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Table S2 - Bacterial strains and plasmids 

 

Strain/plasmid Genotype/phenotype Source/reference 

Synechocystis sp.     

PCC 6803 Wild-type  (49) 

A.  brasilense   

FP2 Wild-type  (50) 

LFH3 Nalr, ΔglnB Nif− (51) 

7611 Nif+ glnZ ::Ω, Spr Smr (25) 

2812 
glnB::kan/ glnZ:: Ω , Smr 

Kmr 
(25) 

E . coli   

DH10B Smr ; F’ [proAB+ lacZM15] Invitrogen 

Rosetta (DE) pLysS 

F- ompT hsdSB(rB- mB-) 

gal dcm (DE3) 

pLysSRARE  

Novagen 

Lemo21 (DE3) 
Expresses T7 RNA 

polymerase 
New England Labs Inc. 

Plasmid Characteristics Reference 

pET28a Kmr Expression vector Agilent 

pET29a Kmr Expression vector Agilent 

pTEV5 

Ampr Expression vector, 

His tag followed by TEV 

cleavage site 

(52) 

pASnade2 

Kmr. Express H. 

seropedicae NadE2 with a 

N-terminal 6x His tag in 

pET28a 

(7) 
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pLHnade2 

Kmr. Express native A. 

brasilense NadE2 in 

pET29a  

(7) 

pASnadESc 

Ampr. Express 

Synechocystis sp. strain 

PCC 6803 NadE with a N-

terminal 6x His tag in 

pTEV5  

This work 

pMSA4∆42-54 

Kmr. Express native A. 

brasilense GlnZ∆42-54 in 

pET29a  

(45) 

pGlnZ∆Tloop 

Kmr. Express A. brasilense 

GlnZ∆42-54  with a N-

terminal 6x His tag in 

pET28a 

This work 

pMSA3 

Kmr. Express A.brasilense 

GlnZ with a N-terminal 6x 

His tag in pET28a 

(53) 

pMSA4 
Kmr. Express native A. 

brasilense GlnZ in pET29a  
(54) 

pLH25 

Kmr. Express A.brasilense 

GlnB with a N-terminal 6x 

His tag in pET28a 

(55) 

pASGlnDAb 

Ampr. Express A. 

brasilense GlnD with a N-

terminal 6x His tag in 

pTEV5  

This work 
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Supporting Figures 

 

 

 

Figure S1. Putative binding partners of the A. brasilense PII protein GlnZ. A) A 1 ml Ni-NTA column 

charged with His-tagged GlnZ protein was loaded with A. brasilense protein extracts in the presence of 

MgATP. After extensive washes, proteins were eluted with buffer containing MgATP and 1.5 mM of 2-OG 

and separated in 1.5 ml fractions (fractions 1 and 2). The amount of the proteins in each fraction was compared 

to the amount of proteins eluted from a control column, under the same conditions, by quantitative label free 

LC/MS/MS in technical triplicates. The graphic shows the log protein enrichment of the signal of each protein 

eluted the His-GlnZ column / control column in their respective 1.5 mL fractions. B) Details of the top 5 

enriched proteins that were eluted from the His-GlnZ affinity column. 
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Figure S2. Determination of the dissociation constant of the His-GlnZ and AbNadE2 complex in the 

presence of ADP by Bio-layer Interferometry. A) The His-GlnZ was immobilized in the Ni-NTA sensor tip 

in a concentration of 2 µg/mL until saturation. The tip with His-GlnZ was then challenged in solution 

containing the indicated AbNadE2 concentrations in the presence of 1mM ADP. B) Plot reporting the λ 

spectral shift in nm vs AbNadE2 concentration. The binding was measured in an Octet K2 (Fortébio) and the 

Kd determined using the manufacturer´s software.  
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Figure S3. The NadEGln type 2 are activated in reductive environment when using L-glutamine as N-

donor. NadEGln type 2 activity was continuously measured by determining NADH formation in assays coupled 

with alcohol dehydrogenase in the presence or absence of 10 mM Dithiothreitol (DTT) using 2 mM of L-

glutamine as a N-donor (A) or 10 mM of ammonium as a N-donor (B). Proteins from A. brasilense (AbNadE2), 

Herbaspirillum seropedicae (HsNadE2) and Synechocystis sp. (ScNadE2) were assayed. 
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Figure S4. Effect of NAD+ in the kinetic parameters of AbNadE2 reaction. A) Determination of initial 

velocities accordingly to varying NaAD concentrations in the presence and absence of 1mM NAD+. A NaAD 

KM of 0.08 mM and Vmax of 0.09 µmol.s-1  were obtained in the absence of NAD+. In the presence of NAD+ 

the values were KM 0.09 mM and Vmax 0.04 µmol.s-1 . B) Determination of initial velocities accordingly to 

varying L-glutamine concentrations in the presence and absence of 1 mM NAD+. A L-glutamine KM of 0.72 

mM and Vmax of 0.15 µmol.s-1  were obtained in the absence of NAD+. In the presence of NAD+ the values 

were KM 0.92 mM and Vmax 0.028 µmol.s-1 .  
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Figure S5. In vitro formation of the NadE2-GlnZ complex does not require the GlnZ T loop and 

AbNadE2 preferentially interacts with the PII protein GlnZ. A) Complex formation was assessed by pull-

down using Ni2+ beads. Reactions were performed in the presence of the ATP and 2-OG at 1mM, as indicated. 

Binding reactions were conducted in 400 µl of buffer (50 mM Tris HCl; 100 mM NaCl; glycerol 10%; 20 mM 

Imidazole; 0,05% Tween 20; 5 mM MgCl2). The fractions eluted from the Ni2+ beads were analyzed by SDS-

PAGE and the gel was stained with Coomassie Blue. Lanes 1 and 4, HisGlnZ only. Lanes 2 and 5, AbNadE2 

only. Lanes 3 and 6, mixture of HisGlnZ and AbNadE2. B) Complex formation was assessed by pull-down 

using Ni2+ beads. Reactions were performed under fixed concentration ATP 1 mM. Binding reactions were 

conducted in 400 µl of buffer (50 mM Tris HCl; 100 mM NaCl; glycerol 10%; 20 mM Imidazole; 0,05% 

Tween 20; 5 mM MgCl2). The fractions eluted from the Ni2+ beads were analyzed by SDS-PAGE 15% and the 

gel was stained with Coomassie Blue.  Lanes 1 and 4, His-PII only (GlnB or GlnZ as indicated). Lanes 2 and 

5, AnNadE2 only. Lanes 3 and 6, mixture of His-PII and AbNadE2. 
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