Supplementary Information for

Global CO₂ emissions from dry inland waters share common drivers across ecosystems

by

Keller et al.

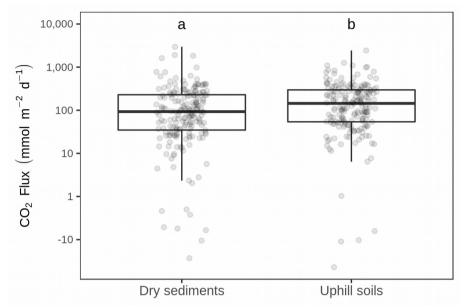
Supplementary Tables

Supplementary Table 1: CO_2 fluxes (FCO₂) from dry and inundated inland water systems in the literature. Shown is the mean \pm standard deviation.

System, condition and location	FCO_2 (mmol m ⁻² d ⁻¹)	Reference
Dry		
Drawdown area of Nam Theun 2 reservoir, Laos	279 ± 27	Deshmukh et al., (2018) ¹
Drawdown area of CDU reservoir, wet season, Brazil	155	Almeida et al. (2019) ²
Drawdown area of CDU reservoir, dry season, Brazil	203	Almeida et al. (2019) ²
Intermittent kettle holes, dry phase, Germany	89 ± 20	Reverey et al., (2018) ³
Intermittent ponds, annual cycle, Spain	48 ± 36	Catalan et al., (2014) ⁴
	149 ± 111	Obrador et al., (2018) ⁵
Dry areas of Boadella reservoir, summer, Spain	216 ± 177	Gómez-Gener et al., (2015) ⁶
Dry areas of Soyang reservoir, extreme drought, South Korea	515 ± 377	Jin et al., (2016) ⁷
Intermittent streams, summer, USA	44 ± 23	Gallo et al., (2014) ⁸
Intermittent streams, after rain event, USA	569 ± 530	Gallo et al., (2014) ⁸
Intermittent streams, summer, Spain	781 ± 390	Gómez-Gener et al., (2016) ⁹
Intermittent stream, summer dry-wet cycles, Australia	72 ± 27	Looman et al. (2017) ¹⁰
Intermittent streams, Spring & Summer, Italy	2.7 - 60.1	Bolpagni et al. (2016) ¹¹
Inundated		
Ponds, global estimate	35 ± 5.21	Holgerson & Raymond, (2016) ¹²
Lakes, global estimate	18	Raymond et al., (2013) ¹³
Reservoirs, global estimate	28 ± 37	Deemer et al., (2016) ¹⁴
Streams, global estimate	663	Raymond et al., (2013) ¹³

Supplementary Table 2: Results from linear mixed effects models of CO ₂ emission (FCO ₂).
Estimates (B) and 95% confidence intervals (CI) are reported. Variables were log ₁₀ - and z-
transformed prior to analysis.

	FCO_2		
Fixed parts —	В	СІ	
(Intercept)	0.04	-0.13 - 0.22	
Elevation	-0.22	-0.360.08	
Latitude	0.25	0.05 - 0.44	
Conductivity	-0.14	-0.26 - 0.02	
Temperature	0.3	0.18 - 0.42	
Moisture	0.4	0.26 - 0.51	
Organic matter	0.3	0.17 - 0.41	
Interaction (Moisture : Organic matter)	0.23	0.14 - 0.32	
Interaction (Moisture : Temperature)	0.12	0.02 - 0.22	
	Random parts		
ď		0.47	
σ _{Team}		0.13	


Supplementary Table 3: Global estimate of CO_2 fluxes from dry inland waters. Shown is the mean \pm standard deviation.

Type of system	Accumulated dry area during a year (including seasonal and permanent drying) (km ²)	CO_2 emission rate (mmol m ⁻² d ⁻¹)	Global C emission (Pg C y^{-1})
Streams and rivers	84,461 ¹³	128 ± 218	0.047 ± 0.081
Lakes, reservoirs	187,542 ¹⁵	207 ± 405	0.052 ± 0.1
Ponds	18,390 ¹⁵	267 ± 221	0.022 ± 0.018
Total	290,393		0.12 ± 0.13

Variable	Source	Present in final model
Sediment temperature	Measured <i>in situ</i>	
LOI	Measured in situ	Х
Moisture	Measured in situ	Х
pH	Measured <i>in situ</i>	
Conductivity	Measured in situ	Х
Texture	Measured in situ	
Air temperature	Measured in situ	Х
Elevation	Determined locally	Х
Latitude	Determined locally	Х
Type of system	Determined locally	
Annual precipitation	Worldclim ¹⁶	
Annual mean temperature	Worldclim ¹⁶	
Climate zone	Köppen-Geiger ¹⁷	

Supplementary Table 4: Environmental variables used for modeling CO₂ emissions.

Supplementary Figures

Supplementary Figure 1: CO_2 **flux from dry inland waters and uphill soils.** Box = 25th and 75th percentiles, whiskers = 1.5 * inter-quartile range. Black line = median. Letters indicate significant differences between systems. (Wilcoxon signed rank test, *P* < 0.05). Note log₁₀-scale in y-axis.

Supplementary References

- Deshmukh, C. *et al.* Carbon dioxide emissions from the flat bottom and shallow Nam Theun 2 Reservoir: drawdown area as a neglected pathway to the atmosphere. *Biogeosciences* 15, 1775– 1794 (2018).
- 2. Almeida, R. M. *et al.* Carbon dioxide emission from drawdown areas of a Brazilian reservoir is linked to surrounding land cover. *Aquat. Sci.* **81**, 68 (2019).
- 3. Reverey, F. *et al.* Dry-wet cycles of kettle hole sediments leave a microbial and biogeochemical legacy. *Sci. Total Environ.* **627**, 985–996 (2018).
- 4. Catalan, N. *et al*. Carbon dioxide efflux during the flooding phase of temporary ponds. *Limnetica* 33, 349–359 (2014).
- Obrador, B. *et al.* Dry habitats sustain high CO₂ emissions from temporary ponds across seasons. *Sci. Rep.* 8, 3015 (2018).
- Gómez-Gener, L. *et al.* Hot spots for carbon emissions from Mediterranean fluvial networks during summer drought. *Biogeochemistry* 125, 409–426 (2015).
- 7. Jin, H. *et al*. Enhanced greenhouse gas emission from exposed sediments along a hydroelectric reservoir during an extreme drought event. *Environ. Res. Lett.* **11**, 124003 (2016).
- Gallo, E. L., Lohse, K. A., Ferlin, C. M., Meixner, T. & Brooks, P. D. Physical and biological controls on trace gas fluxes in semi-arid urban ephemeral waterways. *Biogeochemistry* 121, 189– 207 (2014).
- Gómez-Gener, L. *et al.* When Water Vanishes: Magnitude and Regulation of Carbon Dioxide Emissions from Dry Temporary Streams. *Ecosystems* **19**, 710–723 (2016).
- 10. Looman, A., Maher, D. T., Pendall, E., Bass, A. & Santos, I. R. The carbon dioxide evasion cycle of an intermittent first-order stream: contrasting water–air and soil–air exchange. *Biogeochemistry* (2016).
- Bolpagni, R., Folegot, S., Laini, A. & Bartoli, M. Role of ephemeral vegetation of emerging river bottoms in modulating CO₂ exchanges across a temperate large lowland river stretch. *Aquat. Sci.* **79**, 149–158 (2017).
- Holgerson, M. A. & Raymond, P. A. Large contribution to inland water CO₂ and CH₄ emissions from very small ponds. *Nat. Geosci.* 9, 222–226 (2016).

- Raymond, P. A. *et al.* Global carbon dioxide emissions from inland waters. *Nature* 503, 355–359 (2013).
- 14. Deemer, B. R. *et al.* Greenhouse Gas Emissions from Reservoir Water Surfaces: A New Global Synthesis. *BioScience* **66**, 949–964 (2016).
- 15. Marcé, R. *et al*. Emissions from dry inland waters are a blind spot in the global carbon cycle. *Earth-Sci. Rev.* **188**, 240–248 (2019).
- 16. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. *Int. J. Climatol.* **37**, 4302–4315 (2017).
- 17. Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World Map of the Köppen-Geiger climate classification updated. *Meteorol. Z.* **15**, 259–263 (2006).