

A. Statistical analysis of TG, TC, ALT, AST, LDL, and HDL in serum extracts from the mice described in **Figure 1B**.

B. Statistical analysis of body weight from the mice described in Figure 1A, B.C. Statistical analysis of fasting insulin, fasting blood glucose, and insulin resistance from the mice described in Figure 1A.

D. Statistical analysis of TG, TC, ALT, AST, LDL, and HDL in serum extracts from the mice described in **Figure 1A**.

E. Glucose tolerance test (GTT) and insulin tolerance test (ITT) of mice described in **Figure 1A**.

Abbreviations: ALT: Alanine aminotransferase; AST: Alanine aminotransferase; DAPI: 4',6-diamidino-2-phenylindole; GTT: Glucose Tolerance Test; HDL: High Density Lipoprotein; ITT: Insulin Tolerance Test; LDL: Low Density Lipoprotein; NASH: nonalcoholic steatohepatitis; TC: Total cholesterol; TG: Triglyceride;

A. RT-qPCR results showing the mRNA levels of IL-1 β , TNF α , IL-6, IL-8, IL-17, and IL-18 in liver macrophages isolated from the livers of mice described in **Figure 1A**.

B. RT-qPCR results showing the mRNA levels of IL-1 β , TNF α , IL-6, IL-8, IL-17, and IL-18 in liver macrophages isolated from the livers of mice described in **Figure 1B**.

Abbreviations: MCD: Methionine-choline-deficient; WD: Western diet;

A. Immunoblotting of phospho-IKKα, IKKα, phospho-IKKβ, IKKβ, phospho-P65,

P65, phospho-ikB α , ikB α , PTPROt, and β -actin (loading control) in primary WT and PTPROt^{-/-} liver macrophages that were isolated from the MCD-induced NASH model.

B. FACs analysis of monocyte-derived macrophages (MoMs) (defined as F4/80⁺CD11b^{hi}Ly6c^{int}) and liver-resident Kupffer cells (KCs) (defined as F4/80⁺CD11b^{lo}Ly6c^{lo}) from WD-induced and MCD-induced NASH model described in **Figure 1A**.

C. Immunoblotting of phospho-IKKα, IKKα, phospho-IKKβ, IKKβ, phospho-P65, P65, phospho-ikBα, ikBα, PTPROt, and β-actin (loading control) in primary WT/ PTPROt^{-/-} monocyte-derived macrophages and Kupffer cells that were isolated from MCD-induced and WD-induced NASH model described in **Figure 1A.**

D. Fluorescence microscopy of phospho-P65 in primary WT and PTPROt^{-/-} liver macrophages isolated from the mice described in MCD-induced NASH model. DAPI, DNA-binding dye. Bar = 20 μ m. Quantification of phospho-P65 per cell was shown.

E. Fluorescence microscopy of phospho-p65 in RAW-Ctrl and RAW-PTPROt⁺ cells treated with free fatty acids (FFAs), with or without pyrrolidine dithiocarbamate (PDTC) for 24 hr. DAPI, DNA-binding dye. Bar = 20 μ m. Quantification of phospho-P65 per cell was shown.

F. Immunoblotting of phospho-IKK α , IKK α , phospho-IKK β , IKK β , phospho-P65, P65, phospho-ikB α , ikB α , PTPROt, and β -actin (loading control) in in primary WT and PTPROt^{-/-} liver macrophages treated with Vehicle/LPS.

Abbreviations: FFAs: Free Fatty Acids; KCs: Kupffer cells; MCD: Methionine-choline-deficient; LPS: Lipopolysaccharide; MoMs: monocyte-derived macrophages; PDTC: pyrrolidine dithiocarbamate; WD: Western diet;

A. Corresponding to **Figure 3A**, statistical analysis of ROS levels in the liver macrophages of livers from the mice described in **Figure 1A**, **B**.

B. Corresponding to **Figure 3B**, statistical analysis of ROS level of RAW-Ctrl and RAW-PTPROt⁺ cells treated with FFAs, with or without pyrrolidine dithiocarbamate (PDTC) for 24 hr.

C. Corresponding to **Figure 3C**, the number of damaged mitochondria is shown.

D. Corresponding to **Figure 3D**, the number of damaged mitochondria is shown.

E. RT-PCR results showing the relative mRNA levels of antioxidant & protective targets (MnSOD, FHC, Trx1, Trx2, NQO1, HO-1and Gpx1) and

pro-oxidant targets (XOR, iNOS, COX2, CYP2E1, and CYP2C11) in primary liver macrophages from mice described in **Figure 1B**.

Abbreviations: MCD: Methionine-choline-deficient; WD: Western diet; PDTC: pyrrolidine dithiocarbamate;

Figure S5

A. Immunoblotting of Tomm20, Tim23, Cyto C, Atp5β, Hsp60, P62, LC3I, LC3II, PTPROt, and β-actin (loading control) in primary liver macrophages isolated from the mice described in **Figure 1A**. LC3II/LC3I ratios were quantified using ImageJ software.

B. After densitometric analysis of blots corresponding to all samples in Figure5D, LC3II/LC3I ratios were quantified using ImageJ software.

C. Immunoblotting of Tomm20, Tim23, Cyto C, Atp5 β , Hsp60, P62, LC3I, LC3II, PTPROt, and β -actin (loading control) in RAW-Ctrl and RAW-PTPROt⁺ cells treated with CCCP for 2 hr. LC3II/LC3I ratios were quantified using ImageJ software.

D. Fluorescence microscopy showing co-localization of GFP-LC3 with mitochondria [identified with the mitochondrial stain MitoTracker Deep Red

(Mito-Red)] in RAW-Ctrl and RAW-PTPROt⁺ cells treated with CCCP, with or without PDTC for 2 hr. Quantification of GFP-LC3 puncta co-localized with mitochondria per cell was shown.

E. Fluorescence microscopy showing co-localization of anti-Tomm20 with mitochondria [identified with the mitochondrial stain MitoTracker Deep Red (Mito-Red)] in RAW-Ctrl and RAW-PTPROt⁺ cells treated with CCCP, with or without pyrrolidine dithiocarbamate (PDTC) for 2 hr. The arrows indicate the cells staining with MitoRed⁺ and Anti-Tomm20⁻. Frequency of cells with few or no mitochondria was shown.

Abbreviations: CCCP: Carbonyl cyanide m-chlorophenylhydrazone; Cyto C: Cytochrome C; DAPI: 4',6-diamidino-2-phenylindole; FFAs: Free Fatty Acids: MitoRed: Mitotracker Red probe; WD:Western diet;

Clinical Features	No steatosis n=24	Simple steatosis n=32	NASH n=54
Age (years)	39.55±11.14	35.50 ± 10.47	34.03 ± 9.08
Gender			
Male	10	15	28
Female	14	17	26
Body mass index (kg/m2)	21.62±0.85	25.36±1.14	31.70±7.69
Insulin (U/L)	5.2 ± 2.5	23.20 ± 12.58	33.26 ± 19.65
Triglycerides (mg/dL)	111.11±5.86	130.39±15.20	196.82±42.72
ALT (U/L)	33.26±7.39	67.37±9.02	100.16±24.09
AST (U/L)	18.81±1.82	32.74±8.99	86.32±25.51
γ-GT (U/L)	33.26±7.39	67.37±9.02	100.16±24.09
Steatosis (%)			
Grade 0	24 (100%)		
Grade 1		32 (100%)	
Grade 2			28 (51.8%)
Grade 3			26 (48.2%)
Ballooning (%)			
Grade 0	24 (100%)		

Table S1: The related characteristics of liver tissue samples of human subjects without steatosis, with simple steatosis and with NASH

Grade 1		32 (100%)	
Grade 2			28 (51.8%)
Grade 3			26 (48.2%)
Lobular inflammation (%)			
Grade 0	24 (100%)		
Grade 1		32 (100%)	
Grade 2			28 (51.8%)
Grade 3			26 (48.2%)

Table S2

Antibody			
IKKa	CST	2628S	
Phospho-IKKa	CST	2697S	
ΙΚΚβ	abcam	ab55404	
P65	CST	8242S	
Phospho-P65	CST	3033S	
ikBa	SANTA CRUZ	SC-847	
Phospho-ikBa	SANTA CRUZ	SC8404	
PTPRO	Proteintech	12161-1-AP	
NLRP3	abcam	ab214185	
Caspase-1-P20	Proteintech	22915-1-AP	
Tomm20	CST	42406S	
Tim23	BD BIOSCIENCES	611222	
Cyto C	BD Biosciences	556433	
Atp5β	SIGMA	HPA001520	
HSP60	SIGMA	SAB4501464	
P62	abcam	ab109012	
LC3	CST	4108S	
β-actin	Proteintech	66009	
	Kit		
Mouse IL-1 beta Platinum ELISA	kit	R&D Systems, MLB00C	
Mouse TNFɑ Platinum ELISA kit		R&D Systems, MTA00B	
Mouse IL-6 Platinum ELISA kit		R&D Systems, M6000B	
Mouse IL-8 Platinum ELISA kit		R&D Systems, D8000C	
Mouse IL-17 Platinum ELISA kit		R&D Systems, M1700	
Mouse IL-18 Platinum ELISA kit		R&D Systems, 7625	
Mitotracker Red Kit		M22425, Invitrogen, China	

MitoSOX Kit	M36008, Invitrogen, China	
	Drug	
СССР	#555-60-2; Sigma, Shanghai, China	
PA	PA; Sigma, P0500-10G	
OA	Sigma, O1257	
PDTC	Sigma, P8765	
Lien	#P0943; Pureone Bio Technology, Shanghai, China	
LPS	Sigma, L6529	

Table S3

Gene	Species	Forward Primer	Reverse Primer
IL-1β	Mus	GCAACTGTTCCTGAACTCAACT	ATCTTTTGGGGTCCGTCAACT
TNFa	Mus	CCCTCACACTCAGATCATCTTCT	GCTACGACGTGGGCTACAG
IL-6	Mus	CCAAGAGGTGAGTGCTTCCC	CTGTTGTTCAGACTCTCTCCCT
IL-8	Mus	CAAGGCTGGTCCATGCTCC	TGCTATCACTTCCTTTCTGTTGC
IL-17	Mus	TTTAACTCCCTTGGCGCAAAA	CTTTCCCTCCGCATTGACAC
IL18	Mus	CAAGGCTGGTCCATGCTCC	TGCTATCACTTCCTTTCTGTTGC
MnSOD	Mus	CAGACCTGCCTTACGACTATGG	CTCGGTGGCGTTGAGATTGTT
FHC	Mus	CAAGTGCGCCAGAACTACCA	GCCACATCATCTCGGTCAAAA
Trx1	Mus	CATGCCGACCTTCCAGTTTTA	TTTCCTTGTTAGCACCGGAGA
Trx2	Mus	TGGGCTTCCCTCACCTCTAAG	CCTGGACGTTAAAGGTCGTCA
NQO1	Mus	AGGATGGGAGGTACTCGAATC	AGGCGTCCTTCCTTATATGCTA
HO-1	Mus	AAGCCGAGAATGCTGAGTTCA	GCCGTGTAGATATGGTACAAGGA
Gpx1	Mus	AGTCCACCGTGTATGCCTTCT	GAGACGCGACATTCTCAATGA
XOR	Mus	CACTGGGCAGACGAACTCTAC	TCTGGAAATAGGCCATACCCAT
iNOS	Mus	GTTCTCAGCCCAACAATACAAGA	GTGGACGGGTCGATGTCAC
COX2	Mus	TGAGCAACTATTCCAAACCAGC	GCACGTAGTCTTCGATCACTATC
CYP2E1	Mus	CGTTGCCTTGCTTGTCTGGA	AAGAAAGGAATTGGGAAAGGTCC
CYP2C11	Mus	GCGGCGTTCCTGAGTGTTTAT	CTGGCAGGTGGTTACCGTT
β-actin	Mus	GGCTGTATTCCCCTCCATCG	CCAGTTGGTAACAATGCCATGT
PTPRO	Но	ACAAAACCCTTGCCTGTAACC	TTCCCCGAACTCCTCTTCTTT
β-actin	Но	CATGTACGTTGCTATCCAGGC	CTCCTTAATGTCACGCACGAT

	Wild type	PTPROt KO
Gender		
Male	6	6
Body weight /g	28.24±1.21	36.41±2.44
Liver weight /g	1.61 ± 0.04	1.81 ± 0.08
TG (mmol/L)	0.46 ± 0.01	0.50 ± 0.02
TC (mmol/L)	1.01 ± 0.04	1.30 ± 0.11
ALT (U/L)	47.72 ± 0.85	53.83 ± 1.83
AST (U/L)	194.76 ± 3.03	204.87±2.71
LDL(mmol/L)	0.21 ± 0.01	0.26 ± 0.03
HDL(mmol/L)	0.89 ± 0.03	0.71 ± 0.07
Fasting Blood Glucose (mmol/L)	10.76 ± 0.12	11.52 ± 0.24
Insulin	11.46 ± 0.26	13.31 ± 0.39
Insulin Resistance (AU)	5.06 ± 0.28	5.81±0.17
Ballooning (%)	16.67 ± 2.58	67.50±5.75
Lipid accumulation (%)	33.67±4.50	68.00±4.29

Table S4: 16 weeks WD-induced NASH mice model characteristics

	Wild type	PTPROt KO
Gender		
Male	6	6
Body weight /g	16.17±1.01	13.67 ± 0.58
Liver weight /g	0.62 ± 0.04	0.53 ± 0.01
TG (mmol/L)	0.44 ± 0.02	0.57 ± 0.03
TC (mmol/L)	0.93 ± 0.03	1.22 ± 0.05
ALT (U/L)	46.00±1.92	56.30 ± 2.94
AST (U/L)	190.88 ± 6.14	214.85±6.76
LDL(mmol/L)	0.21 ± 0.03	0.30 ± 0.01
HDL(mmol/L)	0.88 ± 0.04	0.71 ± 0.07
Ballooning (%)	4.07 ± 0.98	17.45 ± 1.22
Lipid accumulation (%)	13.08 ± 1.64	34.42±2.57

Table S5: 4 weeks MCD-induced NASH mice model characteristics