Accelerated evolution of an *Lhx2* enhancer shapes mammalian social hierarchies

Yuting Wang, Guangyi Dai, Zhili Gu, Guopeng Liu, Ke Tang, Yi-Hsuan Pan, Yujie Chen, Xin Lin, Nan Wu, Haoshan Chen, Su Feng, Shou Qiu, Hongduo Sun, Qian Li, Chuan Xu, Yanan Mao, Yong Edward Zhang, Philipp Khaitovich, Yan-Ling Wang, Qunxiu Liu, Jing-Dong Jackie Han, Zhen Shao, Gang Wei, Chun Xu, Naihe Jing, Haipeng Li

Supplementary text Figures S1 to S15 Tables S1 to S10 SI References Supplementary Information Text

Motor Coordination, Balance

Results of the rota-rod test¹ revealed that no significant difference in motor coordination and balance between PAS1^{c/c} and PAS1^{c/m}, and between PAS1^{-/m} and PAS1^{-/-} male mice (Two-tailed permutation test, P = 0.914, and 0.394, respectively) (Supplementary information, Fig. S13). However, a significant difference in motor coordination and balance was observed between PAS1^{w/m} and PAS1^{w/m} male mice (Two-tailed permutation test, P = 0.030). Results of the pole test² showed that all 3 pairs of male mice had no significant difference in motor coordination and balance (Supplementary information, Fig. S13) (Two-tailed permutation test, P = 0.972, 0.076, and 0.996, respectively).

Fig. S1. Phylogenetic tree of 16 amniotes for studying placentals-accelerated sequences (PASs). (a) The branch sets of tree and the branch-specific normalization factors. Connected branches with the same color (excluding the red branch) were considered as a branch set. There were 17 branch sets. The average evolutionary rate of each window in each branch set was calculated. The local evolutionary rate of the *i*-th branch was normalized by the branch-specific normalization factors are larger than 1.0 for primates and smaller than 1.0 for rodents, consistent with the previous conclusions of slow-evolving primates and fast-evolving rodents.³

(b) Comparison between the original phylogenetic tree (left) and the reconstructed neighborjoining tree⁴ based on the genome-wide alignments using the eGPS software (right).⁵

Fig. S2. LacZ-positive E11.5 embryos from hPAS1, mPAS1, wPAS1, and cPAS1 transgenic mouse enhancer assays. Lateral (upper), dorsal (middle), and ventral (bottom) views of all embryos are shown. The second mPAS1-Hsp68-LacZ embryo, the first wPAS1-Hsp68-LacZ embryo, and the sixth cPAS1-Hsp68-LacZ embryo were presented in Figure 2c.

Fig. S3. Effect of hPAS1 and cPAS1 on the expression of the fluorescent protein gene in the spinal cord of chicken embryo.

(a) and (b): E4 chicken embryos after electroporation of hPAS1-TK-EGFP (green) or cPAS1-TK-mCherry (red) plasmid into the neural tube of E2 chicken embryos. Both EGFP and mCherry fluorescence signals were detected in the spinal cord of chicken embryos.

(c) and (d): Co-expression of EGFP (green) and mCherry (red) in the neural tube of chicken embryos after electroporation of hPAS1-TK-EGFP and cPAS1-TK-mCherry plasmids at 1:1 ratio.

(a, b, c) lateral view (d) dorsal view. The TK promoter is a minimal promoter and does not drive the expression of the reporter genes without an enhancer.

Fig. S4. Identification of topologically associating domain (TAD) around PAS1. The TAD was determined by TADTree,⁶ and indicated with an empty square. The TAD was taken as the boundary of the region to which PAS1 may act. Data were obtained from.⁷

Fig. S5. Evidences for PAS1 regulating the expression of the *Lhx2* gene.

(a) Positive correlation between the CAGE signals of PAS1 and *Lhx2* expression in mouse samples. $P < 2.2 \times 10^{-16}$. The publicly available data were obtained from FANTOM. RPKM: Reads per kilobase per million mapped reads.

(b) Positive correlation between the CAGE signals of PAS1 and *Lhx2* expression in human samples. $P < 2.2 \times 10^{-16}$. The publicly available data were obtained from FANTOM. RPKM: Reads per kilobase per million mapped reads.

(c) – (f) Hi-C signals of PAS1 and *Lhx2* TSS in different mouse cell lines.⁸ Hi-C signals (green arrow heads) were observed on PAS1 and *Lhx2*, but not on PAS1 and *Dennd1a* (C, and D); No Hi-C signal was detected in non-neural cells (E, and F)

Fig. S6. mRNA levels of *Dennd1a* in E11.5 embryos (a–c) and P0 (d–f) of PAS1^{-/-}, PAS1^{w/w} and PAS1^{c/c} mice compared with those of wide-type littermates. mRNA levels of *Dennd1a* determined by RT-qPCR were normalized to those of *Gapdh*. Error bars represent the s.e.m of at least three biological replicates and three technical replicates for each experiment.

Fig. S7. mRNA levels of Gm27197 in E11.5 embryos(a–c) and P0(d–f) of PAS1^{-/-}, PAS1^{w/w}, PAS1^{c/c} mice compared with those of wide-type littermates. mRNA levels of Gm27197 determined by RT-qPCR were normalized to those of Gapdh gene. Error bars represent the s.e.m from at least three biological replicates with three technical replicates for each experiment.

Fig. S8. *Lhx2* mRNA levels determined by RT-qPCR in P0 of PAS1^{-/-}, PAS1^{w/w} and PAS1^{c/c} mice compared with those of wide-type littermates. *Lhx2* mRNA levels were normalized to those of *Gapdh*. Error bars represent the s.e.m of at least three biological replicates (three for PAS1^{-/-}, three for PAS1^{w/w}, four for PAS1^{c/c}) and three technical replicates for each experiment.

Fig. S9. Effect of PAS1s on the expression of *Lhx2* in the primitive spinal cord. E11.5 PAS1^{-/-}, PAS1^{w/w}, PAS1^{c/c} and wild-type mouse embryos were immuno-stained for LHX2 (green) after CUBIC clearing. The region in which *Lhx2* was expressed in the wild-type (PAS1^{m/m}) embryo is marked (d11-3, three neuronal cell types).⁹ For each mouse strain, at least three groups of embryos were examined. Each group of embryos had two age-matched littermates of specific PAS1 genotypes. Scale bar, 200 μ m.

(a) Five groups of $PAS1^{m/m}$ and $PAS1^{-/-}$ pair.

(b) Three groups of $PAS1^{m/m}$ and $PAS1^{w/w}$ pair. The $PAS1^{m/m}$ embryo in Group A was used in Figure 3H as the wild-type control.

(c) Three groups of $PAS1^{m/m}$ and $PAS1^{c/c}$ pair.

Fig. S10. Schematic of four summary statistics used for examination of LHX2 expression in spinal cord sections. d1 and d2 define the width of the areas in which the LHX2 protein was expressed, r1 and r2 denote the distances of the areas with LHX2 protein expression away from the dorsal vertex of the spinal cord. Scale bar, $200 \mu m$.

The social dominance tube test was performed daily for 7 to 10 consecutive days. The winner of each test is indicated with a colored dot, which represents a specific PAS1 genotype of the mice tested. Day1 indicates the first tube test trial after the three-day training. Please note that we applied the tube test only to cage mice living together for at least 2 weeks (Table S5-7). (a) Tests of PAS1^{w/m} vs. PAS1^{w/w} male mice. All winners were of the PAS1^{w/m} genotype. (b) Tests of PAS1^{c/m} vs. PAS1^{c/c} male mice. All winners were of the PAS1^{c/c} genotype. (c, d, e, f, g, h) Tests of PAS1^{-/m} vs. PAS1^{-/-} male mice. The genotype of the winner varied.

Fig. S13. Motor and activity tests. Data are presented as mean ±SD.

- (a) Rota-rod tests of PAS1^{c/n} (n=8) and PAS1^{c/c} (n=8) mice.
- (b) Pole tests of $PAS1^{c/m}$ (n=8) and $PAS1^{c/c}$ (n=8) mice
- (c) Rota-rod tests of PAS1^{-/m} (n=12) and PAS1^{-/-} (n=12) mice.
- (d) Pole tests of PAS1^{-/m} (n=12) and PAS1^{-/-} (n=12) mice.
- (e) Rota-rod tests of $PAS1^{w/m}$ (*n*=9) and $PAS1^{w/w}$ (*n*=12) mice.
- (f) Pole tests of PAS1^{w/m} (n=9) and PAS1^{w/w} (n=12) mice.

Fig. S14. Body weight of mice at two months (before group-housing). Data are presented as mean±SD.

(a) Body weight of PAS1^{*c/m*} (*n*=10) and PAS1^{*c/c*} mice (*n*=10) at 9.0-10.0 weeks of age. One-way analysis of variance P = 0.822.

(b) Body weight of PAS1^{-/m} (n=6) and PAS1^{-/-} mice (n=5) at 9.4-10.4 weeks of age. One-way analysis of variance P = 0.122.

(c) Body weight of PAS1^{w/m} (n=10) and PAS1^{w/w} mice (n=10) at 9.5-10.5 weeks of age. One-way analysis of variance P = 0.734.

		5' Homology arm	PAS1	region
PAS1 ^{m/m}	1	AAACCACGAGAGCGTCACAGCAAACA	CACA <mark>CTTCTGAA</mark>	<mark>CGTCTTCATTTTGA</mark>
PAS1-/-	1	AAACCACGAGAGCGTCACAGCAAACA		
PAS1 ^{w/w}	1		$\mathbf{CACATT}\mathbf{CT}\mathbf{CT}\mathbf{CAA} $	ATGGCTTCATTTGGA
	1			CGTCTTCATTTGA
PAST	1			
		000000000000000000000000000000000000000	0.0000000000000000000000000000000000000	<u>AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA</u>
		<u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>	<u> </u>	<u>KXXXXXXXXXXXXXXX</u>
PAS1-/-	1	AAACCACGAGAGCGTCACAGCAAACA		
		La . A . ABBARARARA ARABARA	_	
			-	
PAS1W/W	1	AAACCACGAGAGAGCGTCACAGCAAACA	CACATTCTTGAA	ATGGCTTCATTTGGA
1 491		and a halada a a a		1
		ΝΑΑΛΑΛΑΑΛΑΛΑΛΑΛΑΛΑΛΑΛΑΛΑΛΑΛΑΛΑΛΑΛΑΛΑΛΑΛ	ი_ი_ი_ი_ი_ი_ი_ი_ი_	
		<u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>	<u> </u>	<u></u>
PAS1 ^{c/c}	1	AAACCACGAGAGCGTCACAGCAAACA	ACAT TT CT GAACATAT.	AAGCGTTCTGATTTTGA
		ananan A. Andada an A. Ana	. a. AAAa. Allaanaaa	A . A
			WWWWWWWWWWWWW	^/\~/\VVVVVVVVVVVVV
		P	AS1 region	
	52	TTTAATGGTATATCAGCGTCAACTAT	GCTTCCTGTGCTGGTA	CACHCEECCTGATGCCE
PAS1	27			
PAS1 ^{w/w}	54	TTTAATGGTATATCAGCGTCAACTAT	IGCTTCCTTTGCTGGTA	CACACTTCCTGATGCCT
PAS1 ^{c/c}	61	TTTAATGGTATATCAGCGTCAACTAT	IGCTTCCTTTGCTGGTA	CACACTTCCTGATGCCT
		P	AS1 region	
PAS1 ^{m/m}	113	CGGGAGGAGGGTGCCCATCTTATCA	CCGAGT <mark>c</mark> agatga <mark>c</mark> taa	TTACACCTTGTCAATCA
PAS1-/-	27	ACTGAGGAGGGTGCCCATATTTACAA	CCACTAACATCATTAA	TTECACCTTETCAATCA
PAS1 ^{c/c}	121	ACTGHGAAGGGTGCCCATATTTACAA	C <mark>T</mark> GAGTAAGATGATTAA	TTACACCTTGTCAATCA
		P	AS1 region	
	173	CCGGGHATGAAGACATAAAACCAGG	CEGACAATGAAATAGTT	GCCTGOAGCGUCAATTA
PAS1-	27			
PAS1 ^{w/w}	174	CCGTGCATGAAGACGTAACACCATAG	CAGACAATGAAG <mark></mark> AC	GCCTGAAGCTACAATTA
PAS1 ^{c/c}	181	C <mark>E</mark> GTGCATGAAGACATAACACCA <mark>C</mark> AG	CAGACAATGAAG <mark>A</mark> AGAT	GCCTGAAGCTACAATTA
		Р	AS1 region	
PAS1 ^{m/m}	233	GTTGGCGATTCCGAGGGTATTTGCGT	GCCCTGCTTTGGCCGC	TCTAATAACGG <mark>C</mark> ACAGA
PAS1**	27 231	CGATTTAATTCATAGTTTAT G-C TAT	GTCCC-ATATATTGCAG	CCTAATAATGGAAAGAA
PAS1 ^{c/c}	241	C <mark>a</mark> ttttaattcatagtttatt-gtat	G <mark>CCCC</mark> CATATA <mark>C</mark> TGCAG	TCTAATAAC <mark>C</mark> GTAGGGG
		P	AS1 region	
	293	GCGCCGGGAACAGCGCGCAGATCAAT	CACCCTGGTTCCGCTGC	
PAS1-	27			
PAS1w/w	289	ACATAGAAAACATATGAGTATCAAT		CTTGTCCCTTTGTAGCC
PAS1 ^{c/c}	300	CAICMAAACATAIGAGATAICAAT	A S4 region	
			AST region	
PAS1 ^{m/m}	347	ACCHECCECCTTCHCCCCTCCTCCAG	<u>eenee</u>	
PAS1 ^{w/w}	349	TACTCCCCCCACCATGACCTTGCTCT	CCTGGG <mark>C</mark> AGCATGATT	CCCCATTTTTTAATTAG
PAS1 ^{c/c}	355	TTATTTCACAGCCTTTAAATTAC	CATAAGTAG TT	ACTTATTTCCTAAG
		F	AS1 region	
PAS1 ^{m/m}	378	CCTCACT TTCTCC	стесс <mark>ст</mark> есс <mark>ссттес</mark>	TCCCTCCGCGGCCCC
PAS1-/-	27			
PAS1 ^{W/W} PAS1 ^{c/c}	409		TETTACCTTTATCTATCCC	ATTTATCTTTTATTCTT
	400		AS1 region	
			AST TEYION	
PAS1 ^{m/m}	423	GGCCGGGMGGGGGGGCGCCGTG		
PAST PAST	469	AGGCCCATTTTACCTTTCTCCATCAG	TTAGGAAGTCCGGGTGG	AAGTTGGCAGCTCACTT
PAS1 ^{c/c}	452	AGTACCTTTATCCAACAG	CTATAAGTATTTGATGG	AAGTTTG <mark>T</mark> AGCTCACTT

Fig. S15. Alignments of nucleotide sequences of $PAS1^{m/m}$ (wild-type), $PAS1^{-/-}$, $PAS1^{w/w}$ and $PAS1^{c/c}$ mice.

Table S1. List of the accelerated regions in the ancestral lineage of placental mammals. Genomic locations of accelerated regions and the most adjacent protein coding genes were determined by searching the Ensembl/Havana database (GRCh37). The threshold of *P*-values was 3.06×10^{-9} after Bonferroni correction. H3K27ac signals¹⁰ within 30-kb regions were obtained from ENCODE/LICR on the UCSC genome browser with a vertical viewing range of [0.2, 10]. The accelerated regions are marked with inverted triangle, located in the middle of the 30-kb regions. Median gene expression levels in 51 tissues and 2 cell lines, based on RNA-seq data of 8,555 tissue samples from 570 adult post-mortem individuals from the NIH Genotype-Tissue Expression (GTEx) project (V6, October 2015),¹¹ were visualized with UCSC genome browser. GTEx gene expression levels were log-transformed. Green circle – Passed related filters; Black circle – Failed to pass related filters.

Rank	Coordinates	Genomic Location	Closest Coding Genes	P-value	Active enhancer signal (H3K27ac) in whole mouse brain E14.5	GTEx Gene Expression in 53 adult human tissues (Brain in yellow)
1	hg19 chr9:126770941-126771040 mm9 chr2:38203835-38203933	Non-coding	Lhx2	3.15×10 ⁻¹⁸		
2	hg19 chr9:126770921-126771020 mm9 chr2:38203815-38203913	Non-coding	Lhx2	5.94×10 ⁻¹⁸		• • • • • • • • •
3	hg19 chr9:126770901-126771000 mm9 chr2:38203795-38203894	Non-coding	Lhx2	7.14×10 ⁻¹⁸		• • • • • • • • •
4	hg19 chr9:126770961-126771060 mm9 chr2:38203855-38203953	Non-coding	Lhx2	2.77×10 ⁻¹⁸		• <u>•</u>
5	hg19 chr11:8310741-8310840 mm9 chr2:160352318-160352420	intergenic	Lmol	9.63×10 ⁻¹³		mathha a latta
6	hg19 chr9:126771021-126771120 mm9 chr2:38203914-38204013	Non-coding	Lhx2	1.92×10 ⁻¹²		• <u> </u>
7	hg19 chr20:39498201-39498300 mm9 chr2:160352318-160352420	intergenic	Top1	2.78×10 ⁻¹¹		
8	hg19 chr9:126770601-126770700 mm9 chr2:38203489-38203588	Non-coding	Lhx2	8.28×10 ⁻¹¹		• <u> </u>
9	hg19 chr20:57485821-57485920 mm9 chr2:174171826-174171924	coding	Gnas	1.26×10 ⁻¹⁰		
10	hg19 chr9:126770541-126770640 mm9 chr2:38203429-38203528	Non-coding	Lhx2	3.15×10 ⁻¹⁰		• <u> </u>
11	hg19 chr9:126770641-126770740 mm9 chr2:38203529-38203629	Non-coding	Lhx2	3.84×10 ⁻¹⁰		• <u> </u>
12	hg19 chr3:71113981-71114080 mm9 chr6:98978164-98978259	intronic	Foxp1	5.27×10 ⁻¹⁰		
13	hg19 chr3:71114041-71114140 mm9 chr6:98978223-98978313	intronic	Foxpl	5.48×10 ⁻¹⁰		
14	hg19 chr4:1804621-1804720	coding	Fgfr3	5.95×10 ⁻¹⁰		

	mm) cm3.340/3710-340/4007				
15	hg19 chr9:126770981-126771080 mm9 chr2:38203875-38203973	Non-coding	Lhx2	7.18×10 ⁻¹⁰	• <u>• • • • • • •</u>
16	hg19 chr9:126770561-126770660 mm9 chr2:38203449-38203548	Non-coding	Lhx2	7.37×10 ⁻¹⁰	• <u>• • • • • • •</u>
17	hg19 chr11:8358781-8358880 mm9 chr7:116382622-116382722	intergenic	Stk33	8.08×10 ⁻¹⁰	Januario Containa ada ada
18	hg19 chr20:39498181-39498280 mm9 chr2:160352303-160352398	intergenic	Top1	1.10×10 ⁻⁹	
19	hg19 chr9:126771041-126771140 mm9 chr2:38203934-38204033	Non-coding	Lhx2	1.10×10 ⁻⁹	• <u> </u>
20	hg19 chr2:80531301-80531400 mm9 chr6:77193092-77193192	5' UTR intronic	Lrrtm1 Ctnna2	1.28×10 ⁻⁹	• • • • • • • • •
21	hg19 chr2:80531321-80531420 mm9 chr6:77193072-77193172	5' UTR intronic	Lrrtm1 Ctnna2	1.28×10 ⁻⁹	• •
22	hg19 chr11:8358761-8358860 mm9 chr7:116382602-116382702	intergenic	Stk33	1.29×10 ⁻¹⁰	
23	hg19 chr14:94519381-94519480 mm9 chr12:104648175-104648275	coding	Ddx24	1.36×10 ⁻⁹	
24	hg19 chr5:52776361-52776460 mm9 chr13:115248934-115249033	5' UTR	Fst	1.38×10 ⁻⁹	🕒 <mark>halt 🧠 t</mark> hännishtskallt har
25	hg19 chr18:6882121-6882220 mm9 chr17:68213881-68213980	coding	Arhgap28	1.77×10 ⁻⁹	In all and the set to be added
26	hg19 chr20:57478741-57478840 mm9 chr2:174167325-174167424	coding	Gnas	1.80×10 ⁻⁹	
27	hg19 chr14:103355881-103355980 mm9 chr12:112489325-112489424	intronic	Traf3	2.51×10 ⁻⁹	• matelling hours as addre
28	hg19 chr20:57478721-57478820 mm9 chr2:174167305-174167404	coding	Gnas	2.98×10 ⁻⁹	

mm9 chr5:34073910-34074009

Table S2. Summary statistics of *Lhx2* gene expression levels in spinal cord sections of PAS1^{-/-} E11.5 mouse embryos. Images of spinal cord sections of E11.5 PAS1^{m/m} (wild-type) and PAS1^{-/-} embryos immuno-stained for LHX2 after CUBIC clearing were captured and analyzed with the Vision4D software (version 2.12.3, Arivis). Five groups of embryos were examined, and each group of embryos was from age-matched littermates. Three consecutive sections of each embryo were examined. d1 and d2 define the width of the areas with LHX2 protein expression. r1 and r2 denote the distances of the areas with LHX2 protein expression away from the dorsal vertex of the spinal cord. Measurements were conducted by two experts independently, and results are presented in the following two sub-tables. Two-tailed permutation test was used, *P < 0.05, **P < 0.01.

		Group A		Group B		Group C		Group D		Group E		D volue
		PAS1 ^{m/m}	PAS1 ^{-/-}	<i>F</i> -value								
Expert 1												
d4	Section1	539.56	430.83	494.04	439.24	484.56	467.70	460.42	370.85	582.06	482.09	
ui ()	Section2	507.35	417.62	477.64	427.49	470.54	462.40	444.07	396.12	537.89	420.00	0.00001 **
(µm)	Section3	559.73	410.76	531.60	416.65	481.26	464.10	448.82	270.45	532.01	407.67	
40	Section1	608.89	496.80	536.04	416.15	506.87	497.80	468.25	383.84	581.28	505.56	
uz	Section2	567.11	494.62	580.97	463.60	484.77	487.69	461.89	417.95	535.26	509.69	0.00004 **
(1114)	Section3	574.08	434.10	564.94	416.18	541.19	434.00	425.55	377.96	510.70	444.90	
r1	Section1	253.62	315.56	253.62	333.43	152.09	285.81	131.75	356.98	489.63	395.94	
(11 m)	Section2	242.13	352.30	242.13	314.31	166.74	297.59	167.84	318.95	474.67	370.93	0.00445 **
(1114)	Section3	260.09	353.08	260.09	351.72	159.37	277.10	126.43	360.40	433.02	377.27	
r2	Section1	61.72	137.31	61.72	142.46	27.94	111.96	35.57	108.26	68.50	163.00	
(11 m)	Section2	63.81	116.90	63.81	139.78	48.28	107.39	43.19	120.51	66.07	157.50	0.00003 **
(1114)	Section3	66.06	116.73	66.06	172.94	53.35	101.81	43.19	118.32	64.65	170.30	
Expert 2												
d1	Section1	529.66	431.91	482.04	430.18	478.68	455.64	472.13	350.64	583.06	470.67	
(1)	Section2	543.56	411.86	539.55	421.66	498.29	382.47	478.54	469.43	627.06	460.97	0.00004 **
(1114)	Section3	575.63	372.20	765.87	417.68	493.55	451.34	439.37	300.39	574.94	468.98	
d2	Section1	656.01	442.12	545.45	406.20	552.24	502.86	518.37	459.56	604.80	510.91	
(um)	Section2	578.58	511.04	614.04	520.80	509.50	478.95	425.55	412.17	571.81	526.14	0.00001 **
(1114)	Section3	613.61	373.40	604.75	470.22	564.01	424.54	441.14	414.47	475.52	414.73	
r1	Section1	259.98	346.97	199.36	328.92	199.32	279.94	121.89	310.39	532.40	396.75	
(11 m)	Section2	266.80	314.83	205.22	324.53	172.68	296.50	143.62	282.44	475.38	365.27	0.00401 **
(1114)	Section3	235.67	366.30	153.75	269.73	148.15	281.83	113.28	326.01	434.92	373.14	
r2	Section1	63.51	140.30	67.27	158.72	47.56	106.71	43.19	135.19	90.75	183.27	
(11 m)	Section2	66.34	108.27	73.68	151.16	56.86	101.81	63.79	115.79	97.32	168.74	0.00003 **
(µm)	Section3	55.89	146.72	58.45	106.74	50.01	94.20	45.73	139.38	89.12	186.26	

Table S3. Summary statistics of *Lhx2* gene expression levels in spinal cord sections of PAS1^{w/w} E11.5 mouse embryos. Images of spinal cord sections of E11.5 PAS1^{m/m} (wild-type) and PAS1^{w/w} embryos immuno-stained for LHX2 after CUBIC clearing were captured and analyzed with the Vision4D software (version 2.12.3, Arivis). Three groups of embryos were examined, and each group of embryos was from age-matched littermates. Three consecutive sections of each embryo were examined. d1 and d2 define the width of the areas with LHX2 protein expression. r1 and r2 denote the distances of the areas with LHX2 protein expression away from the dorsal vertex of the spinal cord. Measurements were conducted by two experts independently, and results are presented in the following two sub-tables. Two-tailed permutation test was used, **P* < 0.05, ***P* < 0.01.

		Group A		Group B		Group C		D volue
		PAS1 ^{m/m}	PAS1 ^{w/w}	PAS1 ^{m/m}	PAS1 ^{w/w}	PAS1 ^{m/m}	PAS1 ^{w/w}	P-value
Expert	1							
d1	Section1	512.05	446.78	645.23	403.00	532.79	548.83	
ui (um)	Section2	558.82	417.99	647.42	397.57	600.04	638.70	0.08092
(µm)	Section3	556.00	391.57	602.79	380.79	579.55	561.50	
42	Section1	617.43	380.64	648.93	459.64	542.19	626.77	
(11 m)	Section2	531.43	462.33	680.30	416.86	575.26	575.73	0.08068
(# 111)	Section3	586.85	444.22	642.15	435.91	544.53	595.07	
r1	Section1	539.57	630.17	322.17	342.87	292.01	384.59	
(11 m)	Section2	487.55	612.02	290.03	305.63	264.44	385.46	0.00465 **
(µ111)	Section3	447.78	534.52	291.35	359.43	253.72	367.33	
r2	Section1	54.82	193.13	45.98	150.92	53.35	119.65	
(µm)	Section2	43.66	175.52	53.57	160.98	76.23	122.42	0.00543 **
(µ'iii)	Section3	40.28	154.95	53.67	166.35	66.05	96.65	
Expert	2							
d1	Section1	629.95	368.60	708.30	446.72	521.27	508.43	
(um)	Section2	554.77	324.79	667.57	431.84	609.81	515.76	0.00513 **
(µ111)	Section3	630.44	401.84	605.03	353.81	576.36	555.17	
d2	Section1	743.56	520.68	680.43	474.58	454.84	652.03	
(11 m)	Section2	532.03	507.15	664.14	427.24	521.73	512.31	0.00469 **
(# 111)	Section3	649.75	431.86	669.80	417.93	496.01	611.85	
r1	Section1	521.03	630.17	291.93	309.32	297.49	337.34	
(um)	Section2	483.39	621.99	262.32	305.57	242.40	350.87	0.00401 **
(1114)	Section3	445.59	528.85	236.00	335.22	231.50	333.03	
r2	Section1	76.11	155.01	73.56	180.61	92.12	121.37	
(um)	Section2	70.72	167.68	73.12	168.56	78.97	129.87	0.00551 **
(µ111)	Section3	68.70	150.88	66.70	182.32	84.23	114.84	

Table S4. Summary statistics of *Lhx2* gene expression levels in spinal cord sections of PAS1^{c/c} E11.5 mice embryos. Images of spinal cord sections of E11.5 PAS1^{m/m} (wild-type) and PAS1^{c/c} embryos immuno-stained for LHX2 after CUBIC clearing were captured and analyzed with the Vision4D software (version 2.12.3, Arivis). Three groups of embryos were collected, and each group of embryos was from age-matched littermates. Three consecutive sections of each embryo were examined. d1 and d2 define the width of the areas with LHX2 protein expression. r1 and r2 denote the distances of the areas with LHX2 protein expression away from the dorsal vertex of the spinal cord. Measurements were conducted by two experts independently, and results are presented in the following two sub-tables. Two-tailed permutation test was used, **P* < 0.05, ***P* < 0.01.

		Group A		Group B		Group C		
		PAS1 ^{m/m}	PAS1 ^{c/c}	PAS1 ^{m/m}	PAS1 ^{c/c}	PAS1 ^{m/m}	PAS1 ^{c/c}	P-value
Expert	1							
d1	Section1	447.39	329.85	613.81	340.18	548.26	454.95	
(11 m)	Section2	360.18	300.99	552.89	425.39	578.09	402.69	0.00561 **
(µm)	Section3	395.50	279.46	570.85	382.50	554.51	434.37	
d2	Section1	479.68	402.71	630.48	321.16	603.36	463.33	
(um)	Section2	420.08	380.98	547.54	414.26	585.54	481.43	0.00527 **
(µ11)	Section3	368.65	300.09	577.24	445.73	528.37	482.88	
r1	Section1	97.26	258.24	336.25	458.48	156.00	320.50	
(11)	Section2	83.00	256.39	341.98	465.72	180.02	339.66	0.00492 **
(µ11)	Section3	98.74	268.99	301.19	482.01	162.02	292.31	
r2	Section1	37.91	162.56	64.74	178.73	58.44	159.70	
(um)	Section2	43.20	146.49	72.24	144.85	60.62	163.56	0.00506 **
(µm)	Section3	35.57	169.43	66.36	129.95	51.15	155.89	
Expert	2							
d1	Section1	461.63	368.90	600.44	357.35	578.65	436.46	
(11 m)	Section2	411.37	356.28	510.31	350.69	592.05	391.90	0.00475 **
(µm)	Section3	408.59	429.95	583.41	339.36	552.68	423.07	
42	Section1	487.84	380.99	664.64	334.8	612.24	532.67	
(11 m)	Section2	468.05	403.48	582.39	405.96	562.76	556.23	0.33588
(µm)	Section3	363.75	682.42	567.68	455.13	537.00	463.04	
r1	Section1	56.76	276.06	347.75	462.42	150.19	331.35	
(11 m)	Section2	40.03	284.21	345.64	478.24	162.18	326.84	0.00544 **
(µ11)	Section3	35.75	273.09	307.92	478.54	162.02	314.14	
-2	Section1	48.48	199.18	67.27	213.48	80.75	185.69	
12 (m)	Section2	26.87	215.29	83.85	179.20	91.68	213.69	0.00504 **
(µm)	Section3	22.87	189.90	83.85	190.30	83.82	203.44	

Cage number ^a	No. of PAS1 ^{w/m} <i>vs.</i> No. of PAS1 ^{w/w}	Winning rate of PAS1 ^{w/m}	Winning rate of PAS1 ^{w/w}	Age at group-housing (weeks)	Weight at group-housing (g)	Housed before tube test (weeks) ^b	Age at tube test (weeks)	Weight at tube test (g)
Cage 1	2:2	100%	0%	7.7	19.5-21.7	5.0	12.7	22.8-24.0
Cage 2	2:2	100%	0%	7.4	19.8-22.3	5.0	12.4	24.0-25.6
Cage 3	2:2	50%	50%	7.4-7.7	22.1-23.8	5.0	12.4-12.7	26.3-29.3
Cage 4	2:2	50%	50%	7.4-7.7	21.0-22.5	5.0	12.4-12.7	24.4-27.8
Cage 5	2:2	100%	0%	10.4	22.6-24.2	2.7	13.1	23.8-28.2
Cage 6	2:2	100%	0%	10.4	24.2-26.7	2.7	13.1	24.5-27.3
Cage 7	2:2	100%	0%	7.7-8.4	19.5-23.4	3.1	10.9-11.6	22.2-26.8
Cage 8	3:3	67%	33%	8.9-9.7	23.0-26.4	2.1	11.0-11.9	24.7-27.9
Cage 9	4:4	69%	31%	12.7-13.0	24.0-27.8	3.6	16.3-16.6	27.2-30.6
Cage 10	4:4	69%	31%	14.7-15.0	25.0-30.3	3.6	18.3-18.6	27.0-30.1
Cage 11	4:4	81%	19%	9.7-10.4	21.3-24.3	4.1	13.9-14.6	22.5-28.7
Summary		75.6%	24.4%					

Table S5. Results of social dominance tube test of $PAS1^{w/m} vs. PAS1^{w/w}$ mice.

^aMale mice with the same genotype were not paired. There were no female mice in cages 1 to 4. ^bThe exact time to acquire a stable rank was not examined in this study, but it was known to be less than the duration of housing time before tube test.

	No. of PAS1 ^{c/m}	Winning rate	Winning rate	Age at	Weight at	Housed before	Age at	Weight at
Cage number ^a	<i>vs.</i> No. of PAS1 ^{c/c}	of PAS1 ^{c/m}	of PAS1 ^{c/c}	group-housing (weeks)	group-housing (g)	tube test (weeks) ^b	tube test (weeks)	tube test (g)
Cage 1	2:2	0%	100%	11.6-11.7	24.8-27.3	3.4	15.0-15.1	27.4-29.6
Cage 2	2:2	0%	100%	11.6-11.7	23.2-24.6	3.4	15.0-15.1	22.8-26.5
Cage 3	2:2	0%	100%	9.6-9.9	23.0-24.4	3.3	12.9-13.1	25.8-26.9
Cage 4	2:2	0%	100%	9.6-9.9	19.7-22.6	3.3	12.9-13.1	23.1-25.5
Cage 5	2:2	0%	100%	9.1-9.6	18.8-22.1	3.1	12.3-12.7	22.5-24.6
Cage 6	2:2	0%	100%	9.1	21.2-23.4	3.9	13.0	23.0-26.3
Cage 7	2:2	0%	100%	9.1	20.1-21.1	3.9	13.0	22.5-23.6
Summary		0.0%	100.0%					

Table S6. Results of social dominance tube test of PAS1^{c/m} vs. PAS1^{c/c} mice.

^aMale mice with the same genotype were not paired. ^bThe exact time to acquire a stable rank was not examined in this study, but it was known to be less than the duration of housing time before tube test.

Cage number	No. of PAS1 ^{-/m}	Winning rate	Winning rate	Age at	Weight at	Housed	Age at	Weight at	Time to
	<i>vs.</i> No. of PAS1 ^{≁-}	of PAS1 ^{-/m}	of PAS1 ^{-/-}	group-housing (weeks)	group-housing (g)	before test (weeks)	tube test (weeks)	tube test (g)	achieve stable social hierarchy
Cage 1	2:2	73%	27%	9.4-11.1	23.8-25.4	4.3	13.7-15.4	27.1-29.7	
Cage 2	2:2	45%	55%	9.4-9.6	21.9-23.5	4.3	13.7-13.9	24.2-28.9	
Cage 3	2:2	58%	42%	9.4	22.8-24.5	2.7	12.1	24.5-26.1	Unstable during
Cage 4	2:2	68%	32%	7.9-8.7	21.1-22.5	4.0	11.9-12.7	23.7-25.2	the examined
Cage 5	2:2	38%	62%	7.9-8.1	22.6-24.7	4.0	11.9-12.1	25.7-28.8	period of time.
Cage 6	2:2	88%	12%	7.9-8.7	23.1-25.7	4.0	11.9-12.7	26.9-29.9	
Summary		58.8%	41.2%						

Table S7. Results of social dominance tube test of $PAS1^{-/m} vs. PAS1^{-/-}$ mice.

Male mice with the same genotype were not paired. Average winning rates of PAS1^{-/m} and PAS1^{-/-} in 10 consecutive days are shown.

Cage number	No. of PAS1-	Age at group-housing (weeks)	Weight at group-housing (g)	Housed before tube test (weeks)	Age at tube test (weeks)	Weight at tube test (g)	Time to achieve stable social hierarchy
Cage 1	4	9.3-9.9	22.4-24.1	3.7	13.0-13.6	25.9-28.1	Unstable during
Cage 2	4	9.3-9.9	24.0-25.4	3.7	13.0-13.6	27.7-29.5	the examined
Cage 3	4	9.3-9.9	25.5-26.0	3.7	13.0-13.6	27.7-28.7	period of time.

Table S8. Results of social dominance tube test of PAS1^{-/-} mice.

Table S9. List of primers.

Experiments	Primers	Note
	hPAS1_Fx:CCGctcgagCTGCCTAGGAAGAGGAAGGA	
	hPAS1_Rx:CCGctcgagAACCTGCCTTTTGTGGGAGG	
	mPAS1_Fx:CCGctcgagCTGCCTAGGAAGAGGAAGGA	
	mPAS1_Rx:CCGctcgagACCCTGTGTTTTGTGGAAGG	
	cowPAS1_Fx:CCGctcgagCTGCCTAGGAAAAGGAAAGA	
	cowPAS1_Rx:CCGctcgagAACCTGCCTTCTGTGGGAGG	Anoi site built in
	wPAS1_Fx:CCGctcgagTTGCCTATAAAAATGAAGGA	
Call transfaction	wPAS1_Rx:CCGctcgagAACCTGTATTTTGTAGTAGG	
Cell transfection	cPAS1_Fx:CCGctcgagTTGCCTATAAAAAAGAAGAA	
	cPAS1_Rx:CCGctcgagAACCTGTATTTGTTATAGG	
	miniPro_F:agcttTAGAGGGTATATAATGGAAGCTCGACTTCCAGA	HindIII site built
	miniPro_R:agcttCTGGAAGTCGAGCTTCCATTATATACCCTCTAA	in
		For verification of
	RVP3_F:CTAGCAAAATAGGCTGTCCC	uptake of the
	PGL411_R:CCATGGTGGCTTTACCAACA	plasmid carrying
		the reporter gene
	hPAS1_Fs:ACGCgtcgacCTGCCTAGGAAGAGGAAGGA	
	hPAS1_Rs:ACGCgtcgacAACCTGCCTTTTGTGGGAGG	
		Sall site built in
Chicken embryo		
electroporation		
electroperation		For verification of
	CF:TGCGGGCCTCTTCGCTATTA	uptake of the
	CR:TGAGGAGCAGTTCTTTGATT	plasmid carrying
		the reporter gene
	KO_P1:CATACTCCAAGAGTAACATCCCTGC	
	KO_P2:GAATCGCCAACTAATTGACGCTGCA	For PAS1 ⁻ model
Genotyping of ES	KO_P3:AGAGAATAGGAACTTCGTACCC	
cell targeting	KI_P1:TTGTTCTGAGTTAGTCACGGTGGCC	For PAS1 ^w and
mouse	KI_P2:GGGTACGAAGTTCCTATTCTCT	PAS1 ^c models
mouse	KI_P3:AAACGCAGCCTAGAGAAATGCA	
	InternalControl_F:CAACCACTTACAAGAGACCCGTA	
	InternalControl_R:GAGCCCTTAGAAATAACGTTCACC	
	Lhx2_F:GCCGAGAAAGCGCAAGAGT	
	Lhx2_R:TGTTCAGCATCGTTCTCGTTACA	
RT-qPCR	Lhx2_203F: GCTGCCGAGGGCTCACGAAG	
	Lhx2_203R: CTGCCAGCAGGTAGTAGCGG	
	Gapdh_F:CGTGTTCCTACCCCCAATGT	

Gapdh_R:TGTCATCATACTTGGCAGGTTTCT

Gm27197_F: AAGCGGGCGCCCAGATTTCT Gm27197_R: CGCAGAGCCCTTCCAGGATG

Dennd1a_F:TTTGATGACCTCCAGAGCCT Dennd1a_R:CATCACCTGTGGTTGTAGAG Table S10. Key resources table

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Anti-LHX2 Antibody	Millipore	ABE1402
		(RRID:AB_2722523)
ALEXA FLUOR 488 goat anti-rabbit IgG (H+L)	Thermo Scientific	A11034
		(RRID:AB_2576217)
Chemicals		
N,N,N',N'-Tetrakis(2-Hydroxypropyl)ethylenediamine	ALDRICH	122262
Agarose	Biowest	111860
MEM, NEAA, powder	Gibco	41500034
Trypsin (0.25%), phenol red	Gibco	15050057
Opti-MEM® I Reduced Serum Medium	Gibco	51985042
PureLink® Quick Plasmid Miniprep Kit	Invitrogen	K210010
SlowFade® Diamond Antifade Mountant with DAPI	Molecular Probes	S36964
FuGENE® HD Transfection Reagent	Promega	E2311
Dual-Glo® Luciferase Assay System	Promega	E2920
Dual-Luciferase® Reporter Assay System	Promega	E1910
HiSpeed Plasmid Maxi Kit (25)	Qiagen	12663
QIAGEN Plasmid Mini Kit (25)	Qiagen	12123
Tissue-Tek® O.C.T. Compound	SAKURA	4583
Paraformaldehyde	Sangon	A500684
Fetal Bovine Serum	SIGMA	12007C
Fast Green FCF Dye	SIGMA	F7252
Triton™ X-100	SIGMA	T9284
4', 6-Diamidino-2-phenylindole dihydrochloride	SIGMA	D8417-1MG
Takara MiniBEST Agarose Gel DNA Ectraction Kit	TaKaRa	9762
MiniBEST Universal RNA Extraction Kit	TaKaRa	9767
PrimeScript RT-PCR Kit	TaKaRa	RR014A
Takara Ex Taq® Hot Start Version	TaKaRa	RR006A
FastDigest® HindIII	Thermo Scientific	FD0504
FastDigest® Xhol	Thermo Scientific	FD0694
FastAP Thermosensitive Alkaline Phosphatase	Thermo Scientific	EF0654
GeneGreen Nucleic Acid Dye	TIANGEN	RT210
DNA Marker I	TIANGEN	MD101-02
T4 DNA Ligase	TIANGEN	RT406
DH5a	TIANGEN	CB101-01
TIANquick Midi Purification Kit	TIANGEN	DP204
RNAstore Reagent	TIANGEN	DP408-02
pGM-T Cloning Kit	TIANGEN	VT202-01
TransStart® FastPfu DNA Polymerase	TransGen	AP221

		00.00/	
Trans1-T1 Phage Chemically Competent Cell	TransGen	CD501	
TransScript Il All-in-One First-Strand cDNA	TransGen	AH341-01	
Synthesis SuperMix for qPCR			
TransStart® Top Green qPCR SuperMix	TransGen	AQ131-02	
Bovine Serum Albumin , Lyophilized Powde	VETEC	V900933	
Sucrose	VETEC	V900116	
Urea	VETEC	V900119	
Triethanolamine	VETEC	V900257	
Consumables			
Thermo Scientific™ Nunc™	Thermo Scientific	142475	
Assav Plate. 96 Well. No Lid	COSTAR	3362	
LightCvcler® 480 Multiwell Plate 96. white	Roche	04729692001	
4IN THINWALL GL 1.0 OD/.75 ID	WPI	TW100F-4	
Microloader 20µl	Eppendorf	5242856.003	
Equipments	FF		
Microplate reader	Bio-Tek	Svnerav H1	
Inverted fluorescence Microscope	Zeiss	Axio observer Z1	
	SUTTER		
Micropipette Puller	INSTRUMENT	MODEL P-2000	
	HARVARD		
Microinjection pump	APPARATUS	Pump 11 Elite	
Stereoscopic microscope	Zeiss	Stemi 2000-C	
3mm-diameter L-shaped electrode	BEX	LF613P3	
In vivo electroporator	BEX	CUY21EDIT II	
Stereo fluorescence microscope	Zeiss	AXIO Zoom.V16	
Real-time quantitative PCR instrument	Roche	LightCycler® 480	
Light sheet fluorescence microscopy	Zeiss	Lightsheet Z.1	
	Shanghai Mobile		
	Datum Information		
Rota-rod	Technology	RD1123RS-G / Code:	
	Co.,LTD / Ugo	47650	
	basile		
Experimental Models: Organisms/Strains			
	2	http://www.cyagen.com/u	
Mouse: FVB (transgenic mouse enhancer assays)	Cyagen	<u>s/en/</u>	
	Overen	http://www.cyagen.com/u	
	Cyagen	<u>s/en/</u>	
Mouse: C57BL/6	Shanghai Model	http://www.obmo.com.com	
	Organisms	<u>mup.//www.snmo.com.cn/</u>	
	Center,Inc	<u>English/</u>	

Mouse: C57BL/6 PAS1 ^{-/-} (mouse PAS1 knock-out) Mouse: C57BL/6 PAS1 ^{////} (wallaby PAS1 knock-in) Mouse: C57BL/6 PAS1 ^{c/c} (chicken PAS1 knock-in)	This project (donated)	NM-KO-190421 NM-KI-190001 NM-KI-190002
Plasmids for cell and chicken embryos transfection	I	
pGL4.11 vector	Promega	E6661
pGL4.74 reporter vector	Promega	E6921
miniPro-pGL4.11 reporter vector (miniPro-luc2P)		
hPAS1-miniPro-pGL4.11 reporter vector	This project	N/A
mPAS1-minoPro-pGL4.11 reporter vector		
cowPAS1-miniPro-pGL4.11 reporter vector		
wPAS1-miniPro-pGL4.11 reporter vector		
cPAS1-miniPro-pGL4.11 reporter vector		
PUC19 reporter vector	TransGen	N/A
nCAG-mCherry reporter vector	Addaene	41583
	Addgene	(RRID:Addgene_41583)
pCAG-EGFP reporter vector	This project	N/A
TK ECED reporter vector	Provided by Dr.	Ν/Δ
	Naihe Jing	N/A
TK-mCherry reporter vector		
hPAS1-TK-EGFP reporter vector	This project	N/A
cPAS1-TK-mCherry reporter vector		
Oligonucleotides		
Primers for PAS1, see Table S9	This project	N/A
Primers for Genotyping of ES cell targeting mouse,	This project	N/A
see Table S9	riis project	N/A
Primers for RT-qPCR, see Table S9	This project	N/A
Recombinant DNA		
Hsp68-LacZ vector		
hPAS1-Hsp68-LacZ reporter vector		N/A
mPAS1-Hsp68-LacZ reporter vector		
wPAS1-Hsp68-LacZ reporter vector	This project	
cPAS1-Hsp68-LacZ reporter vector	This project	
ES cell targeting vector, mm9-KOS141218, PAS1 ⁻		
ES cell targeting vector, mm9-KIS141215, PAS1 ^w		
ES cell targeting vector, mm9-galGal3, PAS1 ^c		
Cell Lines		
Mouse: Neuro2a	Cell Bank of CAS	TMC29
Human: HEK-293	Cell Bank of CAS	GNHu43
Software		
KungFuPanda	This project	http://www.picb.ac.cn/evo

		lgen/softwares/
eGPS⁵		<u>http://www.egps-</u> software.net/
Vision4D 2.12.3	Arivis	http://www.arivis.com/
BLASTN ¹²		https://blast.ncbi.nlm.nih. gov/Blast.cgi
MULTIZ ¹³		http://www.bx.psu.edu/mil ler_lab
UCSC Kent utilities		http://hgdownload.cse.uc sc.edu/admin/jksrc.zip

References

- 1 Daily, J. L. *et al.* Adeno-associated virus-mediated rescue of the cognitive defects in a mouse model for Angelman syndrome. *PloS one* **6**, e27221 (2011).
- 2 Ogawa, N., Hirose, Y., Ohara, S., Ono, T. & Watanabe, Y. A simple quantitative bradykinesia test in MPTP-treated mice. *Res Commun Chem Pathol Pharmacol* **50**, 435-441 (1985).
- Li, W.-H., Ellsworth, D. L., Krushkal, J., Chang, B. H. & Hewett-Emmett, D. Rates of nucleotide substitution in primates and rodents and the generation-time effect hypothesis. *Mol Phylogenet Evol* **5**, 182-187 (1996).
- 4 Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. *Mol Biol Evol* **4**, 406-425 (1987).
- 5 Yu, D. *et al.* eGPS 1.0: comprehensive software for multi-omic and evolutionary analyses. *Natl Sci Rev* 6, 867-869 (2019).
- 6 Weinreb, C. & Raphael, B. J. Identification of hierarchical chromatin domains. *Bioinformatics* **32**, 1601-1609 (2016).
- 7 Rao, S. S. P. *et al.* A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. *Cell* **159**, 1665-1680 (2014).
- 8 Kerpedjiev, P. *et al.* HiGlass: web-based visual exploration and analysis of genome interaction maps. *Genome Biol* **19**, 125 (2018).
- 9 Hernandez-Miranda, L. R., Muller, T. & Birchmeier, C. The dorsal spinal cord and hindbrain: From developmental mechanisms to functional circuits. *Dev Biol* **432**, 34-42 (2017).
- 10 Creyghton, M. P. *et al.* Histone H3K27ac separates active from poised enhancers and predicts developmental state. *Proc Natl Acad Sci USA* **107**, 21931-21936 (2010).
- 11 Mele, M. *et al.* The human transcriptome across tissues and individuals. *Science* **348**, 660-665 (2015).
- 12 Altschul, S. F. *et al.* Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res* **25**, 3389-3402 (1997).
- 13 Blanchette, M. *et al.* Aligning multiple genomic sequences with the threaded blockset aligner. *Genome Res* 14, 708-715 (2004).