Respiratory deficiency caused by mutations in the coenzyme Q chaperone protein Coq10 is mitigated by deletion of *COQ11*

Michelle C. Bradley, Krista Yang¹, Lucía Fernández-del-Río¹, Jennifer Ngo^{1,2}, Anita Ayer^{3,4}, Hui S. Tsui¹, Noelle Alexa Novales¹, Roland Stocker^{3,4}, Orian S. Shirihai², Mario H. Barros⁵, Catherine F. Clarke^{1*}

Contents of Supporting Information

Tables S1 and S2 Figures S1, S2, and S3 References

Table S1. Description and source of antibodies.			
Working dilution	Source		
1:10,000	(1)		
1:1,000	(2)		
1:200	(3)		
1:2,000	(4)		
1:5,000	(5)		
1:200	(6)		
1:1,000	(7)		
Affinity purified, 1:30	(2)		
1:1,000	(2)		
Affinity purified, 1:400	(8)		
1:500	(8)		
1:10,000	Lee McAlister-Henn ^b		
1:1,000	Carla M. Koehler ^c		
1:1,000	Carla M. Koehler ^c		
1:1,000	Carla M. Koehler ^c		
1:5,000	Carla M. Koehler ^c		
1:5,000	Carla M. Koehler ^c		
	Working dilution 1:10,000 1:1,000 1:200 1:2,000 1:5,000 1:200 1:1,000 1:1,000 Affinity purified, 1:30 1:1,000 Affinity purified, 1:400 1:500 1:10,000 1:1,000 1:1,000 1:1,000 1:1,000 1:1,000 1:1,000 1:5,000 1:5,000 1:5,000		

SUPPORTING INFORMATION

Table S1. Description and source of antibodies.

^bDr. Lee McAlister-Henn, Department of Molecular Biophysics and Biochemistry, University of Texas Health Sciences Center, San Antonio, TX

^eDr. Carla M. Koehler, Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA

Gene	Forward primer (5'-3')	Reverse primer (5'-3')
COQI	CCCGAAGTCGTAGAACTAATG	GGAACCGGAAGTAGCTTATG
COQ2	CAGCTGGTATGTTGGGTATTT	GACGGACCTGATAACTCTTTG
COQ3	CATGCTGGAGGGAAAGATAAA	TCGACCAACAATGCCTTAAA
COQ4	GTGGTATCCTTGCACCTTTAC	CCAGCATTTCCTCCCAATAC
COQ5	TGCTTAAAGAAGGTGAGAAGAG	TACCGAAGGAGACTGTGTAG
COQ6	TGAAGGACGAGTCGGATATT	CCAACAAGGGCAACTCTATC
COQ7	GCTCCCAAGTGTCAGAATTTA	CTGGTCCCATATGTGCTTTAG
COQ8	CGTATGGAGGGAACTGAAATAA	GAGGCACCGAAATCCAATAA
COQ9	CGCTGTCATGGAACTGATAAA	GAGAAAGGCGCTTGGAATAG
COQ10	GCGGTACCAATCACACTATTA	GAGAGGCTTGTTATCCACAG
COQ11	GCAGAGATATTTCAGGCCTATTA	CTGCTGAGTGGATACTGTTG
ACTI	TATGTTCTAGCGCTTGCACCA	CCAAAGCAGCAACCTCTAAA

Table S2. Quantitative real-time PCR primers.

Figure S1. Oxygen consumption rates (OCRs) of yeast strains were determined with the XF96 Extracellular Flux Analyzer. The graphs depict traces from four independent experiments (Run 1 – Run 4). FCCP and Antimycin A (AA) were sequentially added to evaluate mitochondrial respiratory states. Each graph represents an individual experiment from the representative average traces (Fig. 2B), and each group represents 8–10 technical replicates.

Figure S2. Q₆ content of whole cells have similar trends based on type of growth medium, rather than A₆₀₀ at time of harvest. Triplicates of 30 mL yeast cultures of wild type, $coq10\Delta$, $coq11\Delta$, and $coq10\Delta coq11\Delta$ were grown in *A-B*, YPGal or *C-D*, dextrose-containing synthetic, minimal-medium (DOD) until they reached *A*,*C*, A₆₀₀~1 or *B*,*D*, A₆₀₀~4. Lipids from 10 mL of each culture were analyzed by LC-MS/MS. The data show mean ± SD, and the statistical significance as compared to wild type is represented by *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001. Panel B is a re-print from Fig. 5A in the main text.

Figure S3. The *coq10* Δ *coq11* Δ double mutant the lowest total Q₆ compared to the single mutants and wild type in minimal medium. Triplicates of 6 mL cultures in DOD minimal medium were labeled with 5 µg/mL ¹³C₆-4HB. After 4 h, lipid extracts from 5 mL of each were analyzed by LC-MS/MS. *A*, Amount of ¹²C-Q₆ and ¹³C₆-Q₆ (*blue*); *B*, Total amount of Q₆, from the sum of ¹³C₆-Q₆ and ¹²C-Q₆; *C*, ¹²C-DMQ₆ and ¹³C₆-DMQ₆ (*red*); and *D*, ¹²C-HHB and ¹³C₆-HHB (*purple*), were measured from the whole cell lipid extracts of wild type, *coq10* Δ , *coq11* Δ , and *coq10* Δ *coq11* Δ mutants. The data show mean ± SD, and the statistical significance as compared to wild type is represented by *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001.

SUPPORTING REFERENCES

- 1. Gin, P., and Clarke, C. F. (2005) Genetic evidence for a multi-subunit complex in coenzyme Q biosynthesis in yeast and the role of the Coq1 hexaprenyl diphosphate synthase. *J Biol Chem* **280**, 2676-2681
- Hsieh, E. J., Gin, P., Gulmezian, M., Tran, U. C., Saiki, R., Marbois, B. N., and Clarke, C. F. (2007) Saccharomyces cerevisiae Coq9 polypeptide is a subunit of the mitochondrial coenzyme Q biosynthetic complex. Arch Biochem Biophys 463, 19-26
- 3. Poon, W. W., Barkovich, R. J., Hsu, A. Y., Frankel, A., Lee, P. T., Shepherd, J. N., Myles, D. C., and Clarke, C. F. (1999) Yeast and rat Coq3 and *Escherichia coli* UbiG polypeptides catalyze both O-methyltransferase steps in coenzyme Q biosynthesis. *J Biol Chem* **274**, 21665-21672
- 4. Belogrudov, G. I., Lee, P. T., Jonassen, T., Hsu, A. Y., Gin, P., and Clarke, C. F. (2001) Yeast *COQ4* encodes a mitochondrial protein required for coenzyme Q synthesis. *Arch Biochem Biophys* **392**, 48-58
- Baba, S. W., Belogrudov, G. I., Lee, J. C., Lee, P. T., Strahan, J., Shepherd, J. N., and Clarke, C. F. (2004) Yeast Coq5 C-methyltransferase is required for stability of other polypeptides involved in coenzyme Q biosynthesis. *J Biol Chem* 279, 10052-10059
- Gin, P., Hsu, A. Y., Rothman, S. C., Jonassen, T., Lee, P. T., Tzagoloff, A., and Clarke, C. F. (2003) The *Saccharomyces cerevisiae COQ6* gene encodes a mitochondrial flavin-dependent monooxygenase required for coenzyme Q biosynthesis. *J Biol Chem* 278, 25308-25316
- 7. Tran, U. C., Marbois, B., Gin, P., Gulmezian, M., Jonassen, T., and Clarke, C. F. (2006) Complementation of *Saccharomyces cerevisiae coq7* mutants by mitochondrial targeting of the *Escherichia coli* UbiF polypeptide: two functions of yeast Coq7 polypeptide in coenzyme Q biosynthesis. *J Biol Chem* **281**, 16401-16409
- 8. Tsui, H. S., Pham, N. V. B., Amer, B. R., Bradley, M. C., Gosschalk, J. E., Gallagher-Jones, M., Ibarra, H., Clubb, R. T., Blaby-Haas, C. E., and Clarke, C. F. (2019) Human COQ10A and COQ10B are distinct lipid-binding START domain proteins required for coenzyme Q function. *J Lipid Res* **60**, 1293-1310