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ESM Methods 

Methylation measurement 

DNA (1,000 ng) from peripheral blood leukocytes underwent sodium bisulfite treatment and recovery 

using the Zymo EZ DNA methylation Kit (Zymo Research, Irvine, CA). Converted DNA was analyzed 

for complete conversion and quantity by MethyLight [1]. Qualified DNA (15 µl) was analyzed using the 

Infinium HumanMethylation450K Beadchip technology (Illumina Inc., San Diego, CA, USA). The raw 

signal intensities from the Beadchip were extracted, corrected for background fluorescence and red-green 

dye bias, using the R (version 3.1.1, http://www.r-project.org/) package methylumi [2]. The beta value, 

which measures the extent of methylation at the CpG site covered by a probe, was calculated as (𝑚/(𝑚 +

𝑢)), in which 𝑚 and 𝑢 refer to the mean methylated and unmethylated probe signal intensities 

respectively. Beta values for which the fluorescent intensity was not significantly above the background 

signal (detection p value >0.01) were considered missing. Probes whose sequence overlaps with a SNP or 

indel (minor allele frequency >0.5%), as determined by whole genome sequence data available on 272 

Pima Indians, were excluded (N = 53,695 excluded). In addition, probes which directly target SNPs (N = 

65), align to multiple genomic positions in Human genome build GRCh37.p13 (N = 3), map to the Y 

chromosome (N = 32) or provided a call rate <95% among all samples (N = 8,471) were also removed. 

The final analysis included 423,311 probes which mapped to an autosome or the X chromosome. 

Mediation analysis 



To assess the extent to which observed methylation differences may account for the increased diabetes 

risk in OMD, a formal mediation analysis was conducted [3]. This involved fitting the following 

regression models for methylation (M) and development of diabetes (D, by proportional hazards 

regression): 

𝑀 = 𝑎 ∗ 𝐸𝑋𝑃 + 𝛴 

𝐷 = 𝑐 ∗ 𝐸𝑋𝑃 + 𝛴 

𝐷 = 𝑏 ∗ 𝑀 + 𝑐′ ∗ 𝐸𝑋𝑃 +Σ 

where EXP represents intrauterine exposure (OMD = 1, OMND = 0) and Σ represents the effect of 

covariates. The significance of the mediation effect was assessed by comparing 𝑎𝑏 with its standard error 

(= 𝑠𝑞𝑟𝑡[𝑎 ∗ 𝑆𝐸𝑏
2 + 𝑏 ∗ 𝑆𝐸𝑎

2 + 𝑆𝐸𝑎
2 ∗ 𝑆𝐸𝑏

2]) [3]. Percentage mediation, or the extent to which the excess 

risk in OMD  is potentially explained by the methylation effect, was taken as 100[1 − 𝑐′ 𝑐⁄ ]  [4]. 

  



ESM Tables 

ESM Table 1. The association of top CpGs with or without adjustment of pre-pregnancy maternal 

BMI. 

CpG Gene/CpG island Effect P Effect_mBMI P_mBMI 

cg21192468 LHX3 4.8 1.7×10-08 4.5 1.3×10-07 

cg14381623 LHX3 3.2 6.9×10-07 2.9 5.0×10-06 

cg15796459 SHROOM2 -1.6 4.8×10-06 -1.4 2.2×10-05 

cg20749955 PPP1R3B -3.6 1.3×10-05 -2.9 3.9×10-04 

cg12140144 PRDM16 1.0 1.1×10-04 1.0 1.6×10-04 

cg06717221 ATP8B3 -2.7 1.1×10-04 -2.7 1.3×10-04 

cg15833797 LHX3 2.5 6.7×10-06 2.6 1.9×10-06 

cg14605520 LHX3 2.8 7.6×10-05 3.0 1.5×10-05 

cg10772621 chr19:54411376-54411968 -1.6 2.0×10-04 -1.6 2.0×10-04 

cg25952247 LHX3 3.3 3.0×10-06 3.1 1.3×10-05 

cg20345234 chr10:65800729-65801528 -2.3 6.6×10-05 -2.1 2.3×10-04 

cg00762450 ANKRD20A4 1.4 4.1×10-05 1.5 1.7×10-05 

cg13700073 FSCN2 -1.7 3.0×10-05 -1.6 7.1×10-05 

cg20769177 WNT9B 2.4 9.5×10-05 2.1 6.8×10-04 

cg08292290 GLRX5 -0.6 2.4×10-05 -0.5 2.4×10-04 

cg06268875 PIEZO2 5.1 1.0×10-05 4.9 1.9×10-05 

cg04350311 ELFN2 1.5 3.2×10-04 1.4 4.4×10-04 

cg15183961 ANKRD20A2 1.8 1.7×10-05 1.7 4.3×10-05 

cg26671988 chr5:102090439-102091241 2.1 8.7×10-05 2.0 2.1×10-04 

cg17186803 SCN4B 1.2 4.1×10-04 1.2 4.8×10-04 

cg24049468 AK3 2.3 2.8×10-04 2.4 2.2×10-04 

cg27222147 CACNA1C -0.7 8.7×10-04 -0.6 3.5×10-03 

cg08370430 chr17:12927455-12928747 1.5 1.5×10-05 1.5 1.8×10-05 

cg15618978 TRIM59 1.5 3.3×10-05 1.4 1.5×10-04 

cg07464358 - 0.9 3.8×10-05 0.9 3.3×10-05 

cg24996440 chr2:3583550-3584833 -2.1 4.1×10-05 -1.9 1.5×10-04 

cg03862414 PLEKHH3 2.4 2.2×10-05 2.2 7.7×10-05 

cg05772155 chr10:65800729-65801528 -3.2 6.4×10-04 -2.9 1.1×10-03 

cg21172615 LHX3 2.6 1.4×10-04 2.4 4.2×10-04 

cg20941258 TDGF1 2.9 7.2×10-06 2.7 2.5×10-05 

cg08414676 SORD -2.5 9.8×10-05 -2.3 3.6×10-04 

cg00509616 GCOM1 0.9 1.9×10-03 0.9 4.1×10-03 

cg09674170 CLDN9 3.3 1.1×10-05 3.0 1.1×10-04 

cg07993743 WNT9B 2.1 6.0×10-05 2.0 7.3×10-05 

cg04645534 STC1 -2.6 4.6×10-04 -2.4 1.3×10-03 

cg04413090 SBK1 1.2 6.8×10-06 0.9 3.2×10-04 

cg13427473 - -0.7 1.6×10-04 -0.7 1.6×10-04 



cg16426215 chr16:56709677-56709953 -1.2 2.0×10-04 -1.0 2.6×10-03 

cg24503407 PM20D1 -4.3 1.3×10-05 -4.0 3.1×10-05 

cg12875241 GPR143 4.0 2.8×10-04 3.3 2.9×10-03 

cg14732789 chr20:29534910-29535208 -1.4 3.6×10-04 -1.4 3.8×10-04 

cg14105781 TBL1X 1.4 5.0×10-04 1.1 2.2×10-03 

cg08911291 chr9:44118137-44120175 2.6 8.9×10-05 2.8 3.5×10-05 

cg05806645 PPP1R3B -2.3 1.8×10-04 -1.8 2.8×10-03 

cg25629768 LMNB2 1.5 1.0×10-04 1.3 4.8×10-04 

cg16482344 LINC00839 -4.0 7.5×10-05 -4.0 8.6×10-05 

cg25949304 PCDHGA4 -2.7 6.5×10-04 -2.6 1.1×10-03 

cg27073142 SORD -4.3 2.0×10-04 -3.7 1.0×10-03 

All results are shown for the 296 individuals who had data on pre-pregnancy maternal BMI. Effect represents the 

difference in percentage of DNA methylation in OMD compared with OMND.  Effect_mBMI represents the 

difference after adjusting for maternal pre-pregnancy BMI (P_mbmi is the corresponding p value). 

 

ESM Table 2. Differentially methylated pathways and genes. 

Pathway Enrichment Gene symbol Gene full name 

Metabolic pathways O=37;adjP=0.0002   

  UGP2 UDP-glucose pyrophosphorylase 2 

  SORD sorbitol dehydrogenase 

  XYLT1 xylosyltransferase I 

  PIGH phosphatidylinositol glycan anchor biosynthesis, class H 

  NOS1 nitric oxide synthase 1 (neuronal) 

  COX4I1 cytochrome c oxidase subunit IV isoform 1 

  COX10 
COX10 homolog, cytochrome c oxidase assembly protein, heme 

A: farnesyltransferase (yeast) 

  PIP5K1C phosphatidylinositol-4-phosphate 5-kinase, type I, gamma 

  FLAD1 
FAD1 flavin adenine dinucleotide synthetase homolog (S. 

cerevisiae) 

  DBH dopamine beta-hydroxylase (dopamine beta-monooxygenase) 

  ADI1 acireductone dioxygenase 1 

  GALNT9 
UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-

acetylgalactosaminyltransferase 9 (GalNAc-T9) 

  INPP5A inositol polyphosphate-5-phosphatase, 40kDa 

  ATIC 
5-aminoimidazole-4-carboxamide ribonucleotide 

formyltransferase/IMP cyclohydrolase 

  PAPSS1 3'-phosphoadenosine 5'-phosphosulfate synthase 1 

  BDH1 3-hydroxybutyrate dehydrogenase, type 1 

  FUT1 
fucosyltransferase 1 (galactoside 2-alpha-L-fucosyltransferase, 

H blood group) 

  SUCLG2 succinate-CoA ligase, GDP-forming, beta subunit 

  PTDSS2 phosphatidylserine synthase 2 

  DEGS2 delta(4)-desaturase, sphingolipid 2 



  NDUFA10 
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 10, 

42kDa 

  HSD17B12 hydroxysteroid (17-beta) dehydrogenase 12 

  SEPHS1 selenophosphate synthetase 1 

  SUCLA2 succinate-CoA ligase, ADP-forming, beta subunit 

  AK5 adenylate kinase 5 

  PSAT1 phosphoserine aminotransferase 1 

  GUSB glucuronidase, beta 

  BCKDHB branched chain keto acid dehydrogenase E1, beta polypeptide 

  FUT4 
fucosyltransferase 4 (alpha (1,3) fucosyltransferase, myeloid-
specific) 

  CYP2E1 cytochrome P450, family 2, subfamily E, polypeptide 1 

  GAD2 glutamate decarboxylase 2 (pancreatic islets and brain, 65kDa) 

  AKR1D1 
aldo-keto reductase family 1, member D1 (delta 4-3-ketosteroid-
5-beta-reductase) 

  CSGALNACT1 chondroitin sulfate N-acetylgalactosaminyltransferase 1 

  MDH1 malate dehydrogenase 1, NAD (soluble) 

  DHCR7 7-dehydrocholesterol reductase 

  B4GALT7 xylosylprotein beta 1,4-galactosyltransferase, polypeptide 7 

  PSPH phosphoserine phosphatase 

Wnt signaling pathway O=11;adjP=0.0004   

  SMAD3 SMAD family member 3 

  PRKCG protein kinase C, gamma 

  WIF1 WNT inhibitory factor 1 

  SFRP2 secreted frizzled-related protein 2 

  WNT10A wingless-type MMTV integration site family, member 10A 

  FZD9 frizzled family receptor 9 

  WNT7B wingless-type MMTV integration site family, member 7B 

  TBL1X transducin (beta)-like 1X-linked 

  NFATC1 
nuclear factor of activated T-cells, cytoplasmic, calcineurin-
dependent 1 

  CHP2 calcineurin-like EF hand protein 2 

  WNT9B wingless-type MMTV integration site family, member 9B 

Protein digestion and absorption O=8;adjP=0.0005   

  ATP1A1 ATPase, Na+/K+ transporting, alpha 1 polypeptide 

  KCNK5 potassium channel, subfamily K, member 5 

  SLC7A9 
solute carrier family 7 (glycoprotein-associated amino acid 

transporter light chain, bo,+ system), member 9 

  SLC9A3 
solute carrier family 9, subfamily A (NHE3, cation proton 
antiporter 3), member 3 

  COL18A1 collagen, type XVIII, alpha 1 

  KCNQ1 
potassium voltage-gated channel, KQT-like subfamily, member 

1 

  SLC6A19 
solute carrier family 6 (neutral amino acid transporter), member 
19 



  COL6A3 collagen, type VI, alpha 3 

O, the number of differentially methylated genes in the pathway; adjP, the false discovery rate. 

 

ESM Table 3. Developmental role of the 11 genes among the 39 genes with genome-wide 

significance. 

Gene Developmental Role Literature 

LHX3 Motor neuron and interneuron specification 

Pituitary development 

Spinal cord development  

[5] 

[6, 7] 

[8] 

PRDM16 Brown adipocyte tissue mess [9] 

WNT9B Kidney tubule development 

Upper jaw and lip development 

[10, 11] 

[12] 

AK3 Cardiac differentiation [13] 

CACNA1C Timothy syndrome 

skeletal muscle development 

[14] 

[15] 

TDGF1 Cardiomyogenesis [16, 17] 

STC1 Growth plate chondrogenesis 

Osteoblast development and bone formation 

Bone and muscle development 

[18] 

[19] 

[20] 

PM20D1 Birth weight [21] 

SBK1 Brain development [22] 

TBL1X Fetal brain development [23] 

LMNB2 Nervous system development [24] 
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