

3

Supplementary Fig. 1 qRT-PCR analysis of each *AtCYP72* gene in the 10-day-old seedlings of the corresponding *AtCYP72A*-overexpressing Arabidopsis. Three independent homozygous lines for each *AtCYP72A* gene were analyzed, and *Actin 2* (*At3g18780*) was used as a reference gene in the analysis. The expression level of each *AtCYP72* in WT was set as 1.0. Error bars represent means \pm SDs (*n* = 3 biologically independent samples).

2 Supplementary Fig. 2 Phenotypes of adult plants (8 weeks old) of WT, 72A9-OE2, and ga1-t. Scale bar = 10 cm.

3 This experiment was repeated three times with similar results.

Supplementary Fig. 3 Quantitative RT-PCR (qRT-PCR) analysis of GA metabolism and signaling genes in
WT and *CYP72A9*-OE lines. The plant samples (rosette leaves of 4-week-old Arabidopsis) used here were the
same as those used in Fig. 2c. *At1g13320*, *At4g26410*, and *At5g46630* were used as reference genes in this analysis.
The values are presented as the means ± SDs (n = 3 biologically independent samples). The transcript level of each

- 1 tested gene in WT was set as 1.0. **, P < 0.01 (two-tailed Student's *t*-test), significantly different from wild-type 2 (Col-0).
- A. qRT-PCR analysis of GA biosynthesis genes (GA20ox1, At4G25420; GA20ox2, At5G51810; GA20ox3, At5G07200; GA20ox4, At1G60980; GA3ox1, At1G15550; GA3ox2, At1G80340; GA3ox3, At4G21690; GA3ox4,
- 5 *At1G80330*) in the WT and two *CYP72A9*-OE lines.
- 6 B. qRT-PCR analysis of GA deactivation genes (GA2ox1, At1G78440; GA2ox2, At1G30040; GA2ox3, At2G34555;
- 7 *GA2ox4*, *At1G47990*; *GA2ox6*, *At1G02400*; *GA2ox7*, *At1G50960*; *GA2ox8*, *At4G21200*; *CYP714A1*, *At5G24910*;
- 8 *CYP714A2, At5G24900; GAMT1, At4G26420; GAMT2, At5G56300*) in the WT and two *CYP72A9-OE* lines.
- 9 C. qRT-PCR analysis of GA signaling genes (RGA, At2G01570; GID1a, At3G05120; GID1c, At5G27320) in the
- 10 WT and two *CYP72A9*-OE lines.

Supplementary Fig. 4 Mass spectra (GC-MS) of the trimethylsilyl esters of the chemical standards used in
this study. The *m/z* number used in SIM scanning of different chemicals is marked in red. This experiment was
repeated three times with similar results.

Supplementary Fig. 5 CYP72A9 oxidizes *ent*-kaurenoic acid to produce steviol and *ent*-16β,17- dihydroxy
kaurenoic acid. Chromatogram of selected ions of *m/z* 359 for *ent*-kaurenoic acid, *m/z* 462 for steviol, and *m/z* 449
for *ent*-16β,17- dihydroxy kaurenoic acid (see Supplementary Fig. 4d). It is noteworthy that the *y* axis scale for each
reaction is arbitrary and provided for clarity. This experiment was repeated three times with similar results.

¹

- 2 Supplementary Fig. 6 Characterization of the *CYP72A9* T-DNA insertion mutant.
- **a.** The positions of T-DNA insertions, which are marked on the gene model of *CYP72A9*.
- 4 **b.** Characterization of *cyp72a9-1* at the genomic level. This experiment was repeated two times with similar results.
- 5 c. qRT-PCR analysis of CYP72A9 in the developing seeds/siliques of WT and the cyp72a9-1 mutant. The values are
- 6 presented as the means \pm SDs (n = 3 biologically independent samples).

- 2 Supplementary Fig. 7 *cyp72a9-2* mutant generated via CRISPR/Cas9.
- a. Schematic of the ssDNA template-mediated HDR (homology-directed repair) in *CYP72A9*. The target sequence is
- 4 indicated in blue.

- 5 b. Representative sequences of WT and the *cyp72a9-2* mutant.
- 6 c. The DNA sequencing peaks showed evidence of successful gene editing in the target region of *CYP72A9*. Seven
- 7 deleted base pairs are highlighted by a red line.

1

Supplementary Fig. 8 Quantitative RT-PCR (qRT-PCR) analysis of GA metabolism and signaling genes in
the WT and *cyp72a9* mutants. The plant samples (developing seeds/siliques) used herein were the same as those
used in Fig. 4d. *At1g13320*, *At4g26410*, and *At5g46630* were used as reference genes in this analysis. The values are

- 1 presented as the means \pm SDs (n = 3 biologically independent samples). The transcript level of each tested gene in
- 2 WT was set as 1.0. **, *P* < 0.01 (two-tailed Student's *t*-test), significantly different from wild-type (Col-0).
- 3 A. qRT-PCR analysis of GA biosynthesis genes (GA20ox1, At4G25420; GA20ox2, At5G51810; GA20ox3,
- 4 At5G07200; GA20ox4, At1G60980; GA3ox1, At1G15550; GA3ox2, At1G80340; GA3ox3, At4G21690; GA3ox4,
- 5 *At1G80330*) in WT and *cyp72a9* mutants.
- 6 B. qRT-PCR analysis of GA deactivation genes (GA2ox1, At1G78440; GA2ox2, At1G30040; GA2ox3, At2G34555;
- 7 *GA2ox4*, *At1G47990*; *GA2ox6*, *At1G02400*; *GA2ox7*, *At1G50960*; *GA2ox8*, *At4G21200*; *CYP714A1*, *At5G24910*;
- 8 *CYP714A2, At5G24900; GAMT1, At4G26420; GAMT2, At5G56300*) in WT and *cyp72a9* mutants.
- 9 C. qRT-PCR analysis of GA signaling genes (*RGA, At2G01570; GID1a, At3G05120; GID1c, At5G27320*) in WT
 10 and *cyp72a9* mutants.

2 Supplementary Fig. 9 Biochemical screening of CYP72As using *ent*-kaurenoic acid as substrate.
3 Chromatogram of selected ions of *m/z* 359 for KA, *m/z* 462 for steviol, and *m/z* 449 for *ent*-16β,17-dihydroxy KA. It
4 is noteworthy that the y axis scale for each reaction is arbitrary and provided for clarity, and the steviol peak has

- 1 been amplified by 6 times to allow easier visualization. Control, yeast strain harboring pESC-Leu empty vector. This
- 2 experiment was repeated two times with similar results.

3

Supplementary Fig. 10 Biochemical assays of CYP72A262 from *Brassica rapa*. CYP72A262 converted GA₄, GA₉, and GA₁₂ into GA₁, GA₂₀, and GA₅₃, as verified by comparison to authentic standards. Chromatogram of selected ions of *m*/*z* 546 for GA₁, *m*/*z* 224 for GA₄, *m*/*z* 270 for GA₉, *m*/*z* 358 for GA₁₂, *m*/*z* 476 for GA₂₀, and *m*/*z* 239 for GA₅₃. It is noteworthy that the *y* axis scale for each reaction is arbitrary and provided for clarity and the GA₄ region has been amplified by 20 times to allow easier visualization. Control, yeast strain harboring pESC-Leu empty vector. This experiment was repeated two times with similar results.

2 Supplementary Fig. 11 Biochemical assays of CYP72A484 from Capsella rubella. CYP72A484 converted GA9,

3 and GA_{12} into GA_{20} , and GA_{53} , as verified by comparison to authentic standards. Chromatogram of selected ions of

4 *m/z* 546 for GA₁, *m/z* 224 for GA₄, *m/z* 270 for GA₉, *m/z* 358 for GA₁₂, *m/z* 476 for GA₂₀, and *m/z* 239 for GA₅₃. It is

5 noteworthy that the *y* axis scale for each reaction is arbitrary and provided for clarity. Control, yeast strain harboring

6 pESC-Leu empty vector. This experiment was repeated two times with similar results.

2 Supplementary Fig. 12 Biochemical assays of CYP72A15 from Arabidopsis thaliana.

a. CYP72A15 converted GA₉, and GA₁₂ into GA₂₀ (and an unknown product) and GA₅₃, as verified by comparison
to authentic standards. Chromatogram of selected ions of *m/z* 546 for GA₁, *m/z* 224 for GA₄, *m/z* 270 for GA₉, *m/z*358 for GA₁₂, *m/z* 476 for GA₂₀, and *m/z* 239 for GA₅₃. It is noteworthy that the *y* axis scale for each reaction is
arbitrary and provided for clarity. Control, yeast strain harboring pESC-Leu empty vector. This experiment was
repeated two times with similar results.

b. The mass spectrum of the unknown product generated from GA₉ by CYP72A15.

Supplementary Fig. 13 Biochemical assays of CYP72A135 from *Glycine max*. CYP72A135 converted GA₉, and GA₁₂ into GA₂₀ (and an unknown product) and GA₅₃, as verified by comparison to authentic standards. Chromatogram of selected ions of *m/z* 546 for GA₁, *m/z* 224 for GA₄, *m/z* 270 for GA₉, *m/z* 358 for GA₁₂, *m/z* 476 for GA₂₀, and *m/z* 239 for GA₅₃. It is noteworthy that the *y* axis scale for each reaction is arbitrary and provided for clarity. Control, yeast strain harboring pESC-Leu empty vector. The unknown product (marked by a red arrow) was the same as that shown in Supplementary Fig.12. This experiment was repeated two times with similar results.

Supplementary Fig. 14 Biochemical assays of CYP72A272 from *Brassica rapa*. CYP72A272 converted GA₉,
and GA₁₂ into GA₂₀ and GA₅₃, as verified by comparison to authentic standards. Chromatogram of selected ions of *m/z* 546 for GA₁, *m/z* 224 for GA₄, *m/z* 270 for GA₉, *m/z* 358 for GA₁₂, *m/z* 476 for GA₂₀, and *m/z* 239 for GA₅₃. It is
noteworthy that the *y* axis scale for each reaction is arbitrary and provided for clarity. Control, yeast strain harboring
pESC-Leu empty vector. This experiment was repeated two times with similar results.

2 Supplementary Fig. 15 Tissue-specificity of CYP72A genes in Brassica rapa (a) and Capsella rubella (b). The

3 values are presented as the means \pm SDs (n = 3 biologically independent samples).

1

2 Supplementary Fig. 16 Detection of C-terminal Myc-tagged P450 protein in the WAT11 yeast strain with 3 anti-Myc monoclonal antibody. This experiment was repeated at least two times with similar results. a. 4 CYP72As from Arabidopsis thaliana; b. CYP72As from Brassica rapa and Capsella rubella; c. CYP72As from Glycine max; d. CYP72As from Oryza sativa. AtCYP72B1 was included in this assay. Twenty µg of microsomal 5 6 protein was loaded in each lane. The calculated molecular weight of each Myc-tagged P450 is listed below: 7 AtCYP72A7 (59.5KD), AtCYP72A8 (59.8KD), AtCYP72A9 (59.6KD), AtCYP72A10 (59.7KD), AtCYP72A11 8 (59.3KD), AtCYP72A13 (59.7KD), AtCYP72A14 (59.7KD), AtCYP72A15 (59.6KD), AtCYP72B1 (60.5KD), 9 BrCYP72A262 (59.4KD), BrCYP72A264 (59.4KD) BrCYP72A272 (59.2KD), CrCYP72A484 (59.3KD), 10 CrCYP72A485 (59.4KD), CrCYP72A486 (59.8KD), CrCYP72A487 (59.9KD), CrCYP72A488 (59.8KD),

GmCYP72A61 (62.0KD), GmCYP72A69 (59.8KD), GmCYP72A120 (61.1KD), GmCYP72A126 (61.0KD),
 GmCYP72A127 (61.3KD), GmCYP72A128 (58.8KD), GmCYP72A135 (60.7KD), GmCYP72A136 (61.0KD),
 GmCYP72A141 (60.9KD), GmCYP72A148 (61.1KD), GmCYP72A151 (62.7KD), OsCYP72A17 (63.1KD),
 OsCYP72A18 (61.1KD), OsCYP72A19 (44.6KD), OsCYP72A20 (61.4KD), OsCYP72A21 (61.4KD),
 OsCYP72A22 (54.4KD), OsCYP72A24 (60.7KD), OsCYP72A25 (60.5KD), OsCYP72A32 (62.6KD),
 OsCYP72A33 (64.2KD), OsCYP72A34 (60.5KD), OsCYP72A35 (60.3KD). N.C., negative control, the microsome
 protein prepared from WAT11 yeast strain harboring pESC-Leu empty vector was loaded. M, protein marker.

Primer name	Sequence (5' to 3')			
For CYP72A Gene Cloning from Brassicaceae Plants (into pENTR/D-TOPO vector)				
AtCYP72A7-F				
AtCYP72A7-R	TCAGAGCTTGTGCAGAATTAGATGAGCTC			
AtCYP72A8-F	CACCATGAGTGATACAAAGATATCAGCAGTAGCAG			
AtCYP72A8-R	TCAGAGCATGTGGAAGATCAACGGAGCAC			
AtCYP72A9-F	CACCATGGAGATAGTAATTGCATCATTGGCTTTAG			
AtCYP72A9-R	TCAAAGCTTGTGCAGGATAAGATGAGCCC			
AtCYP72A10-F	CACCATGGAGATATCAGTTGCATGCGTAACAGTTTC			
AtCYP72A10-R	TTATAGCTTGCGCAGAATAAGATGTGCAC			
AtCYP72A11-F	CACCATGGAGATATCAGTTGCATCGGTAACAG			
AtCYP72A11-R	TTAGAGCTTGTGCATGATAAGAGGAGC			
AtCYP72A13-F	CACCATGGAGATATCAGTTGCATCGGTAACAG			
AtCYP72A13-R	TTAGAGCTTGTGCAAGATAAGAGGAGC			
AtCYP72A14-F	CACCATGGAGATATCAGTTTCTTCGGTAACATTTTC			
AtCYP72A14-R	TTAGAGCTTGTGCAGCATAAGATGAGC			
AtCYP72A15-F	CACCATGGAGATATCGGTTGCATCGGTAAC			
AtCYP72A15-R	TTAGAGCTTGTGCATGATAAGCTGAGC			
BrCYP72A262-F	CACCATGGAGACATTACTTACATCATTGGC			
BrCYP72A262-R	TCATAGCTTGTTTAGGATAAGATGAGCAC			
BrCYP72A264-F	CACCATGGAGATATCAGTTGCGTTAGTAACAG			
BrCYP72A264-R	TTATATCTTGTTAAGGATAAGATGAGCACCG			
BrCYP72A272-F	CACCATGGACGTAGTTGCTTCAGTAACAATTTC			
BrCYP72A272-R	TTATAGTTTGTGTAGGATAAGATGAGCAC			
CrCYP72A484-F	CACCATGGAGATATCAGTTGCGTCGGTAAC			
CrCYP72A484-R	TTAGAGCTTGTGCAAGATAAGAGGAGC			
CrCYP72A485-F	CACCATGTATCCTGAAAATAGTCGCAGTTAC			
CrCYP72A485-R	CTAGAGCTTGTGCAAGATAAGAGGAG			
CrCYP72A486-F	CACCATGGAGATATCAGTAGCGTCGGTAGCAT			
CrCYP72A486-R	TCATAGCTTCTTAAGGATAACAGGTGCACC			
CrCYP72A487-F	CACCATGGAGATGTCTGTTTTATACTATTCAAT			
CrCYP72A487-R	TTAGAGCGTGTGCAAGATAAGATGAG			
CrCYP72A488-F	CACCATGAGTGATACAGAGATGTCAGCGGTAGC			
CrCYP72A488-R	TCAGAGCATGTGGAAGATCAACGGAGCAC			
For CYP72A Gene Cloning from	m Soybean			
GmCYP72A61-F	ATGCTTATGTCTGGCACAGAACAGGTG			
GmCYP72A61-R	CTAGAGTTTGCGTAAAATGAGATGAGCC			
GmCYP72A69-F	ATGGAAGCAGCATGGGTCAATATTCT			
GmCYP72A69-R	TTATTCATATTTCTCCACCTTATGTAGAATGACTG			
GmCYP72A120-F	ATGGGGTTCACTCCCACAAGTAC			
GmCYP72A120-R	CTACAACTTATGTAAGATGATATGAGCACC			
GmCYP72A126-F	ATGGAAGCAGCGTGGATCACAATTC			
GmCYP72A126-R	TTATATTTCCACCTTTCTTAGAATGAGATGAGCAC			
GmCYP72A127-F	ATGGAAGCACCATGGGCCACA			
GmCYP72A127-R	TTACATTTCAACTTTACGTAAAATGACATGA			
GmCYP72A128-F	ATGGAAGAAGCATCATGTGTATGCTTAGT			
GmCYP72A128-R	TTATATTTCAACTTTACGTAAAATGACATGAGCACC			
GmCYP72A135-F	ATGGAAGCAGCATGGGCCACA			
GmCYP72A135-R	TCATATTGTGACTTTACGTAGAATGATATG			
GmCYP72A136-F	ATGGAAGCAGCATCGGCCA			
GmCYP72A136-R	TCATATTGGCACTTTACGTAGAATGAT			
GmCYP72A141-F	ATGGAGCCATTATTTCTTCAGCAGC			

1 Supplementary Table 1. Primers used in this study.

GmCYP72A141-R	TCATAGTTTATGCAAAACGATGTGTGCC		
GmCYP72A142-F	ATGAACGAATGGAAGATGTTAGTATCCAAAA		
GmCYP72A142-R	CTATAATTTATGGAATATAATAGGCGTGCCAAATTGA		
GmCYP72A148-F	ATGGGGCTACCACCACTATTG		
GmCYP72A148-R	CTACAGCTTGTGTAAAATGATATGAGCC		
GmCYP72A151-F	ATGAAGTATCTTCTTCTCTCTTTGTTTCATGGTT		
GmCYP72A151-R	TCATATTTCCACCTTATGTAGAATGAGATGAGCA		
For CYP72As Gene Cloning fro	om Rice		
OsCYP72A17.1-F	ATGCAGAGAGAAAAAGAAGCAATGGGCA		
OsCYP72A17.1-R	TCAGAGTCGGCGCAGCCTAACCGGAACGCC		
OsCYP72A17.2-F	ATGGGCATCGGCATCGGCATC		
OsCYP72A17.2-R	TCAGAGTCGGCGCAGCCTAACCGGAACGCC		
OsCYP72A18-F	ATGCTGATGATGCTAGGGGGGGGCCTCC		
OsCYP72A18-R	TTAGATTTTCTTCAGCTTAATTTGTGCAC		
OsCYP72A19-F	ATGGATCCGACCTCGGTGCCAT		
OsCYP72A19-R	TCACGTTTTGAGTTTGCTCAGGCCTTCATAATC		
OsCYP72A20-F	ATGGAGGAGGCCACGGGAATG		
OsCYP72A20-R	TCATAGTCTTGTGAGTATAATTTGTGCACCATG		
OsCYP72A21-F	ATGGTTCTTGGAGCCTGGTTGAT		
OsCYP72A21-R	TCATATAGCTCTAAGCTTAATCTGCGCACC		
OsCYP72A22-F	ATGGTTCTTGGAGCCGGGTT		
OsCYP72A22-R	TCATATAGCTCTAAGCTTAATCTGTGCACCATG		
OsCYP72A23-F	ATGCCGGATTACAAAGTTCCTGGAATTG		
OsCYP72A23-R	TTAGATCATCCTAAGCTTCATCTGCGCGC		
OsCYP72A24-F	ATGGGGATGGTCGTCTTCGC		
OsCYP72A24-R	TCAGTTTAGCCTCGTGAGCCTGACCTG		
OsCYP72A25-F	ATGGAGATTGTCGATGGCGCTTC		
OsCYP72A25-R	TCAGAGTTTAGTAAGCTTAATCTGTGCC		
OsCYP72A32-F	ATGGTTCTTGGAGGGTGGCTG		
OsCYP72A32-R	TCATATAGCTCTAATTTTAATCTGTGCACCGTGC		
OsCYP72A33-F	ATGTGGGCTCCGGCCTCATC		
OsCYP72A33-R	CTAATAAAACACACTATAATCTGAAATGGTCATATAGCTC		
OsCYP72A34-F	ATGCTGATCATGCTGGGGGCT		
OsCYP72A34-R	TCAAATTCTCTTCAGCTTAATTTGGGCACC		
OsCYP72A35-F	ATGCTGGGAGAGGCCGC		
OsCYP72A35-R	TAGAGCTTCTTCAATTTAATTGGAGAACC		
For Enzymatic Activity Screeni	ng in WAT11 Yeast (into pESC-Leu vector)		
AtCYP72A7-ApaI-F	CGG <u>GGGCCC</u> ATGTCTTTTTCAGTAGTAGCAGCTTTAC		
AtCYP72A7-SalI-R	ACGC <u>GTCGAC</u> GAGCTTGTGCAGAATTAGATGAG		
AtCYP72A8-ApaI-F	CGG <u>GGGCCC</u> ATGAGTGATACAAAGATATCAGCAGTAGC		
AtCYP72A8-SalI-R	ACGC <u>GTCGAC</u> GAGCATGTGGAAGATCAACGGAG		
AtCYP72A9-ApaI-F	CGG <u>GGGCCC</u> ATGGAGATAGTAATTGCATCATTGGCTTTAG		
AtCYP72A9-SalI-R	ACGC <u>GTCGAC</u> AAGCTTGTGCAGGATAAGATGAGC		
AtCYP72A10-ApaI-F	CGG <u>GGGCCC</u> GATGGAGATATCAGTTGCATGCGTAACAG		
AtCYP72A10-SalI-R	ACGC <u>GTCGAC</u> CTTGCGCAGAATAAGATGTG		
AtCYP72A11-ApaI-F	CGG <u>GGGCCC</u> ATGGAGATATCAGTTGCATCGGTAAC		
AtCYP72A11-SalI-R	ACGC <u>GTCGAC</u> GAGCTTGTGCATGATAAGAGGAGC		
AtCYP72A13-ApaI-F	CGG <u>GGGCCC</u> GATGGAGATATCAGTTGCATCGGTAACAG		
AtCYP72A13-SalI-R	ACGC <u>GTCGAC</u> GAGCTTGTGCAAGATAAGAGGAGC		
AtCYP72A14-ApaI-F	CGG <u>GGGCCC</u> ATGGAGATATCAGTTTCTTCGGTAAC		
AtCYP72A14-SalI-R	ACGC <u>GTCGAC</u> GAGCTTGTGCAGCATAAGATGAGC		
AtCYP72A15-ApaI-F	CGG <u>GGGCCC</u> ATGGAGATATCGGTTGCATCGG		
AtCYP72A15-SalI-R	ACGC <u>GTCGAC</u> GAGCTTGTGCATGATAAGCTGAG		

BrCYP72A262-ApaI-F	CGGGGGCCCATGGAGACATTACTTACATCATTG		
BrCYP72A262-SalI-R	ACGCGTCGACCTTGTTTAGGATAAGATG		
BrCYP72A264-ApaI-F	CGGGGGCCCATGGAGATATCAGTTGCGTTAGTAAC		
BrCYP72A264-SalI-R	ACGCGTCGACTATCTTGTTAAGGATAAGATGAGC		
BrCYP72A272-ApaI-F	CGGGGGCCCATGGACGTAGTTGCTTCAGTAACAAT		
BrCYP72A272-Sall-R	ACGCGTCGACTTTGTGTAGGATA AGATGAG		
CrCYP72A484-ApaI-F			
CrCYP72A484-ApaI-R			
CrCYP72A485-ApaI-F			
CrCYP72A485-Sall-R	ACGCGTCGACGAGCTTGTGCAAGATAAGAG		
CrCYP72A486-ApaI-F	CGGGGGCCCATGGAGATATCAGTAGCGTCGGTAG		
CrCYP72A486-Sall-R			
CrCYP72A487-ApaI-F	CGGGGGCCCATGGAGATGTCTGTTTTATACTATTC		
CrCVP72A/87-Sall_R			
CrCVP724/88-Apal-F			
CrCVP72A488-Sall_R			
OcCVP72A17 Sall F			
OsCVP72A17 Sall P			
OsCVP72A18 Appl F			
OsCVP72A18-Apal-R			
OsCYP72A19-Apal-R			
OsCVP72A19-Sall-R			
OsCVP72A20 Sall F			
OsCVP72A20-Sall P			
OsCVP72A20-Sall-K			
OsCVP72A21-Apai-I			
OsCVP72A22-Sall F			
OsCVP72A22-Sall P			
OsCVP72A22-Sall-K			
OsCVP72A24-Apar-I			
OsCYP72A25-ApaL-F			
OsCVP72A25-Sall_R			
OsCYP72A32-ApaL-F			
OsCVP72A32-Sall_R			
OsCVP72A33-ApaL-F			
OsCYP72A33-Sall-R			
OsCYP72A34-ApaI-F			
OsCVP72A34_Sall_R			
OsCVP72A35 Sall F			
OsCVP72A35-Sall-R			
GmCVP72A61-Apal-F			
GmCVP72A61 Sall R			
GmCVP72A69-Sall-F			
GmCVP72A60 Sall R			
GmCVP72A120-ApaLE			
GmCVP72A120-Apar-P			
GmCVP72A126 ApaLE			
GmCVD72A126 Soll P			
GmCVP72A127 Appl F			
GmCVP72A127-Apai-1 GmCVP72A127 Sall P			
GmCVP72A128 Appl F			
GmCVP72A128 Sall D			
GmCVD72A125 Appl E			
ΟΠΟΤΓΙΖΑΙΟΟ-ΑΡΔΙ-Γ	UUUUUUUAAUUAUUAUUUUUUAUA		

GmCYP72A135-SalI-R	ACGCGTCGACTCATATTGTGACTTTACGTAGAATGATATG		
GmCYP72A136-ApaI-F	CGGGGGCCCATGGAAGCAGCATCGGCCA		
GmCYP72A136-SalI-R	ACGCGTCGACTCATATTGGCACTTTACGTAGAATGAT		
GmCYP72A141-ApaI-F	CGGGGGCCCATGGAGCCATTATTTTCTTCAGCAGC		
GmCYP72A141-SalI-R	ACGCGTCGACTCATAGTTTATGCAAAACGATGTGTGCC		
GmCYP72A148-ApaI-F	CGGGGGCCCATGGGGCTACCACCACTATTG		
GmCYP72A148-SalI-R	ACGCGTCGACCTACAGCTTGTGTAAAATGATATGAGCC		
GmCYP72A151-ApaI-F	CGGGGGCCCATGAAGTATCTTCTTCTCTCTTTGTTTCATGGT		
GmCYP72A151-SalI-R	ACGCGTCGACTCATATTTCCACCTTATGTAGAATGAGATGAG		
AtCYP72B1-ApaI-F			
AtCYP72B1-SalI-R	ACGCGTCGACATCCTCATGATTGGTCAATCTCCGGA		
For Subcellular Localization (n	JIT163-hGFP vector)		
CYP72A9-Sall-F	GCGTCGACATGGAGATAGTAATTGCATCATTG		
CYP72A9-BamHI-R	CGGGATCCAAGCTTGTGCAGGATAAGATGAGCC		
For Promoter:: GUS (pMD162)	vector)		
At3g14630-promoter-F	CACCTGCATGTGTTTCTCTTAGAATAAGATGGATTTC		
At3g14630-promoter -R	TTGCTGATGTTTTTGGTCTCTTAAAATTTTTGAG		
For gRT-PCR Analysis			
Actin2-RT-F	AGTCTTGTTCCAGCCCTCGTTTGTG		
Actin2-RT-R	TCCTGGACCTGCCTCATCATACTCG		
AtCYP72A7-RT-F	TCCCTGCGTTCTACCATTGT		
AtCYP72A7-RT-R	AAACGGGAGAAAGCGAGAGA		
AtCYP72A8-RT-F	ACGGTATGGATATGGAAAGGTCTG		
AtCYP72A8-RT-R	CTTTGATGTGTTCTGGTTTCGTCA		
AtCYP72A9-RT-F	AACAATAATGAATCCACAGCTG		
AtCYP72A9-RT-R	ACGACCCTTTATCTGAAACTAA		
AtCYP72A10-RT-F	GAGCTAATCAAAGAAGTGTTCAACAAAG		
AtCYP72A10-RT-R	TTGTAAGATGAGATGTACTAGTTCTGCT		
AtCYP72A11-RT-F	ACGATTTACTGGGAATACTTCTTGAATC		
AtCYP72A11-RT-R	GGACTAGAAGGATAGGTAGATTGATCAG		
AtCYP72A13-RT-F	TCTTGTCGGTGATTTGAAGAGAAAT		
AtCYP72A13-RT-R	GTTGAACACTTCTTTGATTTGCTCA		
AtCYP72A14-RT-F			
AtCYP72A14-RT-R	TGGACTACAGGAGGATAAAGCC		
AtCYP72A15-RT-F	CAGAGCTGTAGGGAAGTTGTTG		
AtCYP72A15-RT-R	AAGTATTCCCAGCAAATCGTCG		
BrCYP72A262-RT-F	ATGCTACAAGGATAAAGACAATAGT		
BrCYP72A262-RT-R	CTTGCAATCTTCAATAATTTCTTCG		
BrCYP72A264-RT-F	GTACTTCTGGTCTGGATAATGATTA		
BrCYP72A264-RT-R	CCTCATAAAGAATCATCGTCATAAC		
BrCYP72A272-RT-F	AGGAATTTTAGTATGATGATGGAGG		
BrCYP72A272-RT-R	ATCCATTATAGTGATTGTTGGTGTA		
Br Actin-RT-F	CTCACTCTCAAGTATCCGATCGAG		
Br Actin-RT-R	GACGAAGGATAGCATGAGGAAGAG		
Cr. Actin -RT-F			
Cr Actin_RT_R	GATAGCATGAGGAAGAAGCATACCC		
$C_rCVP72\Delta/84$ PT F			
$CrCVP72\Delta 484 \text{ PT P}$	CATTATAGTGATGGTTGGTATAGGT		
CrCVD72A/85 DT E			
$\frac{CrCVD72A485}{DT} D$			
$CrCVP72\Delta/86$ PT E			
CrCVP724/86 PT P			
$CrCVP72\Delta/87.PT F$			
$1 C_1 C_{11} / 2A_7 (0) - (1)^{-1}$			

CrCYP72A487-RT-R	TGAAATATCCTCTTCCCTTGTTTAT	
CrCYP72A488-RT-F	TAGTAGCTACGAGGAAGGTAACAGA	
CrCYP72A488-RT-R	ACATCTTCAATACTCATACCGTGAT	
GA2ox1-F	TGAGGACGAGAGGTTGTACGA	
GA2ox1-R	TCCTTTCGAATTGTTGAAGCC	
GA2ox2-F	CCGGTTCTCACTTCCCATT	
GA2ox2-R	GCTTCCGGATCGGCTAG	
GA2ox3-F	AGGAGAAGCTGAGCCGTTT	
GA2ox3-R	TTCTCCGGGTAATGGTTCAT	
GA2ox4-F	GGCTCCAAGTGTCCAATTCA	
GA2ox4-R	TCCTACATTGACGCAGAAAGC	
GA2ox6-F	GGGACAGAAGTCTAGCGAAGTG	
GA2ox6-R	TCGCTACGAACGTCTCTGATC	
GA2ox7-F	AGTAATGGAGTGTACCAAAGCG	
GA2ox7-R	GAAAGCTATTGACATCCTCTCG	
GA2ox8-F	GTGTGAGAAATACATGTTATCTAAG	
GA2ox8-R	TACACCTCCGATGGTTTGG	
GA20ox1-F	GATCCATCCTCCACTTTAGA	
GA20ox1-R	GTGTATTCATGAGCGTCTGA	
GA20ox2-F	ACCGAGACTATTTCCGAGGATT	
GA20ox2-R	TGTTTGGCATGGAGGATAATG	
GA20ox3-F	AAAGCTCCTTAATCAGCACTCG	
GA20ox3-R	TGAGTGGGACTTGGAGAGGTT	
GA20ox4-F	GTCTTGGTATCAAAAGGGAGCAT	
GA20ox4-R	GCCCCGTACCTAGTACAAGATCT	
GA20ox5-F	GCTCACGGTACTTTTCTAGTGG	
GA20ox5-R	ACTCGATATCTCAAGCGCC	
GA3ox1-F	CCATTCACCTCCCACACTCT	
GA3ox1-R	GCCAGTGATGGTGAAACCTT	
GA3ox2-F	TGGTCCGAAGGTTTCAC	
GA3ox2-R	GGGTCGAGTCTGTATGG	
GA3ox3-F	TCCTACCCGGTTTGCC	
GA3ox3-R	ACGGTGCATTGTACTTC	
GA3ox4-F	GCCGATGACTCCTACC	
GA3ox4-R	ACACTTGTAGCCCTCC	
GMAT-1-F	TGTTGTTTATGCTGATGGGTGGTC	
GMAT-1-R	CGCAATCTCTTCGGTGGTTCTAA	
GMAT-2-F	CGTCCTTCAGGCTCAAGTAGTC	
GMAT-2-R	CCCTATCTTGAAACCACCACAACGGTC	
CYP714A1-F	TCCGCCGTCGCTATTTCGT	
CYP714A1-R	TGTTGTTGTGAGTGATGGCC	
CYP714A2-F	GTCGGAATCTTCAGCGTAGGTT	
CYP714A2-R	GGCGTTTGGTGATGTGAGTGA	
GID1a-F	GATGTCTTGATTGATCGCAGGAT	
GID1a-R	AGGAGGTTGCTCTTGATCTGCA	
GID1c-F	CTGTGAATTATCGTCGTGC	
GID1c-R	GGCTACACGCTGGATG	
RGA-F	AGAAGCAATCCAGCAGA	
RGA-R	GTGTACTCTTCTTACCTTC	
For Transgenic Plants Analysis		
35S-PROM	TCCTTCGCAAGACCCTTC	
35S-TER	GAGAGAGACTGGTGATTTTTGCG	
GUS-R	CCACCAACGCTGATCAATTCCAC	

GFP-R	CCTTGAAGTCGATGCCCTTCAGC	
GFP-F	GACCACATGAAGCAGCACGACT	
For Cas9-edited Mutant Analysis		
At3g14630-target-F	ATTGAGAATTACATTCCTGCATAC	
At3g14630-target-R	ACCCGTATGCAGGAATGTAATTCT	
At3g14630-check-F	GCATCGAGGTCATGTGTGAATGGGAG	
At3g14630-check-R	CATGTTCAGTCCATTTCCTTTACTTTGC	
For T-DNA Insertion Mutant Analysis		
SALK_130811C-F	GGATGAAAACAATAGTCAAAGAAATCCAAG	
SALK_130811C-R	AGAAGAAGCAGACCTGGTTCTTTGTTGCGC	
LBb1.3	ATTTTGCCGATTTCGGAAC	

Compound	MRM transitions (m/z)	CE (V)
GA ₁₂	331.2 > 313.2	-38
	331.2 > 269.2	-44
GA ₁₅	329.1 > 257.1	-34
	329.1 > 131.0	-40
GA ₂₄	345.2 > 257.2	-36
	345.2 > 213.2	-41
GA ₉	315.1 > 271.1	-28
	315.1 > 253.1	-35
GA ₄	331.1 > 257.1	-30
	331.1 > 213.1	-42
CA	347.2 > 303.2	-37
GA53	347.2 > 189.1	-48
CA	345.2 > 301.2	-35
GA44	345.2 > 273.2	-35
CA	361.2 > 273.2	-37
GA19	361.2 > 229.1	-42
GA ₂₀	331.1 > 287.1	-30
	331.1 > 243.1	-26
GA ₁	347.1 > 273.1	-32
	347.1 > 229.1	-42
CA	329.1 > 223.1	-27
GA7	329.1 > 211.1	-37
CA	345.1 > 143.1	-40
GA3	345.1 > 239.1	-20
GA ₈	363.1 > 275.1	-24
	363.1 > 257.1	-24
GA29	347.1 > 259.1	-24
	347.1 > 241.1	-32
GA ₅₁	331.1 > 287.1	-24
	331.1 > 243.1	-23

1 Supplementary Table 2. MRM parameters for GA profiling in Arabidopsis plants.