyelocytic leukemia NB4 cells (Figure 6A;

Table S4). In brief, in a forward SILAC experiment, cells cultured

in the medium complemented with heavy-labeled arginine (‘‘H’’)

and lysine were treated with GSK591 or MS023, while cells

cultured with light amino acids (‘‘L’’) were treated with vehicle.

Upon H and L cell harvesting and mixing in equal ratio, protein

extraction and in-solution tryptic digestion, peptides bearing

mono-methylated arginine (MMA), SDMA, or ADMA, respec-

tively, were enriched using pan-methyl-specific antibodies,

before high-resolution nano-liquid chromatography-tandem

mass spectrometry analysis for modified peptide identification

and quantification (Figure 6A). The SILAC experiments were

repeated in biological replicates in SILAC reverse mode,
denotes the highest value in dataset and bottom line of whisker denotes the

lowest value in dataset, box spans interquartile range and line in box indicates

median.

*p = 0.01–0.05, **p = 0.001–0.01, ***p = 0.0001–0.001, ****p < 0.0001. See also

Figure S1 and Table S2.
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Figure 3. Preferential Effects of PRMT5 or Type I PRMT Inhibition on SF-Mutant AML over WT Counterparts In Vivo

(A and B) Kaplan-Meier survival curve of mice treatedwith vehicle or EPZ015666. Survival comparison byMantel-Cox log-ranked test (WT vehicle n = 12;WT drug

n = 13, Srsf2P95H vehicle n = 14,Srsf2P95H drug n = 8) (A). Western blot of PRMT5, symmetric dimethyl arginine (SDMA; both a short exposure and a long exposure

are shown), and actin in spleens of mice from (A) at time of death. Organs collected were 24 h after the last dose. Each column represents tissue from a distinct

individual representative animal (B).

(C andD) Kaplan-Meier survival curve ofmice treatedwith vehicle orMS023. Survival comparison byMantel-Cox log-ranked test (WT vehicle n = 9,WT drug n = 9,

Srsf2P95H vehicle n = 9, Srsf2P95H drug n = 11). (C) Western blot of PRMT1, asymmetric dimethylarginine (ADMA) (both a low exposure and a high exposure are
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individual representative animal (D). *p = 0.01–0.05, **p = 0.001–0.01, ***p = 0.0001–0.001, ****p < 0.0001.

See also Figure S2.
whereby the amino acid labels were swapped among the two

functional states (see the STAR Methods). With this strategy,

we were able to quantify a total of 391 and 735 R-methyl-pep-

tides in the GSK591 andMS023 experiments, respectively. Spe-

cifically, in the GSK591 treatment experiment, we identified 299

peptides bearing MMA, 40 bearing DMA and 52 bearing both

modifications; in the MS023 experiment, we found 433 MMA

peptides, 200 DMA peptides, and 102 peptides bearing both

modifications (Figure S5A). In total, these peptides carried

1,188 methylation events on arginine, and were distributed on

219 different proteins (Table S4).

Analysis of themethyl-peptide SILAC ratios, normalized by the

respective protein ratios, revealed that both GSK591 andMS023
caused a prominent downregulation of methyl sites, with 49

(15%) and 135 (16%) methyl-peptides significantly decreased

and only 4 (1%) and 97 (11%) upregulated, respectively (Fig-

ure S5B; Table S4). Log analysis of the significantly regulated

methyl-peptides showed specific enrichment for glycine at

position +1 and �1 around the modified arginine in the MS023-

and GSK591-treated cells, respectively (Figures 6B and 6C).

Interestingly, PRMT5 and type I PRMTs appear to regulate the

methylation of distinct and non-overlapping proteins (Figure 6D).

We did not detect histones as differentially arginine methylated,

rather, proteins whosemethylation level changed upon PRMT in-

hibition were mainly RNA-binding proteins (RBPs) with estab-

lished roles in RNA export, regulation of RNA stability, and
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Figure 4. Synergistic Effects of Combined PRMT5, Type I PRMT,

and/or SF3B Inhibition on Primary Mouse AMLs

(A–C) Heatmap of half maximal inhibitory concentration values of WT or

Srsf2P95HMLL-AF9 cells grown in increasing doses ofMS023 plusGSK591 (A),

MS023 plus E7107 (B), or GSK591 plus E7107 (C) for 7 days. The combination

index (CI) in each cell type for each drug pair is shown.

(D) Kaplan-Meier curve of mice transplanted with MLL-AF9 cells followed by

combined treatment with MS023 plus EPZ015666 in vivo. Survival comparison

by Mantel-Cox log-ranked test (WT vehicle n = 11, WT drug n = 12, Srsf2P95H
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RNA splicing (Figures 6E–6H). In addition, MS023 elicited a spe-

cific effect on the methylation of proteins involved in translation

(Figures 6E–6G). Most of the methyl-peptides responding to

GSK591 (70%) and MS023 (89%) were orthogonally validated

through the intersection with a high-quality methyl-proteome

dataset annotated through the heavy methyl SILAC labeling

strategy (Massignani et al., 2019; Ong et al., 2004) (Figure S5C;

Table S4).

Importantly, to exclude a potential bias toward more abun-

dant proteins in our methyl-proteome, we matched the meth-

ylated proteins identified with the immuno-enrichment

approach to their respective protein abundances, calculated

through the Intensity-Based Absolute Quantification (iBAQ) al-

gorithm (Schwanhausser et al., 2011) in the whole proteome

dataset, used as input for the methyl-peptide immunoprecipi-

tation (Table S3). This experimental proteome included more

than 7,300 proteins, encompassing a dynamic range of abun-

dance of �107 (Figure S5D, black bars). Within this protein

abundance distribution, the 219 experimentally identified

methyl-proteins covered a dynamic range of abundance

of >105, spanning from high (e.g., EEF1A1 and HNRNPs) to

low (e.g., KMT2C and SVIL) expressed proteins (Figure S5D,

red bars). A similar dynamic range was also observed for pro-

teins directly regulated by PRMT5 or type I PRMT inhibitors

(Figure S5E).

This result suggests that, despite being a minor proportion of

the detectable cellular proteome, the PRMT-dependent methyl-

proteome is not biased toward the high abundant subset; hence,

the overrepresentation of RBPs is not a mere reflection of the

abundance of these proteins, but linked to the cellular function

of PRMTs.

Cell-Cycle Deregulation upon PRMT5 and Type I PRMT
Inhibition
To further understand the mechanistic underpinning for the

synergistic cytotoxic effects of PRMT inhibition on leukemia

cells, regardless of the spliceosomal gene mutational status,

we performed RNA sequencing analysis of isogenic

SRSF2P95H K562 leukemia cell lines and its WT counterpart,

treated with DMSO, GSK591, and MS023, or a combination

of the two. We first analyzed the global changes in gene

expression caused by drug treatment. Gene ontology (GO)

analysis revealed that there is an upregulation of genes

involved in mitosis and cell-cycle regulation for both K562

WT and K562 SRSF2P95H cells (Figures 7A and 7B; Table

S5). This suggests that drug combination treatment causes

cell-cycle deregulation and indeed we could validate this by

cell-cycle analysis on cells collected at day 8 of drug treat-

ment. Specifically, inhibition of PRMT5 and type I PRMTs

leads to a decrease in proportion of cells in G1 and S phase

(Figure 7C). Concomitantly, we observed an increase in an

apoptotic sub-G1 population (Figures 7C and 7D). Overall,

upon PRMT inhibition, SRSF2P95H-mutant cells exited the

cell cycle and induced caspase-3/-7 activity more than their

WT counterpart.
vehicle n = 15, Srsf2P95H drug n = 16). *p = 0.01–0.05, **p = 0.001–0.01,

***p = 0.0001–0.001, ****p < 0.0001.

See also Figure S2.
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Figure 5. Synergistic Effects of Combined PRMT5, Type I PRMT, and/or SF3B Inhibition on Human AML Lines and Patient Samples

(A) Summary of CI and fraction affected (Fa) values of human AML cell lines treated with MS023 and GSK591.

(B and C) Percentage of viable THP1 (B) and U937 (C) cells after 8 days exposure to MS023, GSK591, or the combination relative to DMSO in vitro.

(D) Hematopoietic progenitor cells differentiated from the iPSC lines 5–16 Cre20 (SRSF2 P95L) and N-2.12 (isogenic normal) were treated as indicated. Cell

viability represents cell counts relative to DMSO-treated cells.

(E) Heatmap of cell viability after 6 days of treatment. CI at IC50 values of MS023 plus GSK591 is indicated at the bottom.

(F and G) Percentage of viable K562 WT or SRSF2P95H knockin mutant cells (F) and K562 WT or SF3B1K700E knockin mutant cells (G) after 8 days treatment with

MS023, GSK591, or the combination relative to DMSO in vitro.

(H) Percentage of viable K562 WT or SRSF2P95H knockin mutant cells after 8 days treatment with MS023, GSK591, E7107 or in combination relative to DMSO

in vitro.

All data are representative of three independent experiments, error bars represent SD. *p = 0.01–0.05, **p = 0.001–0.01, ***p = 0.0001–0.001, ****p < 0.0001;

one-way ANOVA was used to analyze THP1 and U937, while unpaired t test was used for K562 WT and SRSF2P95H. See also Figures S3 and S4.
PRMT5and Type I PRMTs Inhibition Leads to Synergistic
Changes in Alternative Splicing
We next conducted splicing analysis of the isogenic K562 leuke-

mia cell lines treated with DMSO, GSK591, and MS023, or a

combination of the two, to further decipher the possible cause

for the overall synergistic killing of PRMT inhibitors, and prefer-

ential killing of SRSF2P95H over WT cells. As expected,

SRSF2P95H-mutant and WT cells had a distinct transcriptome,

typified by unique changes to RNA splicing, as described previ-

ously (Kim et al., 2015; Zhang et al., 2015a). First, the analysis re-

vealed an increase in the number of aberrant splicing events

upon treatment with both MS023 and GSK591, compared with

control DMSO-treated cells. This was true both in WT and

SRSF2P95H cells. Interestingly, the number of altered splicing

events, particularly in cassette exons, increased upon combined

exposure to GSK591 and MS023, both in K562 WT and
SRSF2P95H cells (Figures 8A and 8B). In addition, drug combina-

tion induced a unique pattern of splicing alteration that is not

simply the sum of the cassette exon splicing events caused by

the individual drugs (Figure S6A).

Second, we compared the overlap of the deregulated events

among the two genotypes. Given that SRSF2P95H and WT cells

have a different transcriptome to begin with, it was not surprising

to note a divergence in the inclusion/exclusion of the affected

cassette exons. More specifically, about one-third of the

cassette exon events were commonly deregulated upon

GSK591 +MS023 treatment, while the rest were uniquely spliced

in either WT or SRSF2P95H cells (Figure S6B).

Third, we confirmed thatSRSF2P95H-regulated exon inclusion/

exclusion events have enrichment for C-rich exonic splicing

enhancer sequences over G-rich sequences. Interestingly, treat-

ment with PRMT inhibitors, led to a reduction in events
Cancer Cell 36, 194–209, August 12, 2019 201
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Figure 6. Global Profiling of PRMTSubstrates at Single-Site Resolution byQuantitative LiquidChromatography-TandemMass Spectrometry

(A) Workflow of the SILAC methyl-R-proteomic experiments carried out to identify mono- and dimethylarginine substrates regulated by GSK591 and MS023 in

NB4 leukemia cells.

(B and C) Sequence motif analysis indicates the consensus sequences significantly enriched in the methyl-peptides regulated by MS023 (B) or GSK591 (C).

(D) Heatmap of log2 SILAC ratios of each methyl-peptide identified and quantified from the SILAC experiment diagrammed in (A). For each pharmacological

treatment two biological replicates, in forward and reverse SILAC mode, were carried out and different degrees of methylation were enriched and profiled. Only

peptides reproducibly regulated in at least one pair of forward-reverse experiment are visualized in the heatmap.

(E and F) Network analysis of the proteins displaying methylation changes upon treatment with MS023 (E) or GSK591 (F). RNA-binding proteins are highlighted

in red.

(G andH) Functional analysis of changingmethylated proteins highlight the biological process terms significantly enriched among proteins displayingmethylation

changes upon treatment with MS023 (G) and GSK591 (H).

See also Figure S5 and Table S3.
containing a CCNGmotif (preferentially regulated by SRSF2P95H)

and to an overall depletion of events regulated by WT SRSF2

(containing a GGNG and CGNG motif) (Figure 8C).

We then looked at the GO enrichment of cassette exon

events changing upon combination drug treatment in K562

SRSF2P95H cells and focused on the top perturbed GO cate-

gories, which included microtubule organization, DNA repair,

and cell-cycle regulation (Table S5). We generated heatmaps

for events in each GO category to depict the change in

percentage spliced in (delta PSI) values upon single- and dou-

ble-drug treatment in both cell lines, relative to K562 WT (Fig-

ures 8D and S6C). The rationale for this approach was to iden-

tify those splicing changes that could explain the preferential
202 Cancer Cell 36, 194–209, August 12, 2019
sensitivity of mutant cells to PRMT inhibition. Within these

GO categories, we identified cassette exon splicing events

that were changing more in K562 SRSF2P95H than in their WT

counterparts and validated some of these events (Figure S6D).

As DNA repair genes are broadly deregulated by PRMT inhibi-

tion, we also performed western blot of phospho-H2Ax to

check for evidence of DNA damage. Indeed, there is a signifi-

cant upregulation of gH2Ax, especially in the K562 SRSF2P95H

cell, upon combination drug treatment (Figure S6E). Overall,

although the number of deregulated splicing events is similar

between WT and SRSF2P95H-mutant cells, they affect different

genes and pathways, ultimately resulting in increased DNA

damage and cell-cycle arrest.
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Figure 7. Gene Expression Changes and Cell-Cycle Deregulation with PRMT5 and Type I PRMTs Inhibition

(A and B) GO categories of genes upregulated in K562 WT cells (A) and K562 SRSF2P95H cells (B) upon MS023 and GSK591 combination treatment.

(C) Cell-cycle analysis of K562 WT and SRSF2P95H cells upon MS023 and GSK591 treatment.

(D) Caspase-Glo 3/7 changes following 8 days treatment with MS023 and GSK591 in K562 WT and SRSF2P95H cells.

All data are representative of three independent experiments, error bars represent SD. *p = 0.01–0.05, **p = 0.001–0.01, ***p = 0.0001–0.001, ****p < 0.0001.

Student’s t test used for statistical analysis.
Among the splicing events in the cell-cycle regulation GO

category, we identified an aberrant splicing event within the

mRNA encoding EZH2 (Kim et al., 2015; Lee et al., 2016). This

specific event, which is driven by SRSF2 and not by SF3B1 mu-

tations (Pellagatti et al., 2018) (Figures S6F andS6G), leads to the

inclusion of a poison exon, to the formation of a premature stop

codon, and subsequent nonsense-mediated decay (Kim et al.,

2015; Lee et al., 2016). Interestingly, similar to that previously

observed for E7107 (Lee et al., 2016), we observed decreased

poison exon inclusion upon PRMT inhibition (Figures 8E, S6G,

and S7A), leading to increased EZH2 protein abundance (Fig-

ure 8F). To functionally test the meaning of this event and assess

whether toxicity induced by MS023 and GSK591 was at least in

part mediated by EZH2 re-expression, we took two approaches.

We first designed an antisense oligonucleotide (AON) to specif-

ically mimic the exon-skipping event induced by PRMT inhibi-

tors. The designed AON was able to reduce the inclusion level

of the EZH2 poison exon (Figure S7B), increase EZH2 protein

levels (Figure S7C), and reduce cell viability in K562, which

wasmore evident in SRSF2P95H-mutant cells than inWT controls

(Figure S7D).

To complement the above AON approach, we also used

CRISPR/Cas9 to delete the endogenous EZH2 in K562 cells.

We then treated EZH2 null cells or the parental control line
with MS023, GSK591, or a combination of the two. EZH2 null

cells were significantly more resistant to PRMT inhibition, sug-

gesting that the effect of these small molecules is at least in

part mediated by restoration of EZH2 levels in AML cells

(Figure S7E).

DISCUSSION

Inhibition of PRMT5 or type I PRMTs has been linked to several

downstream effects and proven to impact multiple pathways.

Nonetheless, with the exception of the well-described MTAP

deletion, which renders cells more susceptible to further deple-

tion of PRMT5 (Kryukov et al., 2016;Marjon et al., 2016;Mavrakis

et al., 2016) or inhibition of type I PRMTs (Fedoriw et al., 2019;

Gao et al., 2019), there has been no clear indication of additional

potential vulnerabilities of cancer cells to PRMT deletion/

inhibition.

Overall, our data identify a strong impact of inhibiting protein

arginine methylation on RNA splicing. PRMT5 or type I PRMTs

inhibition resulted in preferential killing of SF-mutant AML, and

overall synergy across genetic backgrounds. Mechanistically,

this can be explained through inhibition of arginine post-transla-

tional modification (SDMA and ADMA) of a large compendium of

RBPs involved in splicing regulation.
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Figure 8. PRMT5 and Type I PRMT Inhibition Leads to Synergistic Changes in Alternative Splicing
(A) Bar graphs enumerating numbers of significantly differentially spliced events inWT or SRSF2P95H K562 cells treated with each of the compounds listed versus

DMSO control. A3SS, alternative 30 splice site; A5SS, alternative 50 splice site; MXE, mutually exclusive exon; RI, retained intron; SE, cassette exon.

(B) Bar graphs enumerating numbers of significantly differentially spliced exons in WT or Srsf2P95H K562 cells treated with each of the compounds listed versus

DMSO control.

(C) Changes in levels of splicing events with CCNG, GCNG, CGNG, or GGNG motifs upon MS023 and GSK591 treatment in K562 cells.

(D) Heatmap showing change in PSI of exon splicing events normalized to PSI of WT control within the ‘‘Cell Cycle’’ gene ontology category.

(E) RT-PCR data showing changes in PSI levels of EZH2 poison exon inclusion in K562 cells with or without knockin of SRSF2P95H upon MS023 and GSK591

treatment in vitro.

(F) Western blot showing changes in EZH2 protein levels upon MS023 and GSK591 treatment in vitro.

All data are representative of three independent experiments, error bars represent SD. *p = 0.01–0.05, **p = 0.001–0.01, ***p = 0.0001–0.001, ****p < 0.0001.

Student’s t test used for statistical analysis. See also Figures S6 and S7 and Table S5.
Currently, there is no standardized way to predict the effects of

arginine methylation on protein function. Even less is known on

the interplay between ADMA and SDMA occurring at distinct

or overlapping sites. However, despite the current limitations

on systematic predictions, there are several examples in the liter-

ature describing the effect of individual arginine methylation
204 Cancer Cell 36, 194–209, August 12, 2019
events on the function of PRMT5 and/or type I PRMTs

substrates.

As described here, type I PRMTs and PRMT5 methylate

different arginine residues on a common set of RBPs involved

in RNA post-transcriptional regulation. Both ADMA and SDMA

maintain the positive charge of the arginine side chain, but



reduce its hydrogen bonding capabilities. Methylation concur-

rently increases the hydrophobicity to the arginine side chain, fa-

voring its interaction with aromatic cages. As a consequence,

arginine methylation has been shown to alter protein-protein in-

teractions (Erce et al., 2013) and protein-RNA interactions (Den-

man, 2002; Dolzhanskaya et al., 2006). A well-documented

example is the argininemethylation of three of the seven Sm pro-

teins (SNRPB/B0, SNRPD1, and SNRPD3), leading to their bind-

ing to the Tudor domain on SMN1 (Bezzi et al., 2013; Friesen

et al., 2001; Meister et al., 2001; Meister and Fischer, 2002).

This is a critical event in the assembly of spliceosomal snRNPs,

and, consistently with previous reports, we detected significant

changes in SNRPB methylation in our dataset at arginines 112

and 147, upon PRMT inhibition.

In addition, we identified several arginine methylated residues

on SFPQ and PSPC1. Interesting, both proteins are core compo-

nents of the membrane-less nuclear structures called para-

speckles, which play a central role in cancer and stress response

(Adriaens et al., 2016). In particular, SFPQR693me1 and

PSPC1R507me1 are reduced in the presence of GSK591, while

PSPC1R4me1/me2a are reduced in the presence of MS023.

Whereas, in the case of SFPQ, argininemethylation is associated

with increased RNA binding (Snijders et al., 2015), there is no

report describing the role of PSPC1 methylation, a point that

warrants future investigation.

Recently, ADMA methylation by PRMT1 has been shown to

weaken the cation p interactions between RGG/RG-rich motifs

and low complexity regions of several disease-associated

prion-like intrinsically disordered proteins (Hofweber et al.,

2018; Qamar et al., 2018; Tsai et al., 2016).We detected changes

in methylation of several members of this family of proteins (e.g.,

FUS, G3BP1, hnRNPA2B1, and hnRNPA1). We hence predict

that PRMT5 and PRMT type I inhibitors may have an impact on

reversible liquid-liquid phase separation and on the assembly/

disassembly of membrane-less organelles, impacting RNA

post-transcriptional regulation.

Finally, there are numerous examples of how ADMA/SDMA

may regulate localization of proteins including cellular localiza-

tion of RBPs such as Sam68, Aven, FUS, hnRNPA1, and

hnRNPA2 (Cote et al., 2003; Nichols et al., 2000; Thandapani

et al., 2015; Tradewell et al., 2012; Wall and Lewis, 2017).

It is well documented that SF genes mutated in cancers are

mutually exclusive (Yoshida et al., 2011) and that they have a

synthetic lethal relationship when co-mutated in the same cell

(Lee et al., 2018). Here we observed a general perturbation of

gene expression and, importantly, of alternative splicing

(increased number of skipped/included exons and retained in-

trons) upon PRMT inhibition. Given that SF-mutant cells are pref-

erentially sensitive to genetic or pharmacologic perturbations in

splicing, compared with spliceosomal WT counterparts (Lee

et al., 2016; Obeng et al., 2016; Seiler et al., 2018; Shirai et al.,

2017; Wang et al., 2019), an increase in overall splicing perturba-

tion is predicted to lead to their preferential killing. This has been

previously observed upon treatment with SF3B1 inhibitors (Lee

et al., 2016; Obeng et al., 2016; Seiler et al., 2018; Shirai et al.,

2017; Wang et al., 2019) and RBM39 degrading compounds

(Wang et al., 2019). Our results reveal how inhibition of both

type I and type II PRMTs can lead to a similar preferential killing

of SF-mutant AML and myelodysplastic syndrome cells.
At the same time, it is possible that PRMT inhibition causes the

aberrant splicing of oncogenic isoforms required for the survival

of SF-mutant cells, leading to their preferential killing over WT

counterparts. To test this latter point, we focused our analysis

on the aberrant splicing of the EZH2 mRNA. In myeloid malig-

nancies, EZH2 acts as a tumor suppressor, and it is often deleted

and/or affected by loss-of-function mutations (Ernst et al., 2010;

Nikoloski et al., 2010). Although we acknowledge that multiple

genes couldmediate the downstream effects of PRMT inhibition,

we did observe a partial rescue upon CRISPR-mediated

knockout of EZH2.

In human SRSF2P95H-mutant cells, we detected the previ-

ously reported aberrant inclusion of a poison exon in the

EZH2 transcript, which harbors a premature stop codon and

targets it for nonsense-mediated decay (Kim et al., 2015; Lee

et al., 2016). Combinatorial use of the PRMT inhibitors caused

a reduction in poison exon inclusion and increased EZH2 pro-

tein levels. The importance of this splicing event as part of the

mechanistic basis for increased sensitivity of SRSF2P95H cells

to PRMT inhibition was further validated by the increased

sensitivity of K562 SRSF2P95H cells to the use of AON that

induced skipping of the poison exon, and with CRISPR/Cas9

deletion of EZH2, which reduced sensitivity of K562 cells to

PRMT inhibition.

To conclude, the data provided here have important thera-

peutic implications for patients with spliceosomal gene muta-

tions, given ongoing clinical trials with GSK3326595 (PRMT5

inhibitor from the same chemical series as EPZ015666 and

GSK3203591; NCT03614728) and with a type I inhibitor

GSK3368715 (Fedoriw et al., 2019; NCT03666988). Specif-

ically, our data provide a strong basis for patient selection in

the use of PRMT5 and type I PRMTs inhibitors in ongoing

and future clinical trials of these agents based on the presence

of genetic alterations impacting RNA splicing. At the same time,

our proteomic data identify that PRMT5 and type I PRMTs

largely regulate a distinct set of substrates, and, coincident

with this, the simultaneous inhibition of both PRMT axes re-

sulted in strong synergistic effects. A notable example is the

increased expression of EZH2 protein in SRSF2P95H K562 cells.

EZH2 is recurrently deleted or affected by loss-of-function mu-

tations in myeloid malignancies (Ernst et al., 2010), while it is

partially inactivated by aberrant splicing in SRSF2-mutant cells.

These data extend the therapeutic utility of PRMT inhibitors,

identify a combinatorial drug strategy utilizing simultaneous

PRMT5 and type I PRMT inhibition, and implicate perturbation

of RNA splicing as an important cellular mediator of cell death

due to inhibition of PRMTs.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-Actin Santa Cruz sc-47778; RRID: AB_626632

Anti-PRMT5 Abcam Abcam ab109451; RRID: AB_10863428

Anti-SDMA Cell signaling #13222; RRID: AB_2714013

Anti-ADMA Cell signaling #13522; RRID: AB_2665370

Anti-PRMT1 Cell signaling CST #2449; RRID: AB_2237696

Anti-MMA Cell signaling #8015; RRID: AB_10891776

Anti-EZH2 Cell signaling CST #5246; RRID: AB_10694683

Anti- gH2Ax Cell signalling CST #9718; RRID: AB_2118009

Biological Samples

AML primary patient samples Princess Margaret Hospital,

Memorial Sloan Kettering Cancer

Center, & Weill Cornell College

of Medicine

N/A

Chemicals, Peptides, and Recombinant Proteins

GSK3203591 SGC Toronto https://thesgc.org/chemical-probes/GSK591

MS023 SGC Toronto https://www.thesgc.org/chemical-probes/MS023

EPZ015666 Tocris Cat. No. 6516

GSK3368712 GSK N/A

E7107 H3 Biomedicine Inc. N/A

I-BRD9 SGC Toronto https://www.thesgc.org/chemical-probes/I-BRD9

SGC-CBP30 SGC Toronto https://www.thesgc.org/chemical-probes/CBP30

BI-9564 SGC Toronto https://www.thesgc.org/chemical-probes/BI-9564

I-CBP112 SGC Toronto https://www.thesgc.org/chemical-probes/I-CBP112

MS049 SGC Toronto https://www.thesgc.org/chemical-probes/MS049

UNC0638 SGC Toronto https://thesgc.org/chemical-probes/UNC0638

SGC707 SGC Toronto https://www.thesgc.org/chemical-probes/SGC707

GSK484 SGC Toronto https://www.thesgc.org/chemical-probes/GSK484

IOX2 SGC Toronto https://www.thesgc.org/chemical-probes/IOX2

GSK-J4 SGC Toronto https://www.thesgc.org/chemical-probes/gskj1

Vorinostat Cayman chemicals CAS N� 149647-78-9

GSK2334470 Cayman chemicals CAS N� 1227911-45-6

SGC0946 SGC Toronto https://www.thesgc.org/chemical-probes/SGC0946

PD0332991 Cayman chemicals CAS N� 827022-32-2

CCT244747 Cayman chemicals CAS N� 1404095-34-6

PF-477736 Cayman chemicals CAS N� 952021-60-2

BMS-265246 Cayman chemicals CAS N� 582315-72-8

Irinotecan Cayman chemicals CAS N� 100286-90-6

SCH772984 Cayman chemicals CAS N� 942183-80-4

Alitretinoin Cayman chemicals CAS N� 5300-03-8

CX-4945 Cayman chemicals CAS N� 1009820-21-6

Phenoxodiol Sigma CAS N�81267-65-4
5Z-7-oxozeaenol Cayman chemicals CAS N� 253863-19-3

Critical Commercial Assays

Caspase-Glo. 3/7 luminescence assay Promega G8090

Cell titer Glo Promega G7570
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REAGENT or RESOURCE SOURCE IDENTIFIER

MTS assay Promega G3582

PTMScan� Asymmetric Di-Methyl Arginine

Motif [adme-R] Kit

Cell Signaling Technologies Kit #13474

PTMScan� Symmetric Di-Methyl Arginine

Motif [sdme-RG] Kit

Cell Signaling Technologies Kit #13563

PTMScan Mono-Methyl Arginine

13 Motif [mme-RG] Kit

Cell Signaling Technologies Kit #12235

Deposited Data

RNA-seq data This paper GEO: GSE123774

MS-proteomics data This paper PRIDE: PXD012007

Experimental Models: Cell Lines

Human: K562 cells ATCC CLL-243

Human: THP1 cells ATCC TIB-202

Human: MOLM13 cells DSMZ ACC 554

Human: U937 cells ATCC CRL-1593.2

Human: K562 SRSF2P95H/WT knockin cells Horizon Discovery N/A

Human: K562 SF3B1K700E/WT knockin cells Horizon Discovery N/A

Human: TF1 cells ATCC CRL-2003

Human: OCI-AML5 cells DSMZ ACC 247

Human: F-36P cells DSMZ ACC 543

Human: GDM-1 cells ATCC CRL-2627

Human: KO52 cells JCRB CVCL-1321

Human: HNT34 cells DSMZ ACC 600

Human: MonoMac6 cells DSMZ ACC 124

Human: 5-16 Cre20 (SRSF2 P95L) (Chang et al., 2018) N/A

Human: N-2.12 (isogenic normal) (Chang et al., 2018) N/A

Experimental Models: Organisms/Strains

Mice: Srsf2P95H/+ (Kim et al., 2015). N/A

Mice: MLL-AF9/Vav-cre Srsf2WT/WT (Kim et al., 2015). N/A

Mice: MLL-AF9/Vav-cre Srsf2P95H/WT (Kim et al., 2015). N/A

Mice: Vav-cre transgenic mice (B6.Cg-

Tg(Vav1-icre)A2Kio/J)

The Jackson Laboratory JAX: 008610

Oligonucleotides

Human EZH2 F (Lee et al., 2016) TTTCATGCAACACCCAACACT

Human EZH2 R (Lee et al., 2016) CCCTGCTTCCCTATCACTGT

Human ATF2 F This paper AGTTACATGTGAATTCTGCCAGG

Human ATF2 R This paper CTCAAATGGACTCGCCAACTC

Human INTS3 F This paper ATGCCAAGCTGGCTTTGTTTT

Human INTS3 R This paper TCCGACATATGGTTGTCCATCTC

Human TRPT1 F This paper GGCCAACCAGGGCCATT

Human TRPT1 R This paper ATCACCAGCCAAGGAAAGGG

Human HDAC7 F This paper GGAAGAATCCACTGCTCCGA

Human HDAC7 R This paper GACTGGGCAAAGTGGAAGGG

Human LEF1 F This paper CCACCCATCCCGAGAACATC

Human LEF1 R This paper AGGCTTCACGTGCATTAGGT

Anti-sense oligonucleotide SCR This paper CGGUGUGUGUAUCAUUCUCUAGUGU

Anti-sense oligonucleotide EZH2 This paper UGAAUCUUCUGUCCAAAAUCCAACAGGCAAUAUA

sgRNA 1 sequence for EZH2 This paper TTATCAGAAGGAAATTTCCG

sgRNA 2 sequence for EZH2 This paper TTATGATGGGAAAGTACACG

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Recombinant DNA

LentiCRISPR v2 N/A Addgene: 52961

Software and Algorithms

Cytoscape 3.4.0 (Shannon et al., 2003) https://cytoscape.org/

Reactome FI (Wu et al., 2014) N/A

pLogo web application (O’Shea et al., 2013) N/A

hmLINKER (Massignani et al., 2019) N/A

hmSEEKER (Massignani et al., 2019) N/A

Prism 7.0 Graphpad https://graphpad.com/

ImageJ NIH https://imagej-nih-gov.libproxy1.nus.edu.sg/ij/

index.html

STAR (Dobin et al., 2013) https://github.com/alexdobin/STAR

HTSeq (Anders et al., 2015) N/A

R R Core Team https://www.r-project.org/

Bioconductor (Huber et al., 2015) N/A

DESeq2 (Love et al., 2014) 10.18129/B9.bioc.DESeq2

rMATS (Shen et al., 2014) http://rnaseq-mats.sourceforge.net/

ggsashimi (Garrido-Martı́n et al., 2018) https://github.com/guigolab/ggsashimi
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Ernesto

Guccione (eguccione@imcb.a-star.edu.sg; Ernesto.guccione@mssm.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines and Cell Culture
Primary murine MLL-AF9 leukemia cell lines were generated from bone marrow cells of leukemia-bearing mice and maintained in

IMDM/15% FCS supplemented with L-glutamine, murine-SCF (25 ng/mL), murine-IL3 (10 ng/mL) and murine-IL6 (10 ng/mL).

K562 isogenic cell lines (engineered to express SRSF2P95H or SF3B1K700E mutations from each respective endogenous locus

from Horizon Discovery Inc.) were cultured in IMDM/10% FBS. THP-1, U937, MOLM13, KO52, GDM-1 and HNT34 cell lines were

cultured in RPMI/10% FBS. TF1 cells were cultured in RMPI/10% FBS/ 2 ng/ml recombinant human GM-CSF. OCI-AML5 and

F-36p cells were cultured in RPMI/10% FBS/ 10 ng/ml recombinant human GM-CSF. MonoMac 6 cells were cultured in RPMI/

10% FBS/10 mg/ml recombinant human insulin. HEK293T cells were grown in DMEM medium with 10% FBS. The iPSC lines 5-16

Cre20 (SRSF2 P95L) and N-2.12 (isogenic normal) (Chang et al., 2018) were differentiated along the hematopoietic lineage as pre-

viously described (Kotini et al., 2017). To induce reprogramming, 10,000-300,000 cells were plated on retronectin-coated 24-well

dishes and transduced with the OKMS lentiviral vector CMV-fSV2A (Kotini et al., 2015). The cells were harvested one or two days

later and plated on mitotically inactivated MEFs in 6-well plates and centrifuged at 500 rpm for 30 min at RT. The following day

and every day thereafter, half of the medium was gently changed to hESC medium with 0.5 mM valproic acid (VPA). In the first

10 days, cells contained in the removed medium were collected by centrifugation and placed back in their original wells. After

3-4 weeks, manually picked colonies with hPSC morphology were expanded. iPSCs were cultured on mitotically inactivated

MEFs or in feeder-free conditions on Matrigel with hESC media supplemented with 6 ng/ml FGF2. Primary human AML patient sam-

ple cells were grown in Iscove’s Modified Dulbecco’s Medium (IMDM), 20% bovine serum albumin, insulin, and transferrin (BIT) 9500

serum substitute, 16.7 mg/ml human low-density lipoproteins, 55 mM beta-mercaptoethanol with recombinant human (rh) G-CSF

(20 ng/ml), rhGM-CSF (20 ng/ml), rh IL3 (20 ng/ml), rh IL6 (20 ng/ml), rh FLT3 ligand (50 ng/ml) and rh SCF (50 ng/mL).

Primary Human Samples
Studies were approved by the Institutional Review Boards of the University Health Network, Weill Cornell College of Medicine, and

Memorial Sloan Kettering Cancer Center. Studies were conducted in accordance to the Declaration of Helsinki protocol. De-identi-

fied primary human AML samples derived from whole peripheral blood or BM mononuclear cells were utilized. The MSK-IMPACT

assay was used to perform mutational genotyping of samples, as described previously (Cheng et al., 2015; Zehir et al., 2017).

Cord blood was acquired from NY Blood Bank. Informed consent was obtained from all subjects to use the specimens described
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in this study. Specimens were obtained as part of the Memorial Sloan- Kettering Cancer Center Institutional Review Board approved

clinical protocol #06-107 to which all subjects consented. O.A-W is a participating investigator on this protocol.

Animals
6-8 weeks old C57BL/6 mice were purchased from InVivos. Mice were maintained in individual ventilated cages and fed with auto-

claved food and water in the Biological Resource Center, A*STAR Singapore. 10 week-old NSG-SGM3 (NSGS) female mice were

purchased from Jackson Laboratory. Mice were maintained in individual ventilated cages and fed with autoclaved food and water

in Memorial Sloan Kettering Cancer Center. All animal experiments were conducted in accordance to approved protocols from Insti-

tutional Animal Care and Use Committees of Institute of Molecular and Cell Biology (IMCB), A*STAR and Memorial Sloan Kettering

Cancer Center. Kaplan-Meier survival curves were compared using the Mantel-Cox Log-rank test via Graphpad Prism 7.

METHOD DETAILS

Identification of Druggable Targets in the Extended Splicing Network
A list of genes belonging to the Gene Ontology (GO) category GO_SPLICEOSOMAL_ SNRNP_ ASSEMBLY was derived from the

Gene Set Enrichment Analysis (GSEA) website (Subramanian et al., 2005). We uploaded this list on the CBIO portal website (Cerami

et al., 2012) and selected as a query ‘‘Acute Myeloid Leukemia, TCGA’’ study (Cerami et al., 2012; Gao et al., 2013; Ley et al., 2013).

The network tab provided a list of neighboring genes (sif file). This network comprises the nearest neighbors of a given physical entity

(e.g. gene, protein or small molecule). The following rules govern the construction of the neighborhood: 1) if A is part of a [complex]

(A:B), (A:B) is included in the neighborhood, but none of the interactions involving (A:B) are included. 2) if A is a [CONTROLLER] for a

[control] interaction, the reaction that is [CONTROLLED] (and all the participants in that reaction) are included in the neighborhood. 3)

if A participates in a [conversion] reaction, and this reaction is [CONTROLLED] by another interaction, the [control] interaction (plus its

[CONTROLLER]) are included in the neighborhood. The sif file was then imported into Cytoscape 3.4.0(Shannon et al., 2003) to visu-

alize molecular interaction networks and integrate the data with gene expression profiles and other state data. We next created a

network of functional interacting genes using the application ‘Reactome FI’.(Wu et al., 2014) The list of genes belonging to the

extended splicing network was manually curated to identify druggable targets. We used www.drugbank.ca and www.

chemicalprobes.org to identify the inhibitors of the druggable genes.

Animal Studies
In leukemia transplant experiments, mice were monitored daily for any sign of distress and leukemia development. The number of

mice chosen in each experiment was chosen to give 90% statistical power with a 5% error level given the differences in standard

deviation that was observed in the pilot study. Generation and genotyping of the Srsf2P95H/+ conditional knock-in mice as well as

MLL-AF9/Vav-cre Srsf2WT/WT (referred to Srsf2WT throughout the text) and MLL-AF9/Vav-cre Srsf2P95H/WT (referred to Srsf2P95H

throughout the text), all on C57BL/6 backgrounds, are as previously described (Kim et al., 2015). Briefly, Vav-Cre+Srsf2 WT/WT and

Vav-Cre+Srsf2P95H/WT mice were treated with a single dose 5-fluorouracil (150 mg/kg) and bone marrow were harvested 6 days later.

The red blood cells from the bone marrow were lysed by ammonium-chloride potassium bicarbonate lysis buffer (ACK lysis buffer).

The bone marrow cells were then transduced with viral supernatant containing the murine stem cell virus (MSCV)-driven MLL-AF9

fusion oncogene with an internal ribosomal entry site to express a GFP tag (MSCV-MLL-AF9-IRES-GFP) for 2 days in Iscove’s modi-

fied Dulbecco’s medium (IMDM) containing 15% fetal bovine serum (FCS) and supplemented with mouse stem cell factor (mSCF)

(25 ng/ml), mouse interleukin-6 (10 ng/ml) and mouse interleukin-3 (10 ng/ml). Thereafter, lethally irradiated (9.5 Gy) C57BL6/J

mice are injected with�400,000 cells via tail vein injection to generate primary leukemias. All in vivo drug experiments were conduct-

ed as secondary leukemia transplants whereby 6-8 week old C57BL6/J mice are sublethally irradiated (5 Gy) and injected with

250,000 MLL-AF9 leukemia cells collected from moribund mice with leukemia (Lee et al., 2016).

AML PDXs were generated from patient peripheral blood and/or bone marrow mononuclear cells and subsequently transplanted

intrafemorally into 10 week-old NSG-SGM3 (NSGS) female mice (Jackson Laboratory). Once human CD45 chimerism was >25% of

the bone marrow, NSGS mice were eventually treated with 60 mg/kg MS023 and 150 mg/kg EPZ015666 for 6 weeks.

In Vitro Drug Screen with Murine MLL-AF9 Cells
Both MLL-AF9/Vav-cre Srsf2WT and MLL-AF9/Vav-cre Srsf2P95H cells were seeded at 900 cells/well in 384 well plate. Cells were

treated with indicated drugs for 7 days over various concentrations (see Table S1). Cell viability was measured using MTS or Cell

TiterGlo assay (Promega) as per manufacturer’s instructions and values were normalized to DMSO controls.

In Vitro Drug Titration with Murine MLL-AF9 Cells
All cell lines were seeded in white flat-well 96 well plates (Costar) at 1000cells/well unless otherwise indicated. For murineMLL-AF9

cell lines single drug titration experiments, cells were exposed to MS023 from a range of 0-5 mM, to GSK591 from a range of 0-5 mM

and to E7107 from a range of 0-1 mM for seven days. FormurineMLL-AF9 cell lines combination drug titration experiments, cells were

exposed to MS023 from a range of 0-5 mM, to GSK591 from a range of 0-0.5 mM and to E7107 from a range of 0-0.05 mM for seven

days. Cell viability read-out was performed using the Cell-titre glo assay (Promega) as per manufacturer’s instructions and normal-

ized to DMSO controls.
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In Vitro Drug Treatment with Primary Human AML Patient Samples
Primary AML cells with SFmutation (n=16) or wild-type for SF (n=16) were incubated with DMSO or GSK591 (0.5 mM) for 6 days. Cells

were grown in Iscove’s Modified Dulbecco’s Medium (IMDM), 20% bovine serum albumin, insulin, and transferrin (BIT) 9500 serum

substitute, 16.7 mg/ml human low-density lipoproteins, 55 mMbeta-mercaptoethanol with recombinant human (rh) G-CSF (20 ng/ml),

rhGM-CSF (20 ng/ml), rh IL3 (20 ng/ml), rh IL6 (20 ng/ml), rh FLT3 ligand (50 ng/ml) and rh SCF (50 ng/mL). Following the 6-day in-

cubation period, cells were subjected to flow cytometry to detect 7-AAD negative, and YO-PRO1 negative, viable cells. Samples

were prepared in 4-6 replicates and averages were calculated. Relative viable cell numbers were compared with Welch’s t test.

In Vitro Combination Drug Titration with Primary Human AML Patient Samples
Patient cells derived from either bone marrow or peripheral blood were thawed and allowed to grow for a minimum of three days on

OP9 stroma in 6-well tissue culture plates (Greiner) topping up with fresh media and putting cells onto fresh OP9 as necessary. Pa-

tient cells were cultured in IMDM media (Gibco) with 2 mM L-glutamine, 10% FBS (Wisent), 55 mM b-mercaptoethanol (Gibco),

100 mg/mL Primocin (InvivoGen), 100 ng/mL SCF, 50 ng/mL FLT3L, 40 ng/mL THPO, 20 ng/mL IL3, and 20 ng/mL GM-CSF (Shenan-

doah Biotech or Custom Biologics). Leukemic cells were transferred to GFP labelled OP9 cells in 96-well plates for drug titration at a

density of either 25000 or 50000 cells per well in 100 mL media. An additional 100 mL of media with drug was added at day 3-4. Cells

were exposed to MS023 from a range of 0-10 mM and to GSK591 from a range of 0-3 mM for six days.

Viable cell number was assessed at day 6. Cells were transferred to 96-well roundwell suspension plate (Starstedt) along with tryp-

sinized (30uL 0.25% Trypsin-EDTA; Wisent) OP9 stroma and attached leukemic cells. Cells were resuspended in PBS (Wisent) with

2% FBS with 0.2 mM Sytox Blue (Life Technologies) viability dye. Flow cytometry was performed using MACSQuant VYB (Miltenyi),

and MACSQuantify software was used to determine viable leukemic cell number (GFP negative, Sytox blue negative).

OP9 mouse stromal cells (ATCC) were grown in a-MEM media without nucleosides that contains GlutaMAX (Gibco), 20% fetal

bovine serum (FBS, Wisent), 55 mM b-mercaptoethanol (Gibco) and 100U/100 mg/mL penicillin/streptomycin (Gibco) at 37�C/5%
CO2. OP9 cells were transduced with GFP lentivirus and sorted for GFP positive cells to use in assays to test the effect of the drugs

on leukemic blasts. GFP positive cells were seeded at 5000-10000 cells/well in 96-well plates (Greiner) and used 1-3 days later for

leukemic cell assays.

In Vitro Cell Viability Assays with Human Cell Lines
Cells were treated in duplicated with a 20-point, two-fold dilution series of GSK3203591 (PRMT5 inhibitor) or GSK3368712 (Type I

PRMT inhibitor). Cells were treated with drugs for six days and cell growth was measured using Cell-titre glo (Promega).

A plate of untreated cells was read at the time of compound addition to determine the T=0 value representing the starting number of

cells. Data were fitted with a four-parameter equation to generate a concentration response curve. Growth inhibition is the percent

maximal inhibition and was calculated as 100-((ymin-100)/(ymax-100)*100). Ymin-T0 values were calculated by subtracting the T0

value (100%) from the Ymin value on the curve, and are a measure of net population cell growth or death. Growth Death Index

(GDI) is a composite representation of Ymin-T0 and percent maximal inhibition. If Ymin-T0 values are negative, then GDI equals

Ymin-T0; otherwise, GDI represents the fraction of cells remaining relative to DMSO control (ymax) and (ymin): (ymin-100)/(ymax-

100)*100).

Treatment of iPSC-derived Hematopoietic Progenitor Cells with PRMT Inhibitors
The iPSC lines 5-16 Cre20 (SRSF2 P95L) and N-2.12 (isogenic normal) (Chang et al., 2018) were differentiated along the hematopoi-

etic lineage as previously described (Kotini et al., 2017). 250.000 single cells from day 12 of hematopoietic differentiation were plated

in 24-well ultra-low attachment plates. MS023 and GSK591 inhibitors or DMSO were added on days 12 and 17 of hematopoietic

differentiation culture at a concentration of 350 nM. Live cells were quantified by counting in a hemocytometer 10 days after the

beginning of treatment (day 22 of differentiation culture).

Pharmacokinetic Studies of MS023 In Vivo

Male Swiss Albino mice at Sai Life Sciences were administered a single 80 mg/kg intraperitoneal (IP) injection (n=3) or a single oral

150 mg/kg dose of MS023 (n=3). Plasma concentrations of MS023 were then evaluated at 0.083, 0.25, 0.5, 1, 2, 4, 8, and 12 hr post

dosing.

Administration of PRMT Inhibitors In Vivo

For in vivo drug sensitivity studies, 8 mg (80 mg/kg dose) or 6 mg (60 mg/kg dose) of MS023 was dissolved in 50 mL N-Methyl-2-pyr-

rolidone, 200 mL Captisol, 200 mL polyethylene glycol 400 and 550 mL PBS and administered via IP injection once per day. 20 mg/ml

(200 mg/kg dose) or 15 mg/ml (150 mg/kg dose) of EPZ015666 was reconstituted in 0.5%methylcellulose and administered to each

mouse via oral gavage route once per day. To generate leukemia in C57BL6 mice (6-10 weeks old), the mice were sublethally irra-

diated at 5 Gy total body g irradiation, and tail vein injected with 250,000 primaryMLL-AF9 leukemic cells. (Lee et al., 2016). In single

drug administration experiment, 80 mg/kg MS023 or 200 mg/kg EPZ015666 was administered from Day 8 of experiment till mice are

moribund. In combinatorial drug administration experiment, 60 mg/kgMS023 and 150mg/kg EPZ015666 were administered daily to

the mice from Day 8 of experiment for 10 days.
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Western Blotting
Protein concentrations were determined using RC DC protein assay kit from Bio-Rad. Proteins were run on 8-15% gels and sepa-

rated with SDS-PAGE. The membranes were blotted with the primary antibodies, anti-actin (Santa Cruz) at 1:1000, anti-PRMT5

(Abcam) at 1:1000, anti-PRMT1 (Cell signaling) at 1:1000, anti-SDMA (Cell signaling) at 1:1000, anti-ADMA (Cell signaling) at

1:1000, anti-MMA (Cell signaling) at 1:1000, anti-EZH2 (Cell signaling) at 1:1000 and anti-gH2Ax (Cell signaling) at 1:1000. Blots

were incubated with primary antibodies overnight at 4�C. The next day, blots were washed in TBST, incubated with HRP-conjugated

secondary antibodies for 1 hr and visualised on X-ray films with West Pico Chemiluminescent Substrate.

RNA-seq Sample Preparation
RNA was extracted from all human and mouse cell samples using RNeasy mini kit (Qiagen) as per manufacturers instructions.

Poly(A)-selected, unstranded Illumina libraries were prepared with a modified TruSeq protocol. 0.5X AMPure XP beads were added

to the sample library to select for fragments <400 bp, followed by 1X beads to select for fragments >100 bp. These fragments were

then amplified with PCR (15 cycles) and separated by gel electrophoresis (2% agarose). 300 bp DNA fragments were isolated and

sequenced on the Illumina HiSeq 2000 (�100 million 101 bp reads per sample).

Arginine Methyl-Peptides Separation and Enrichment Prior to LC-MS/MS Analysis
NB4 cells were treated for 3 days with MS023 (3 mM) or GSK591 (1 mM). Equal numbers of Light and Heavy-labelled NB4 cells differ-

entially treated were mixed in a 1:1 ratio, pelleted and washed twice with PBS. Cell pellets were lysed in urea lysis buffer (9 M urea,

20 mM HEPES pH 8.0), supplemented with 1X Roche proteases and phosphatases inhibitors, sonicated and cleared by ultracentri-

fugation (20.000 x g for 15 min at 15�C). For in-solution digestion, 50 mg of proteins were reduced by adding 4.5 mM DTT (Sigma-

Aldrich) for 30 min at 55�C, alkylated with 5.5 mM iodoacetamide (IAA: 10% v/v for 15 min at room temperature in the dark, Sigma

Aldrich) and digested overnight with sequencing-grade trypsin (1:100 w/w, Promega), after a fourfold dilution in 25 mM ammonium

bicarbonate solution. Protease digestion was terminated with the addition of trifluoroacetic acid (TFA) to adjust pH < 3. Precipitated

material was removed by centrifugation for 15 min at 17803 g at room temperature. Soluble peptides were purified using reversed-

phase Sep-Pak C18 cartridges (Waters, Milford, MA) and eluted off the Sep-Pak with 40% can, followed by a step of acetonitrile

removal and concentration through 48 hours of lyophilization. Lyophilized peptides were dissolved in 25 mM ammonium hydroxide

(NH4OH) and subsequently off-line fractionated by High-pH (HpH) reversed-phased chromatographic separation using a Phenom-

enex Jupiter� C12 4 mm Proteo 90 Å, LC column 250 x 4.6 mm, on an ÄKTA-FPLC (fast protein liquid chromatography) system (GE

Healthcare) operating at 1 ml/min. Buffer A was 25 mM NH4OH and Buffer B was 25 mM NH4OH in 90% ACN. Fractions were

collected using a collector in a 96-deep well plate at 1-min intervals. Samples were initially loaded onto the column at 1 ml/min

for 3 min, after which the fractionation gradient was as follows: 5% B to 30% B in 60 min, 30% B to 60% in 2 min and ramped to

70% B for 3 min. Then, fraction collection was halted and the gradient was held at 100% B for 5 min, before being ramped back

to 5% B, when the column was washed. The 60 fractions collected were concatenated to 14 throughout each experiment. After lyo-

philisation, each concatenated fraction was dissolved in 250 ml of 1x immuno-Affinity Purification Buffer (IAP buffer, #9993, Cell

Signaling Technologies, CST) and subjected to two consecutive steps of methyl-R-peptides enrichment using the SDMA anti-

body-conjugated beads (PTMScan [sdme-R] Kit #13563, Cell Signaling Technologies) and the MMA antibody-conjugated beads

(PTMScan Mono-Methyl Arginine Motif [mme-RG] Kit #12235, Cell Signaling Technologies), following the manufacturer’s instruc-

tions. For the MS023 experiments, ADMA-bearing peptides were also enriched using the specific PTMScan kit #13474, starting

from the same amount of desalted and lyophilized peptides. After peptides incubationwith the antibody conjugated beads for 2 hours

at 4�C, the immuno-precipitates were washed twice in ice-cold IAP buffer, followed by three washes in water; then, the bound

methyl-peptides were eluted with two consecutive runs of elution in 50 ml 0.15% TFA. Peptide eluates were desalted on

reversed-phase C18 StageTips, as described previously (Rappsilber et al., 2007) and subjected to a second round of trypsin diges-

tion prior to nano-LC-MS/MS analysis.

Nano-LC-MS/MS Analysis
Peptide mixtures were analysed by online nano-flow liquid chromatography tandemmass spectrometry using an EASY-nLC� 1000

(Thermo Fisher Scientific, Odense, Denmark) connected to a Q-Exactive instrument (Thermo Fisher Scientific) through a nano-elec-

trospray ion source. The nano-LC system was operated in one column set-up with a 50 cm analytical column (75 mm inner diameter,

350 mm outer diameter) packed with C18 resin (EasySpray PEPMAP RSLC C18 2M 50 cm x 75 M, Thermo Fisher Scientific) config-

uration. Solvent A was 0.1% formic acid (FA) and solvent B was 0.1% FA in 80% ACN. Samples were injected in an aqueous 0.1%

TFA solution at a flow rate of 500 nL/min. SILAC immuno-enrichedmethyl-peptides were separated with a gradient of 5–40% solvent

B over 90 min followed by a gradient of 40–60% for 10min and 60–80% over 5 min at a flow rate of 250 nL/min in the EASY-nLC 1000

system.

The Q-Exactive was operated in the data-dependent mode (DDA) to automatically switch between full scan MS andMSMS acqui-

sition. Survey full scan MS spectra (from m/z 300-1150) were analysed in the Orbitrap detector with resolution R=35,000 at m/z 400.

The tenmost intense peptide ionswith charge statesR2were sequentially isolated to a target value of 3e6 and fragmented by Higher

Energy Collision Dissociation (HCD) with a normalized collision energy setting of 25%. The maximum allowed ion accumulation

times were 20 ms for full scans and 50ms for MSMS and the target value for MSMS was set to 1e6. The dynamic exclusion time

was set to 20 s.
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Validation of RNAseq
Primers were designed to flank the exon of interest for validation of cassette exon events. cDNA is synthesized using theMaxima first

strand cDNA synthesis kit (ThermoFisher Scientific). The PCR cycling conditions to amplify the alternatively spliced transcripts are as

follows: 95�C for 5 min, 28 cycles of 95�C for 45 s, 58�C for 30 s and 72�C for 1 min, followed by 72�C for 5 min.

The primers used to validate the splicing events are as follows:

EZH2

Forward primer: TTTCATGCAACACCCAACACT

Reverse primer: CCCTGCTTCCCTATCACTGT

ATF2

Forward primer: AGTTACATGTGAATTCTGCCAGG

Reverse primer: CTCAAATGGACTCGCCAACTC

INTS3

Forward primer: ATGCCAAGCTGGCTTTGTTTT

Reverse primer: TCCGACATATGGTTGTCCATCTC

HDAC7

Forward primer: GGAAGAATCCACTGCTCCGA

Reverse primer: GACTGGGCAAAGTGGAAGGG

TRPT1

Forward primer: GGCCAACCAGGGCCATT

Reverse primer: ATCACCAGCCAAGGAAAGGG

LEF1

Forward primer: CCACCCATCCCGAGAACATC

Reverse primer: AGGCTTCACGTGCATTAGGT

AON Electroporation
K562 cells were transiently transfected with antisense oligonucleotides using the BTX Gemini X2 electroporation system. Cells were

resuspended in cytoporation medium T (BTX #47-0002) at a density of 2x107 cells/ml with 10 mMof AON. Thereafter, cells were elec-

troporated at 250 V x 10 ms X 1 pulse and plated onto fresh medium (3 ml medium per 100 mL electroporated cells). At 48 hours after

electroporation, cells were collected for RNA, protein and cell viability readout using Cell-titre Glo (Promega).

AON sequence:

SCR: CGGUGUGUGUAUCAUUCUCUAGUGU

EZH2 (1042): UGAAUCUUCUGUCCAAAAUCCAACAGGCAAUAUA

CRISPR/Cas9 Knockout of EZH2 in K562 Cells
Guide RNA (gRNA) sequences were cloned into a lentiCRISPR V2 vector (Addgene) at the BsmBI restriction site.

Target sequences are

gRNA1: TTATCAGAAGGAAATTTCCG

gRNA 2: TTATGATGGGAAAGTACACG

To generate lentivirus, 293T cells were transfected using Lipofectamine 3000 (Thermo Fisher Scientific) according to the manufac-

turer’s protocol. Virus was collected at 48 and 72 hours post transfection, concentrated with Lenti-X concentrator (Takara), and ti-

tered using Lenti-X GoStix (Takara). 1x106 K562 cells were spinoculated with virus (MOI of 3 and 5 mg/ml polybrene) for 1 hour at

2400 rpm and 37�C in non-tissue culture treated plates. Two days post-infection, cells were selected with 5 mg/ml puromycin for

four days before starting experiments.

QUANTIFICATION AND STATISTICAL ANALYSIS

Computation of the Combination Index
The presence of synergistic or additive effects was determined following the theorem of Chou-Talalay (Chou, 2010). The resulting

combination index (CI) offers quantitative definition for additive effect (CI = 1), synergism (CI < 1), and antagonism (CI > 1) in drug

combinations.

RNA-Sequencing and Bioinformatics Analysis
Library preparation was performed following the TruSeq RNA Sample preparation v2 guide (Illumina). In brief, the sequenced reads

weremapped tomm9 build of themouse genome or hg19 build of the human genome using STAR version 2.4.2a. Differential expres-

sion analysis was performed using the edgeR package in R. Enriched Gene Ontology terms and KEGG pathways were identified us-

ingMetascape. Heatmaps of gene expressions (FPKM) were generated with in-house scripts with R. Alternative splicing analysis was

done using rMATS version 4.0.1 with annotation versions Ensembl.NCBIM37v65 for mouse and Ensembl.GRCh37v72 for human.

Significant alternative splicing events were defined at FDR=0.05 and inclusion level difference of 10%.
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Replicates
RNA-Seq was conducted with 3-5 biological replicates from each group. Genetic phenotyping experiments were replicated three

times independently. For in vivo experiments, the number of animals was chosen to ensure 90% power with 5% error based on

observed standard deviation. Flow cytometric experiments were replicated independently two-three times. Pilot studies were con-

ducted with drug studies and results were replicated in a larger study to achieve enough statistical power. In vitro experiments were

replicated two-three times, with viability experiments being completed in triplicate.

Data Analysis of SILAC Arginine Methyl-Peptides
Acquired raw data were analysed using the integrated MaxQuant software v1.3.0.5 or v.1.5.2.8, using the Andromeda search engine

(Cox and Mann, 2008). In MaxQuant, the estimated false discovery rate (FDR) of all peptide identifications was set to a maximum of

1%. The main search was performed with a mass tolerance of 7 ppm. Enzyme specificity was set to Trypsin/P. A maximum of 3

missed cleavages was permitted, and the minimum peptide length was fixed at 7 amino acids. Carbamidomethylation of Cysteine

was set as a fixed modification. The January 2016 version of the Uniprot sequence was used for peptide identification.

To assign and quantify SILAC methyl-peptides, each raw file was analysed with the following set of variable modifications: N-ter-

minal acetylation, Methionine oxidation, mono-methyl-K/R and di-methyl-K/R. The MaxQuant evidence.txt output file was then

filtered as follows: potential contaminants and reverse sequences were removed; methyl-peptides not fulfilling the quality criteria

of Andromeda score R 25 and PTM localization probability R 0.50 were also removed. For the methyl-peptides quantified more

than once, the median SILAC ratio was calculated. Finally, methyl-peptide SILAC ratios were normalised on the respective protein

SILAC ratios extracted from the proteinGroups.txt MaxQuant output file. These were calculated using unmodified peptides in the

‘‘input’’ experiment. To define significantly up- or down-regulated methyl-peptides by GSK591, we used mean (m) and standard de-

viation (s), based on the distribution of the unmodified peptide SILAC ratios calculated separately in the forward and reverse exper-

iments and we applied a m ± 3s cut-off to the distributions of the modified peptides of the respective replicate (see Table S4).

HmSEEKER: A Perl-Based Pipeline for High-Confidence Assignment of Methyl-Peptides from hmSILAC Data
To assign hmSILAC peptide sequences, we defined new modifications in MaxQuant with the mass increment and residue specific-

ities corresponding to heavy mono-methylation (mono-methyl4-K/R) and di-methylation (di-methyl4-K/R). Additionally, we defined

new modifications for heavy methionine (Met4) and oxidized heavy methionine (OxMet4). To reduce the search complexity, raw

data were analysed twice with the following sets of variable modifications: (ii) N-terminal acetylation, Met4, OxMet4, oxidation,

mono-methyl-K/R, mono-methyl4-K/R; (ii) N-terminal acetylation, Met4, OxMet4, oxidation, di-methyl-K/R, di-methyl4-K/R.

Identification of high confidence methyl-sites was carried out with an in-house developed, Perl-based pipeline, named

hmSEEKER, which identifies doublets of heavy and light hmSILAC peptides from MaxQuant output tables (Massignani et al.,

2019). hmSEEKER performs the following steps: methyl-peptides identified in the msms file are first filtered to remove: (i) all contam-

inants and decoy peptides, (ii) all peptides with single charge and (iii) all peptides bearing simultaneous heavy and light modifications.

Then each peptide is associated to its corresponding MS1 peak in the allPeptides file. Finally, the H or L counterpart of each peak is

searched among other peaks detected in the same raw data file. Because the pair is searched in msmsScans, hmSEEKER enables

the identification of peptide doublets even when one of the two counterparts has not been MS/MS sequenced, thus not appearing in

the msms file. We used hmSEEKER to automatically filter the MaxQuant msms.txt file and remove contaminants and reverse

sequences, as well as peptides carrying simultaneously light and heavy modifications. To increase the confidence of our findings,

remaining peptides were further filtered to remove any peptide with Andromeda score < 25 or Andromeda delta score < 12 and

any methylation with a PTM localization probability < 0.75. Heavy and light methyl-peptide pairs were accepted when the difference

between calculated and expected mass shift was < 2 ppm and the difference between their retention times was < 30 s.

Use of hmLINKER to Intersect the SILAC Methyl-proteome with the hmSILAC Dataset
Validation of the methylated peptide identified in the SILAC experiments through the hmSILAC identifications was achieved by using

hmLINKER, another in-house developed bioinformatic tool that compares the sequences of the peptides in the SILAC dataset to

those in the hmSILAC repository (hmSEEKER output). If a match is not found at the sequence level, the peptide is not immediately

discarded, but a second round of match-attempt is performed using a 31 amino acids sequence window, centered on each modi-

fication site

Motif Analysis of R Methyl-Peptides
Motif analysis of R methyl-sites was performed using the pLogo web application (O’Shea et al., 2013), which allows the visualization

of significant enrichment variations between the set of GSK591-regulated sequences and the unchangingmethyl-peptides used as a

background set. p value threshold was set to 0.05.

Bioinformatic Analysis of R Methyl-Peptides
Motif analysis of changing methyl-sites was performed using the pLogo web application (O’Shea et al., 2013), which allows the visu-

alization of significant enrichment variations between the set of drug-regulated sequences and the unchangingmethyl-peptides used
Cancer Cell 36, 194–209.e1–e9, August 12, 2019 e8



as a background set. P value threshold was set to 0.05. Networks on regulated methyl-proteins were built with the Reactome

application of Cytoscape (Fabregat et al., 2018; Shannon et al., 2003) .The Gene Ontology analysis was carried out with GOrilla

(Eden et al., 2009) and Revigo (Supek et al., 2011).

Calculation of the Protein Abundance Index in the Annotated Proteome
We matched the methylated proteins identified via the immuno-enrichment approach with their respective protein, annotated in the

whole proteome, which was used ad INPUT for the methyl-peptides IP. To calculate the abundance index of each protein in this pro-

teome, we employed the iBAQ algorithm (Intensity-Based Absolute Quantification (Schwanhausser et al., 2011), embedded in the

MaxQuant suit.

Statistical Analyses
Statistical significance was determined by unpaired Student’s t-test after testing for normal distribution unless indicated otherwise.

The Mantel-Cox log-rank test was used to compare survival curves. P values of < 0.05 were considered statistically significant.

Data were plotted using GraphPad Prism 7 software as mean values and error bars represent standard deviation. Asterisks indicate

* p = 0.01-0.05; ** p = 0.001-0.01, *** p = 0.0001-0.001, **** p <0.0001.

DATA AND CODE AVAILABILITY

The accession number for the RNA-seq data reported in this paper is GEO:GSE123774.

The accession number for the MS-proteomics data have been deposited in the ProteomeXchange Consortium via the PRIDE (Viz-

caino et al., 2016) partner repository with the dataset identifier PRIDE: PXD012007.
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Figure S1. Effects of PRMT5 and type I PRMT inhibit on arginine methylation levels, 
Related to Figure 2. (A) Quantification of caspase-3/7 cleavage using a Caspase-Glo® 3/7 

luminescence assay in MLL-AF9/Vav-cre Srsf2WT and MLL-AF9/Vav-cre Srsf2P95H 

upon exposure to GSK591 (left) or MS023 (right) normalized to cell viability readout from 

Cell-titre glo assay. (B-C) Western blot of actin, SDMA, PRMT5, ADMA, PRMT1 in MLL-AF9/

Vav-cre Srsf2WT and MLL-AF9/Vav-cre Srsf2P95H treated with increasing concentrations of 
(B) GSK591 or (C) MS023 (or indicated controls: SGC2096a for GSK591 or MS094 for 

MS023). (D-E) Growth Death Index (GDI) of human AML cell lines treated for 10 days with 

either GSK591 (D) or Type I PRMT inhibitor, GSK3368712 (E). All error bars represent SD. * 

p= 0.01-0.05; ** p = 0.001-0.01, *** p= 0.0001-0.001, **** p<0.0001 .



250,000  
cells/mouse 

Vehicle 
Srsf2  
Srsf2 P95H

EPZ015666
Srsf2  WT 

Srsf2 P95H

 Srsf2 WT 
Srsf2 P95H  

Primary MLL-AF9  
Leukemia cells 

2o Transplant 

200 mg/kg/day
Oral gavage
treatment
Day 8

Post transplant 

Monitor
Leukemia

Development

1x 5 Gy 

C57BL/6 recipients 
Vehicle 
Srsf2  WT 

Srsf2 P95H

MS023
Srsf2  WT 

Srsf2 P95H

80 mg/kg/day
Intraperitoneal 
(IP) treatment

Day 8
Post transplant 

Monitor
Leukemia

Development

A

ACTIN

PRMT5 

MMA

SDMA 

ADMA 

1     2      3      4     5      6     7     8      9    10  

1 – con/veh 
2 - MS023 (80 mg/kg) + EPZ (200 mg/kg) 
3 – MS023 (80 mg/kg) + EPZ (150 mg/kg) 
4 - MS023 (60 mg/kg) + EPZ (200 mg/kg) 
5 - MS023 (60 mg/kg) + EPZ (150 mg/kg) 
6 – MS023 (60 mg/kg) + EPZ (120 mg/kg) 
7 – MS023 (50 mg/kg) + EPZ (200 mg/kg) 
8 – MS023 (50 mg/kg) + EPZ (150 mg/kg) 
9 – MS023 (40 mg/kg) + EPZ (200 mg/kg) 
10 – con/veh 

DB

Lane Mouse treatment info 

1 Con 

2 MS023 80 mg/kg , single dose per day, treated 5 d, sac 3 h after 5th dose 

3 MS023 80 mg/kg , single dose per day, treated 4 d, sac 24 h after 4th dose 

4 MS023 60 mg/kg , single dose per day, treated 5 d, sac 3 h after 5th dose 

5 MS023 60 mg/kg , single dose per day, treated 4 d, sac 24 h after 4th dose 

6 MS023 50 mg/kg , single dose per day, treated 5 d, sac 3 h after 5th dose 

C
Bone Marrow Spleen Kidney

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
ACTIN

ADMA

25 kDa

50 kDa

40 kDa

25 kDa

50 kDa

75 kDa

40k Da

75 kDa

WT



Figure S2. In vivo evaluations of PRMT inhibitors in mice. Related to Figure 3 and 4. (A) 
Schematic of secondary transplantation experiment to evaluate the efficacy of PRMT5 

inhibition with EPZ015666 or Type I PRMT inhibition with MS023 in vivo. (B) Plasma exposure 

of MS023 in male Swiss Albino mice. Plasma concentrations of MS023 following a single 80 

mg/kg intraperitoneal (IP) injection or 150 mg/kg oral (PO) administration over 12 hours. 

Plasma concentrations of MS023 reported at each of the 6 time points (0.5, 1, 2, 4, 8, and 12 

h post dosing) are the average values from 3 test animals. Error bars represent SD. (C) 
Western blot of ADMA using tissue cells from normal C57BL/6 mice dosed in vivo with control 

vehicle (“con/veh”) or MS023. ADMA: asymmetric dimethyl arginine. (D) Western blot of 

SDMA, ADMA and MMA using splenocytes from normal C57BL/6 mice dosed in vivo with 

control vehicle (“con/veh”) or any of the combined doses of MS023 or EPZ015666 (“EPZ”).  
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Figure S3. In vivo evaluations of PRMT inhibitors in PDX models of AML. Related to 
Figure 5. (A) Schematic of patient-derived xenograft (PDX) experiments using primary AML 

patient samples. SF3B1 wildtype (WT) and SF3B1K700E AML cells were injected

intrafemorally into sub-lethally irradiated (200 Rad) NSGS mice. Following stable 

engraftment of leukemia cells in the bone marrow (indicated by the presence of human 

CD45), mice were subjected to vehicle or combined treatment of MS023 (60 mg/kg/day) and 

EPZ015666 (150 mg/kg/day) for 6 weeks. (B) Western blot analysis of SDMA, ADMA 

and MMA from bone marrow mononuclear cells of NSGS mice after 6 weeks of 

combined EPZ015666 and MS023 treatment. (C) Representative flow cytometry plots of 

human CD45 chimerism in the bone marrow of NSGS mice after 6 weeks of treatment. 
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Figure S4. Inhibition of PRMTs in K562 cells. Related to Figure 5. Western blot showing 

changes in SDMA, ADMA and MMA in K562 cells with MS023 and GSK591 treatment in vitro. 
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Figure S5. Proteomic identification of methyl-arginine substrates in leukemia cells. 
Related to Figure 6. (A) Peptides carrying monomethyl and/or dimethyl arginine identified 

and quantified in cells treated with GSK591 or MS023 (Andromeda score ≥ 25 and PTM 

localization probability ≥ 0.50). (B) Methyl sites identified in cells treated with GSK591 or 

MS023, respectively, divided by methylation degree and regulation state. (C) Pie charts of the 

methyl-peptides responding or not to GSK591 and MS023 which were orthogonally-validated 

by intersection with a high-quality methyl-proteome dataset (Ong et al., 2004) identified 

through the heavy methyl SILAC labeling strategy. (D) iBAQ intensity of the quantified 

methyl-proteins over the whole proteome. (E) iBAQ intensity of the methyl-proteins 

responding to the indicated PRMT inhibitors, over the all quantified methyl-proteins. 
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Figure S6. Validation of splicing events from RNA-seq analysis. Related to Figure 7. (A) 
Venn diagram showing the overlap of cassette exon splicing events in K562 wild-type and 

SRSF2P95H cells upon MS023, GSK591, or combination treatment. (B) Venn diagram 

showing overlap of cassette exon splicing events for K562 wild-type vs SRSF2P95H cells 

upon MS023, GSK591, or combination treatment. (C) Heatmap showing change in PSI of 

cassette exon splicing events normalized to PSI of WT control within the “DNA Repair” GO 

category. (D) RT-PCR and quantification showing validation of cassette exon skipping events 

(ATF2, HDAC7, LEF1, TRPT1, INTS3) identified from RNA-seq analysis of K562 cells 

described in (A). (E) Western blot showing changes in gH2Ax levels upon MS023 and/or 

GSK591 treatment of K562 wild-type and SRSF2P95H in vitro. (F) Sashimi plots of the 

EZH2 poison exon in nine distinct MDS patient samples from (Pellagatti et al., 2018) three of 

which were SRSF2 mutant, SF3B1 mutant, and three lacking any mutation in an RNA 

splicing factor. (G) RT-PCR data showing changes in PSI levels of EZH2 poison exon 

inclusion in K562 cells with or without knockin of SRSF2P95H or SF3B1K700E upon 

MS023 and GSK591 treatment in vitro. All error bars represent SD. * p= 0.01-0.05; ** p 

= 0.001-0.01, *** p= 0.0001-0.001, **** p<0.0001 Student’s t-test used for statistical analysis.
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Figure S7. PRMT5 and type I PRMTs inhibition affects EZH2 splicing. Related to Figure 
7. (A) Sashimi plots and splicing gel showing changes in PSI levels of EZH2 poison exon upon 

MS023 and GSK591 treatment in vitro. (B) Splicing gel showing changes in PSI levels of EZH2 

poison exon upon electroporation of K562 wild-type or SRSF2P95H cells with a 

scrambled (SCR) antisense oligonucleotide (AON) or an AON targeting the poison exon of 

EZH2 (EZH2).(C) Western blot showing changes in EZH2 protein levels upon electroporation 

of K562 cells with AON SCR or AON EZH2. (D) Percentage of viable K562 wild-type or 

SRSF2P95H cells 48 hours after AON electroporation. (E) Percentage of viable K562 wild-

type (left) or SRSF2P95H (right) cells with or without CRISPR/Cas9 knock-out of EZH2 

upon treatment with MS023, GSK591 or combination. Bottom panel: Western blot showing 

EZH2 levels to in cells with and without CRISPR/Cas9 EZH2 knock-out. All EZH2 protein bands 

were quantified using ImageJ, normalized to the actin bands and expressed in levels relative to 

WT EZH2 protein level. All error bars represent SD. * p= 0.01-0.05; ** p = 0.001-0.01, *** 

p= 0.0001-0.001, **** p<0.0001 Student’s t-test used for statistical analysis.
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