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Supplementary Note 1. Decomposition of Isotropic and Anisotropic Signal 

The anisotropic and isotropic scattering signals were separated using a well-established 

method1. The decomposition equation is given by: 
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The analysis of anisotropic scattering signal has been discussed in detail previously2. In short, the 

anisotropic component of the signal is caused by the preferential excitation of those molecules 

whose transition dipole moments (TDM) are oriented parallel to the linear polarization of the 

optical pump pulse in the laboratory frame. Because of the quadrant symmetry of the cos+(𝜃) 

distribution in the ensemble for a single-photon excitation process, this angular symmetry can be 

described by second order Legendre polynomials. The total scattering pattern Δ𝐼(𝜙, 𝑞) thus can 

be decomposed to an isotropic component Δ𝐼?@A(𝑞) that reflects all the intrinsic information of 

the molecule in the molecular frame and an anisotropic component Δ𝐼=>?@A(𝑞)  that reflects 

additional information of the rotational motions of the molecule in the laboratory frame.  

 

Supplementary Note 2. Analysis of Pump-Probe Scattering Signal 

During the experiment, time zero and the cross correlation of the pump and probe pulses 

were estimated from the rise of the UV-pulse induced signal. The time dependent scattering 

signals integrated in two specific q regions (0.3-1.6 Å and 1.7-2.5 Å, respectively) and the fit 

results are shown in Supplementary Figure 1. Supplementary Equation 2 for 𝑓(𝑡), convoluted 

with a Gaussian instrument function 𝑔(𝑡), is used for modeling the time dependent experimental 

signals.  
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The 𝑔(𝑡) describes the time correlation between the optical pump pulse and the x-ray 

probe pulse, where 𝑡J is the time of UV excitation, and 𝜎 is the Gaussian width. The 𝑓(𝑡) models 

electronic and nuclear process in the molecule after initial excitation, where 𝜏  is the time 



constant of the 3p relaxation process. Specifically, the initial onset of the signal from the initially 

prepared 3p state induced by the optical excitation is characterized by a Heaviside step-function 

𝐻(𝑡 > 𝑡J) , the subsequent decay of this onset signal originating from the relaxation of the 

initially prepared 3p state is represented by an exponential function 𝐴𝑒O
_`_Q
a , and the 

simultaneous rise of a new signal originating from the appearance of relaxed ground state hot 

CHD molecules during same relaxation process is represented by the exponential function 

𝐵 51 − 𝑒O
_`_Q
a :. The constant C accounts for the baseline of the background noise.  

The time dependencies of the two q regions were fitted simultaneously with shared 

parameters ( 𝑡J , 𝜎 , 𝜏  and C). Because the scattering pattern in the two q regions respond 

differently to the changes in the molecule, A and B are kept as independent parameters in the two 

fits. As shown in the main text, because the near instantaneous change in electronic structure 

upon excitation mainly affects the low q region (0.3-1.6 Å, shown in black in Supplementary 

Figure 1) of the percent difference scattering signal rather than the high q region (1.7-2.5 Å, 

shown in red in Supplementary Figure 1), the value of A determined from the fit in the low q 

region (A = 2.124) is much larger than the value determined from the fit in the high q region (A = 

0.002). The shared parameters are determined to be 𝑡J = 31 (-16 ~ 79) fs, 𝜎 = 117 (67 ~ 167) fs, 

𝜏 = 201 (84 ~ 318) fs, with 95% confidence intervals given in the parentheses.  

 

 



 
Supplementary Figure 1. Analysis of time-dependent scattering signals. The experimental 
time-dependent scattering signals are integrated in two separate q regions: low q (0.3-1.6 Å) 
shown as black dots, and high q (1.7-2.5 Å) shown as red dots. The estimated shot noise errors 
are shown with 1𝜎 error bars. The resulting fits are shown as black and red curves. 

 

Supplementary Note 3. Radial Distribution Function 

The difference radial distribution function for the 25 fs time bin is obtained from the 

fraction signal difference discussed in the main text via a multiplication by the theoretical ab-

initio signal of the unpumped system, 𝐼Abbcd (𝑞). This gives direct access to the quantity ∆𝐼(𝑡, 𝑞) =

𝐼A>(𝑡, 𝑞) − 𝐼Abb(𝑞) . This procedure is considered optimal for the reduction of noise and 

background fluctuations as compared to starting from the raw 𝐼A>(𝑡, 𝑞)  and 𝐼Abb(𝑞) . 3 , 4  The 

difference signal, 	∆𝐼(𝑡, 𝑞), is then fitted with 9th degree polynomial to minimize noise and 

provide high resolution in q space, which the sine-transform requires for numerical stability. The 

difference radial distribution function is then obtained from: 

									ΔRDF(𝑟) = 2/π∫ 𝑞𝑟[𝐼A>(𝑞) − 𝐼Abb(𝑞)]sin(𝑞𝑟)	𝑊(𝑞)	𝑑𝑞r
J ,                     (3) 

where 𝑊(𝑞) is the modified Gaussian window function: 

																		𝑊(𝑞) = s1,																																															𝑞 < 1.8	ÅO*	
exp{−0.7(𝑞 − 1.8)+} ,									𝑞 ≥ 1.8	ÅO*

.       (4) 



𝑊(𝑞) is used to reduce the numerical artefacts of the transform associated with the finite width 

of the q range. The limited q range also results in relatively low resolution in real space of ~0.75 

Å, which follows from the uncertainty relationship 𝜎7𝜎�~π. The effect of the resolution can be 

observed in Supplementary Figure 2, which compares the theoretical and the 

experimental	ΔRDF(𝑟). The theoretical difference radial distribution function is obtained from a 

sine-transform of the ab-initio scattering data, 𝐼���(𝑞, 𝐑′) − 𝐼�(𝑞, 𝐑J) , which can be further 

separated into an electronic part, 𝐼���(𝑞, 𝐑′) − 𝐼�(𝑞, 𝐑′) , and the nuclear part, 𝐼�(𝑞, 𝐑′) −

𝐼�(𝑞, 𝐑J). The q range of the theoretical scattering signal is 0-50 Å-1 and, hence, no window 

function is needed.  While the experimental difference radial distribution function clearly follows 

the theoretical profile, the details of nuclear rearrangements associated with the range < 5	Å are 

lost. However, the distribution shows clearly the increase in electron density at large distances 

associated with the excitation to a diffuse Rydberg electronic state, and the corresponding 

decrease in small r (otherwise modulated by nuclear rearrangement region below 5 Å). It should 

be pointed out that, on account of the average C-C bond distances and angle constrains, no 

molecular geometry (nuclear configuration), e.g. corresponding to the ring-opened molecule, can 

give raise to changes in the distribution above approximately 𝑟 > 5.0	Å, and that this signal thus 

must reflect changes due to the diffuse nature of the excited electronic state. 

 

 

 



 

Supplementary Figure 2. Experimental and theoretical real-space difference radial 

distribution functions. The experimental curve is obtained from the experimental data at 25 fs 

pump-probe delay time. The theoretical ΔRDF(r) is a sum of two contributions, nuclear and 

electronic, in analogy with the fractional difference signal presented in the main text. The 

theoretical curves are obtained from a sine-transform of the theoretical scattering patterns. 

 

Supplementary Note 4. Thermal Structural Distribution Due to Nuclear Vibrations 

Because the electronic contribution to the scattering signal is comparatively constant with 

regards to molecular geometry, as we have shown in Figure 3 (a) in the main text, the confidence 

interval for the calculated scattering signal of the 3p electronic state is mainly due to the 

distribution of molecular geometries near the 3p minimum energy structure. In the following we 

model this as a thermal distribution. Based on previous experimental and computational results, 

we know that the excitation energy of 3p state is about 6.05 eV (see Supplementary Table 1). At 

200 nm UV excitation (6.2 eV photon energy), the difference between photon energy and the 3p 

excitation energy is thus about 0.15 eV. The excess kinetic energy that can be redistributed to the 

vibrational degrees of freedom in the molecule is thus small, and the molecule in the 3p state is 

comparatively cold (~470 K, assuming harmonic vibrations).  

To model the vibrational distribution of CHD properly, we calculate the vibrational 

normal modes of CHD at the ion minimum-energy structure, which is a good approximation of 



the 3p minimum-energy structure, using ab-initio electronic structure calculations at the 

CASPT2(3,4)/aug-cc-pVDZ level of theory in the software package Molpro. An ensemble of 

10,000 geometries is sampled from the quantum Wigner distribution at 470 K based on the 

calculated vibrational normal modes. Each of the 10,000 geometries is used to simulate a 

scattering pattern using the independent atom model (IAM), as IAM remains a valid 

approximation for the nuclear component of the scattering. Finally, the standard deviation, σ(q), 

of the simulated scattering patterns for the 10,000 sampled structures is calculated, and this is 

used to estimate the thermal structural distribution (effect of molecular geometry distribution) for 

the calculated 3p signal,  presented as the shaded area in Figure 2 (b) of the main text.  

 

Supplementary Note 5. Derivation of Theoretical Fractional Difference 

The fractional difference scattering signal Δ𝑆���(𝑞, 𝑡) of a molecule at pump-probe delay 

time 𝑡 is defined as, 

 Δ𝑆���(𝑞, 𝑡) =
𝐼A>(𝑞, 𝑡) − 𝐼Abb(𝑞, 𝑡J)

𝐼Abb(𝑞, 𝑡J)
, (5) 

where 𝐼A>(𝑞, 𝑡) is the scattering signal measured at the given pump-probe delay time after the 

molecule has been excited by the pump pulse (pump pulse on) and 𝐼Abb(𝑞, 𝑡J)  refers to the 

scattering signal prior to excitation (pump pulse off). If the molecule is initially in its electronic 

ground state X, the pump-off signal can be written as the static scattering signal of the molecule 

in its electronic ground state, i.e., 

 𝐼Abb(𝑞, 𝑡J) = 𝐼�(𝑞, 𝑡J). (6) 

Since the experiment is set up to avoid multiphoton processes, we need not consider secondary 

ground state wave packets and the pump-on signal will have two components. The first 

corresponds to the fraction excited by the pump, given by 𝛾, and the second to the 1 − 𝛾 fraction 

that is unaffected by the pump. The 𝐼A>(𝑞, 𝑡) signal can then be written as, 

 𝐼A>(𝑞, 𝑡) = 𝛾 · 𝐼���(𝑞, 𝑡) + (1 − 𝛾) · 𝐼�(𝑞, 𝑡J), (7) 



where 𝐼���(𝑞, 𝑡) is the scattering signal from the excited component. It is worth noting that at 

longer pump-probe delay times than those considered here, 𝐼���(𝑞, 𝑡) may decay to the electronic 

ground state as the molecule undergoes internal conversion. Inserting the definitions in 

Supplementary Equations (6) and (7) into the Supplementary equation (5) yields, 

 Δ𝑆���(𝑞, 𝑡) = 𝛾 ·
𝐼���(𝑞, 𝑡) − 𝐼�(𝑞, 𝑡J)

𝐼�(𝑞, 𝑡J)
. (8) 

If we disregard 𝛾  as a simple multiplicative scaling factor and express the scattering 

signal as a function of time-dependent classical nuclear structures instead of the pump-probe 

delay time 𝑡 itself, Supplementary Equation (8) simplifies to, 

 Δ𝑆���(𝑞, 𝐑�) =
𝐼���(𝑞, 𝐑′) − 𝐼�(𝑞, 𝐑J)

𝐼�(𝑞, 𝐑J)
. (9) 

where 𝐑′ is the nuclear geometry of the molecule on the excited state at pump-probe delay 𝑡 and 

𝐑J refers to the equilibrium structure of the molecule on the electronic ground state at 𝑡J prior to 

the excitation. Supplementary Equation (9) corresponds to Equation (3) in the main body of the 

letter. 

 

 



 

Supplementary Figure 3. Experimental and theoretical fractional difference signals, 𝚫𝑺(𝒒), 

shown in percent. The experimental signal at 87 fs and 150 fs delay time are shown in black 

diamonds and blue circles with 1𝜎 error bars. Both curves have been deconvoluted with an 

instrument function and divided by the excitation fraction. The theoretical Δ𝑆��(𝑞, 𝐑�) signal for 

the electronic 3p state is shown in red with the shaded region accounting for the sampling of 

geometries in the excited state. 

 

 CASSCF5 /eV CASPT25 /eV Experiment5 /eV CASPT2/eV (This work) 
1B 8.40 4.72 4.94 4.72 
3s 5.83 5.49 5.39 5.39 
3px 6.43 5.98 6.03 6.05 
3py 6.50 6.04 -------------- 5.97 
3pz 6.36 6.12 6.05 6.06 

Supplementary Table 1. Excitation energies for the first five low-lying excited states of 

CHD. First three columns: calculated results using Complete Active Space Self-Consistent Field 

theory (CASSCF), second-order Complete Active Space Perturbation Theory (CASPT2) and 

experimental results reported in Table 4 of Supplementary Reference 5. CASPT2 (this work): 

calculated results using the method applied for the present study, details of the CASPT2 

calculation could be found in the Methods section. 
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