Supporting Information

Figure S1. Related to Figure 1. Pronounced systemic inflammation in the absence of KLF3. (A) Gating strategy for identifying CD115⁺ Ly6C^{+/-} monocytes, defined as live (ZombieNIR⁻) Ly6G⁻ CD3⁻ CD19⁻ CD45⁺ CD11b⁺

CD115⁺ Ly6C^{+/-}. (B) Quantification of monocyte precursor populations in the bone marrow of WT and *Klf3^{-/-}* mice (n=4). Lineage exclusion was performed (Ter119⁻ CD19⁻ CD3⁻ NK1.1⁻ Ly6G⁻ TCRδ⁻) on live single cells, upon which monocyte precursors were defined as CD117^{+/-} and CD115⁺. This population was divided into three subsets based on expression of CD117 and CD135: (i) CD117⁺ CD135⁺ Ly6C⁻ CD11b⁻ macrophage-dendritic cell progenitors (MDPs), (ii) CD117⁺ CD135⁻ Ly6C⁺ CD11b⁻ common monocyte progenitors (cMoPs) and (iii) CD117⁻ CD135⁻ CD11b⁺ Ly6C^{+/-} monocytes. Plots are representative of four biological replicates and means±SEM are given as a percentage of parent population. (C) Gating strategy to confirm purity of CD11b⁺ F4/80⁺ BMDMs by flow cytometry. LEGENDplex kits were used to quantify inflammatory cytokines in (D) supernatants from WT and *Klf3^{-/-}* BMDMs treated with vehicle (veh) or 100 ng/mL LPS for 24 h (n=3 per genotype/treatment group) and in (E) WT (n=5) and *Klf3^{-/-}* (n=7) plasma. Error bars are representative of means±SEM. Non-parametric Mann-Whitney U tests were performed to assess significance between genotypes within the same condition for each cytokine tested, where **P*<0.05 and ***P*<0.01. n.d: not detected.

Figure S2. Related to Figure 2. Mice lacking KLF3 show a heightened and prolonged inflammatory response to endotoxin treatment. (A) WT and $Klf3^{-/-}$ mice were intraperitoneally administered with vehicle (veh) or 0.05 mg/kg LPS and their body temperature was measured by rectal probing over 24 h, with error bars representative of SEM (veh: n=3 per genotype and LPS: n=6 per genotype). (B) Spleens were harvested from mice treated with 0.167 mg/kg LPS, then weighed. Error bars represent the means±SEM (veh: n=4 per genotype and LPS: n=5 per genotype). Ly6C^{+/-} monocyte abundance in the (C) blood and (D) spleen of WT and *Klf3^{-/-}* mice given 0.167 mg/kg LPS or vehicle was measured by flow cytometry and all final gating plots shown. Abundances are shown as a percentage of the parent population, CD115⁺ monocytes, and accompanying column graphs are shown with error bars representing the means±SEM. Representative median plots, outlined in bold, were used in Figure 2G-H. For (A-D), non-parametric Mann-Whitney U tests were performed to assess statistical significance where **P*<0.05,

**P<0.01 between genotypes and ##P<0.01 between conditions within the same genotype. FSC-A: forward scatter (area)

Figure S3. Related to Figure 3. Macrophages lacking KLF3 exhibit enhanced inflammatory function. (A) mRNA expression of all *Klf* family member genes was assessed in BMDMs using qPCR to determine the relative expression of *Klf3*, with values normalised to expression of *18S* rRNA levels. (B) AlamarBlue assays were conducted to assess the cellular reduction environment by measuring conversion of resazurin blue substrate in BMDMs over a 24 h period (n=8). (C) WT and *Klf3*^{-/-} BMDMs were seeded then BrdU incorporation assays performed at days 0, 2, 4 and 6. Absorbance readout was obtained at 450 nm to quantify BrdU incorporation of actively replicating cells (n=4). (D) BMDM growth rate was assessed by monitoring cell counts 0, 2, 4 and 6 days post-seeding (n=4). For (B-D), error bars are representative of means±SEM of biological replicates, and non-parametric Mann-Whitney U tests were carried out where **P*<0.05.

Figure S4. Related to Figure 4. The promoter regions of differentially expressed genes between WT and $Klf3^{-/-}$ BMDMs treated with LPS for 8 h are enriched for Sp/KLF family binding sites. *De novo* motif discovery and known motif enrichment analysis using MEME-ChIP on differentially expressed genes from microarray analysis comparing WT and $Klf3^{-/-}$ BMDMs treated with LPS for 8 h. The top 5 most highly enriched motifs and the transcription factors that are known to bind to these or similar motifs from the MEME-ChIP analysis are shown. The first and third most highly enriched motifs match known motifs for the Sp/KLF transcription factor family, which includes KLF3.

Figure S5. Related to Figure 4. Stimulation of macrophages with ligands which trigger NF- κ B-dependent or -independent inflammatory pathways suggests that the effect of KLF3 deficiency on gene expression is specific to the NF- κ B pathway. WT and *Klf3*^{-/-} BMDMs were treated for 8 h with vehicle or 10 µg/mL poly I:C (A), 10 ng/mL IFN γ (B), 10 ng/mL IFN α (C) and 10 ng/mL IL-6 (D). Gene expression was normalised to *18S* rRNA levels and the WT vehicle set to 1. Error bars are representative of the means±SEM of four biological replicates for each experiment. Non-parametric Mann Whitney U tests were carried out where **P*<0.05 and ***P*<0.01.

Figure S6. Related to Figure 5. KLF3 suppresses activation of NF-KB genes. (A) KLF3-V5 ChIP-Seq in murine embryonic fibroblasts showing KLF3 enrichment at promoter regions cytokine genes deregulated in Klf3^{-/-} BMDMs (Accession No. GSE44748) (35). (B) EMSA was used to detect KLF3 binding to a radiolabelled DNA probe comprised of the wild type (CACCC) or mutated (Δ CACCC) human *RELA* promoter consensus sequence. Nuclear extracts from COS-7 cells over-expressing pMT3-Klf3 and untransfected COS-7 cells were used as positive and negative controls respectively. Polyclonal anti-KLF3 antibody (α -KLF3) raised in rabbit was added to confirm the identity of bound protein as KLF3, labelled as a supershift band. Unbound radiolabelled DNA probe can be seen as an intense dark band at the bottom of the gel. (C) In vivo KLF3 binding at the human RELA promoter in WT and KLF3^{-/-} K562 cells was performed using ChIP-qPCR (n=3 individual clonal populations per genotype). The SP1 promoter serves as a positive control region, where KLF3 is known to bind, and VEGFA is a negative control locus. Error bars represent means±SEM. WT and *Klf3^{-/-}* BMDMs were treated for 8 h with vehicle (veh), 10 µg/mL poly I:C (D) or 10 ng/mL IL-6 (E) and expression of *Rela* normalized to 18S levels. The WT veh treatment was set to 1. For (D-E), error bars represent means±SEM and non-parametric Mann-Whitney U tests were used to assess significance between genotypes under each condition where *P < 0.05. (F) Normalized raw expression of Nfkbia from microarrays in WT and Klf3^{-/-} BMDMs treated with 100 ng/mL LPS for 8 h (n=3). Error bars represent the means±SEM. (G) Total cellular levels of the NF- κ B p65 subunit (RELA) and I κ B- α were measured in WT and $Klf3^{-2}$ BMDMs following stimulation with 100 ng/mL LPS for 0-24 h. 20 µg of whole cell extract was loaded per lane alongside a Rainbow Molecular Weight Marker (GE Healthcare). Membranes were probed with a monoclonal anti-p65 antibody (raised in rabbit, 65 kDa), monoclonal anti-I κ B- α (raised in rabbit; ab32518) and anti- β -actin antibody (raised in mouse; A1978).

Figure S7. Related to Figure 5. KLF3 suppresses activation of NF-KB genes. (A) EMSA probes designed to encompass the KLF3 binding site (CACCC box; bold) in the mouse and human Rela/RELA promoters, and mutated probes (mutated base pairs in red) to show loss of KLF3 binding. (B) The CRISPR/Cas9 KLF3 knockout strategy, utilising three separate guide RNAs (sgRNA) to recruit Cas9 to cut at exon 3. (C) Sanger sequencing traces for $KLF3^{-/-}$ K562 clones compared to reference sequence, showing disruptions to the KLF3 gene and peptide sequence. (D) Western blot showing the presence or absence of KLF3 (~48 kDa) in WT (lanes 5-7) and KLF3^{-/-} (lanes 8-10) K562 nuclear extracts. Extracts from untransfected COS-7 cells (lane 2), COS-7 cells over-expressing pMT3-Klf3 (lane 3) and WT K562 cells (lane 4) were used as control lanes, and for testing the specificity of the polyclonal anti-KLF3 antibody (Thermo Fisher). Nitrocellulose membranes were probed for β-actin using an anti-β-actin antibody (Sigma), and size determined with reference to a Rainbow Molecular Weight Marker (GE Healthcare; lane 1). TSS: transcription start site. PAM: proto-spacer adjacent motif. kDa: kilodaltons. COS: COS-7 cells.

Α

Plasmid name	Source	Application
pSpCas9(BB)-2A-GFP (PX458)	Feng Zhang (Addgene plasmid 48138)	CRISPR/Cas9 genome editing
pMT3- <i>Klf3</i>	Jose Perdomo, University of Sydney	<i>Klf3</i> over-expression in COS-7 cells

Table S1. Mammalian expression plasmids

Table S2. Oligonucleotides for CRISPR/Cas9 genome editing

Oligo name	Sequence
hKLF3 ex3 sgRNA#1 Fwd	CACCGATTCCGTGCGACAGACCTTC
hKLF3 ex3 sgRNA#1 Rev	AAACGAAGGTCTGTCGCACGGAATC
hKLF3 ex3 sgRNA#2 Fwd	CACCGAACTCCGCTTGTTCACCGTG
hKLF3 ex3 sgRNA#2 Rev	AAACCACGGTGAACAAGCGGAGTTC
hKLF3 ex3 sgRNA#3 Fwd	CACCGCGGAGTTCACCCCCTTCGGC
hKLF3 ex3 sgRNA#3 Rev	AAACGCCGAAGGGGGGGGAACTCCGC
hKLF3 ex3 PCR Fwd/Sequencing	CTTATTTGGCTGTTGACACG
hKLF3 ex3 PCR Rev	GGCAGATGAGTATTTCCTTTG

Table S3. EMSA probes

Probe name	Sequence
CACCC sense	TAGAGCCACACCCTGGTAAG
CACCC antisense	CTTACCAGGGTGTGGGCTCTA
mRela CACCC sense	GAGATCAGAGCGGGGGGGGGGGGAACGGGACCC
mRela CACCC antisense	GGGTCCCGTTCCCCGCCCGCTCTGATCTC
<i>mRela</i> \triangle CACCC sense	GAGATCAGAGCGGAACAGGGAACGGGACCC
<i>mRela</i> \triangle CACCC antisense	GGGTCCCGTTCCCTGTTCCGCTCTGATCTC
hRELA CACCC sense	AGTAATCGGCGGACCCACCCTCCAGGCGGGG
hRELA CACCC antisense	CCCCGCCTGGAGGGTGGGTCCGCCGATTACT
$hRELA \Delta CACCC$ sense	AGTAATCGGCGGACCAAAACTCCAGGCGGGG
<i>hRELA</i> \triangle CACCC antisense	CCCCGCCTGGAGTTTTGGTCCGCCGATTACT

Oligo name	Sequence
18S rRNA Fwd	CACGGCCGGTACAGTGAAAC
18S rRNA Rev	AGAGGAGCGAGCGACCAA
<i>mKlf1</i> Fwd	AGACTGTCTTACCCTCCATCAGTACA
<i>mKlf1</i> Rev	CCGCCACCACTTGAGGAA
<i>mKlf2</i> Fwd	ACCAAGAGCTCGCACCTAAA
<i>mKlf2</i> Rev	TCCTTCCCAGTTGCAATGAT
<i>mKlf3</i> exon 4/5 Fwd	GAAATGTCACCCCCTTTAATGAAC
<i>mKlf3</i> exon 4/5 Rev	CACGATGACGGAAGGATGGT
<i>mKlf3</i> exon 1b Fwd	AGAAATAATTGATGAGAGGCACAGATT
<i>mKlf3</i> exon 1b Rev	ATGTCTGGCCTCACTCTTCCA
<i>mKlf4</i> Fwd	GTGGCAAAACCTATACCAAGAGTTC
<i>mKlf4</i> Rev	GGTAGTGCCTGGTCAGTTCATC
<i>mKlf5</i> Fwd	CCGGAGACGATCTGAAACAC
<i>mKlf5</i> Rev	GGAGCTGAGGGGTCAGATACTT
mKlf6 Fwd	CACATCAGCGCACTCACACA
mKlf6 Rev	CAAAACGCCACTCACAACCTT
<i>mKlf</i> 7 Fwd	TCCCACTTAAAGGCCCACC
<i>mKlf</i> 7 Rev	TGTGTGTTTCCTGTAGTGCC
<i>mKlf</i> 8 Fwd	TGGTTCGATGCAGGTATTCA
mKlf8 Rev	GGGGCATGTTGAAATCACTC
<i>mKlf</i> 9 Fwd	ATACAGGTGAACGGCCCTTT
<i>mKlf</i> 9 Rev	TCACTCCTCATGAAGCGCTT
<i>mKlf10</i> Fwd	GCAGCCAACCATGCTCAAC
<i>mKlf10</i> Rev	CCCCTCTCTGGGCTTTTCAG
<i>mKlf11</i> Fwd	ACTCTGTGTATAACTCCTCCTCA
<i>mKlf11</i> Rev	CAGTGACCATGCATCCTTTG
<i>mKlf12</i> Fwd	CGCCCTTGAGAACAGAATGC
<i>mKlf12</i> Rev	GGGTAGTTGTGGACGTTTGGA

Table S4. Quantitative real-time PCR primers

<i>mKlf13</i> Fwd	CGAGAAAGTTTACGGGAAATCTTC
<i>mKlf13</i> Rev	CAGGCGAAAGGCCTCTCA
<i>mKlf14</i> Fwd	TCCATGGACCGGTTCCAT
<i>mKlf14</i> Rev	AGAGCCACAGACAGCGGTTAG
<i>mKlf15</i> Fwd	TACACCAAGAGCAGCCACCT
<i>mKlf15</i> Rev	AACTCATCTGAGCGGGAAAA
<i>mKlf16</i> Fwd	TCACACCTGCGGACTCACA
<i>mKlf16</i> Rev	CAGAACGGGCGAACTTCTTG
<i>mKlf17</i> Fwd	GCAGGACAATAAGGAACAGGC
<i>mKlf17</i> Rev	AAGTATTGAGTGGCTGGTGG
<i>mTnf</i> Fwd	GCCACCACGCTCTTCTGTCT
<i>mTnf</i> Rev	GCCATAGAACTGATGA
<i>mIl6</i> Fwd	AAAGCCAGAGTCCTTCAGAGAGATAC
<i>mll6</i> Rev	CTGTTAGGAGAGCATTGGAAATTG
<i>mCsf2</i> Fwd	TTGGAAGCATGTAGAGGCCA
mCsf2 Rev	CGGGTCTGCACACATGTTAG
<i>mll1a</i> Fwd	ACAGTTCTGCCATTGACCATC
<i>mll1a</i> Rev	CCTTGAAGGTGAAGTTGGACA
<i>mIl1b</i> Fwd	TGTAATGAAAGACGGCACACC
<i>mIl1b</i> Rev	TCTTCTTTGGGTATTGCTTGG
mPtgs2 Fwd	GAACAACATCCCCTTCCTGC
mPtgs2 Rev	AGAGGTTGGAGAAGGCTTCC
<i>mRela</i> Fwd	GCGAATCCAGACCAACAATAAC
<i>mRela</i> Rev	CTGTCACCTGGAAGCAGAG
mArg1 Fwd	CTCCAAGCCAAAGTCCTTAGAG
mArg1 Rev	AGGAGCTGTCATTAGGGACATC
mStat1 Fwd	TCCCGTACAGATGTCCATGA
mStat1 Rev	ACTTTACTGTCCAGCTCCTTCT
mLgals3 positive control Fwd	TGGAAAAACACCCGTGCCTCTGA
<i>mLgals3</i> positive control Rev	CAGTGCCTACGCCCAGATGACTC

mRela promoter Fwd	TGAGATCAGAGCGGGGGGG
mRela promoter Rev	GGCCCGACTACAAGCTCC
<i>mKlf</i> 8 -4.5 kb negative control Fwd	GGTTTCTGAGACCTAACACTTCACACT
<i>mKlf</i> 8 -4.5 kb negative control Rev	CCATTTAGTCATCCAGCGAACAA
hSP1 promoter Fwd	ACCTCTCCGCCCACTAGGA
hSP1 promoter Rev	CAACGGCCAACCAGAATCC
hVEGFA -3.5 kb Fwd	ACTGGGTCTTGCTGTTTTCC
hVEGFA -3.5 kb Rev	TTCAGGCTGTGAACCTTGG
hRELA promoter Fwd	TTTAGCTGGAGAGGGACGAG
hRELA promoter Rev	CCTGACAGTGCATCAAGAGC

Table S5. Antibodies

Antibody name	Raised in	Supplier/Product#	Application
Mouse monoclonal β-actin clone AC-15	Mouse	Sigma A1978	Western blotting (1:20,000)
Mouse/human monoclonal anti-NF-κB/p65 clone C22B4	Rabbit	Cell Signalling Technology #4764	Western blotting (1:1,000)
Mouse monoclonal anti-IκBα clone E130	Rabbit	Abcam ab32518	Western blotting (1:500)
ECL TM anti-mouse IgG		GE Healthcare NA931	Western blotting (1:10,000-20,000)
ECL TM anti-rabbit IgG		GE Healthcare NA934	Western blotting (1:10,000)
Mouse/human polyclonal anti-KLF3	Goat	Thermo Fisher Pierce PA5-18030	Western blotting (1:1,000)
			ChIP (15 µg per IP)
Normal goat IgG		Santa Cruz SC-2028	ChIP (15 µg per IP)
Mouse polyclonal anti-KLF3	Rabbit	Homemade	EMSA
Anti-mouse CD16/32 Fc block clone 2.4G2	Rat	BD Pharmingen 553141	Flow cytometry (1:25)
FITC anti-mouse CD11b clone M1/70	Rat	BD Pharmingen 557396	Flow cytometry (1:100)
BUV395 anti-mouse CD115 clone T38- 320	Rat	BD Optibuild 743642	Flow cytometry (1:50)

Biotin anti-mouse CD115 clone AFS98	Rat	eBioscience 13-1152-82	Flow cytometry (1:20)
BV711 Streptavidin		BD Horizon 563262	Flow cytometry (1:100)
APC anti-mouse CD19 clone 1D3	Rat	eBioscience 17-0193-80	Flow cytometry (1:20)
APC anti-mouse CD3 clone 145-2C11	Rat	BD Pharmingen 553066	Flow cytometry (1:20)
APC anti-mouse Ly6G clone 1A8	Rat	BD Pharmingen 560599	Flow cytometry (1:20)
BV421 anti-mouse Ly6C clone AL-21	Rat	BD Horizon 562727	Flow cytometry (1:33)
PE anti-mouse CD45 clone 30-F11	Rat	BD Pharmingen 553081	Flow cytometry (1:100)
PE/Cy5 anti-mouse F4/80 clone BM8	Rat	eBioscience 15-4801-80	Flow cytometry (1:100)
APC anti-mouse CD135 clone A2F10.1	Rat	BD Biosciences	Flow cytometry
		560/18	(1:100)
PE anti-mouse CD117 clone 2B8	Rat	BD Pharmingen	Flow cytometry
		561075	(1:100)
Biotin anti-mouse Ter119 clone Ter-119	Rat	BD Biosciences 553672	Flow cytometry (1:200)
Biotin anti-mouse CD19 clone 1D3	Rat	BD Pharmingen	Flow cytometry (1:200)
Biotin anti-mouse CD3 clone 145-2C11	Armenian hamster	eBioscience	Flow cytometry (1:200)
	numster	15 0051 02	
Biotin anti-mouse NK1.1 clone PK136	Mouse	eBioscience	Flow cytometry (1:200)
		13-3941-82	
Biotin anti-mouse Ly6G clone	Rat	BD Pharmingen	Flow cytometry (1:200)
		553124	
Biotin anti-mouse TCRγδ clone GL3	Armenian	eBioscience	Flow cytometry (1:200)
	hamster	13-5711-82	
PE-CF594 Streptavidin		BD Biosciences 562318	Flow cytometry (1:300)