

Supplementary Information for

Spermatozoa lacking Fertilization Influencing Membrane Protein (FIMP) fail to fuse with oocytes in mice

Yoshitaka Fujihara^{1,2,3},Yonggang Lu¹, Taichi Noda¹, Asami Oji^{1,4}, Tamara Larasati^{1,5}, Kanako Kojima-Kita^{1,5}, Zhifeng Yu², Ryan M. Matzuk², Martin M. Matzuk^{2*} and Masahito Ikawa^{1,5,6*}

¹Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan. ²Center for Drug Discovery and Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030. ³Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita, Osaka 564-8565, Japan. ⁴ Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan. ⁵Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan. ⁶The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.

* Corresponding authors: Martin M. Matzuk, MD, PhD and Masahito Ikawa, PhD Email: mmatzuk@bcm.edu and ikawa@biken.osaka-u.ac.jp

This PDF file includes:

Supplementary text Figures S1 to S5 Tables S1 SI References

Supplementary Information Text

RT-PCR analysis. Mouse cDNA was prepared from multiple adult tissues of wild-type mice (1). Briefly, using TRIzol reagent (Invitrogen, CA, USA), total RNA was isolated from multiple adult tissues of wild-type mice and multiple adult human tissues obtained from the Human Tissue Acquisition & Pathology Core. Informed consent of these human tissues was obtained. Mouse and human cDNA were prepared using SuperScript III Reverse Transcriptase (Invitrogen) following the manufacturer's instruction. The amplification conditions were 1 min at 94°C, followed by 30-35 cycles of 94°C for 30 sec, 65°C for 30 sec, and 72°C for 30 sec, with a final 7-min extension at 72°C. The primers used are listed in Table S1.

Amplification and sequencing of the mouse *Fimp* **variants.** The cDNAs encoding the mouse *Fimp* (4930451111Rik) were amplified by PCR using wild-type mouse testis cDNAs as a template. Each amplified fragment (Xbal-Xhol) was introduced into a pBluescript II SK (+) vector and was performed by sequencing. The primers used are listed in Table S1.

Antibodies. The monoclonal antibodies used here were as described previously: KS64-125 for IZUMO1 (2). The BASIGIN (sc-9757) and FLAG (F1804) antibodies were purchased from Santa Cruz Biotechnology and Sigma Aldrich, respectively. Dilutions used were 1:200 to 1:300 for immunostaining and 1:500 to 1:1000 for immunoblot analysis.

Immunostaining. Immunostaining was performed as described previously (3, 4). A confocal microscopic observation was performed as described previously (5). Observation was used by BZ-X710 microscope (Keyence, Osaka, Japan) and Eclipse Ti microscope connected to a Nikon C2 confocal module (Nikon, Tokyo, Japan).

Immunoblot analysis. Immunoblot analysis was performed as described previously (6). Briefly, sperm samples were collected from cauda epididymis. These samples were homogenized in lysis buffer containing 1% Triton X-100 and 1% protease inhibitor (Nacalai Tesque, Kyoto, Japan) and then were centrifuged (10,000g for 20 min at 4°C), and the supernatants were collected. Protein lysates were separated by SDS/PAGE under reducing conditions and transferred to PVDF membranes (Merck Millipore, MA, USA). After blocking, blots were incubated with primary antibodies overnight at 4°C and then incubated with secondary antibodies conjugated with horseradish-peroxidase. Detection was performed using Chemi-Lumi One Ultra (Nacalai Tesque).

Male fertility test. Sexually mature mutant male mice were caged with 2-month-old B6D2F1 or mutant females for several months, and the number of pups in each cage was counted within a week of birth. Average litter sizes (pups per plug) are presented as the number of total pups born divided by the number of plugs for each genotype.

Testis histology and sperm morphology. After breeding studies, males were killed by cervical dislocation following anesthesia. Testes were weighed individually. Testes were fixed in 4% paraformaldehyde in PBS and were processed for paraffin and OCT (Optimal Cutting Temperature) embeddings. Paraffin and frozen

sections were cut 5 µm. Paraffin sections stained with periodic acid-Schiff (PAS) and then counterstained with Mayer hematoxylin solution (Wako, Osaka, Japan). The cauda epididymal spermatozoa were dispersed in PBS, and subsequently sperm morphology was observed under a phase-contrast microscope (BX50, Olympus, Tokyo, Japan).

In vitro fertilization. *In vitro* fertilization using mouse spermatozoa was performed as described previously (7).

HEK293T-oocyte binding assay. The open reading frame (ORF) of *Fimp* was cloned from mouse testis cDNA and conjugated with a Kozak sequence on the N-terminus and a FLAG tag on the C-terminus by RT-PCR. The PCR amplicon was inserted into the pCAG1.1 vector that contains a CAG promoter and a rabbit beta-globin polyadenylation signal. An expression vector bearing mCherry-tagged mouse *Izumo1* ORF was constructed in a similar manner. HEK293T cells were transfected with the expression vectors by calcium phosphate-DNA co-precipitation method. After 2 days of incubation, the HEK293T cells were resuspended in PBS containing 10 mM EDTA and stained with Hoechst33342. Oocytes were harvested from hormone-primed B6D2F1 females and treated with collagenase to remove zona pellucida (ZP). The ZP-free oocytes were incubated with 1×10^4 HEK293T cells in 100 µL TYH medium drops for 2 hours and observed under a Nikon Eclipse Ti confocal laser scanning microscope.

Δ

-										
<u>XP_028696348.1</u>	1	MRLWPWVLVWVWLAAIGAIDT	VPRPKRATASALGTESPR	FLORPOFFDY	PDSDQARLLAVAQ FIGEKPIMF-VNSaGSS	PGLFHHILVGFLVVVF	FLLFQFC	THI [3]] KGĂ	111
<u>XP_024205252.1</u>	1	[4] MRLWPWVLVWVWLAALGAIET	APRPKRATASALGTESPR	FLORPOFFDY	PDSDQARLLAVAQ FIGEKPIVF-INS-GSS	PGLFHHILVGFLVVAFF	FLLFQFC	THIIVggKE [26]] KGK [17]	160
XP_022275594.1	1	[15] MRLWQWTRAWAWLVGLGAIET[15]	APRRENANVLARGAESLL	FIERPOFFDY	POSDQARILAVAQ FIGEKPVIF-VNS-GSN	SEFFHHILVGALVVAFL	FLLY@FF	НМТС0[3]]	140
XP_024840882.1	1	[19] MRPGQWVWVWIWLLRLGPLES	APNLESAKALGRGAESPL	FLORPOFFDY	POSDQARLLAVAQ FIGEKPVIF-ANS-DSD	SRLFHHILVGALLVAFF	FLLFQFC	CHMSCE	KGA	129
XP_006230382.1	1	MPPKPPkeKLSHGEVSRLGSLNS[15]	TTITPAPAAPPPRDRQPV	LREEPACLPV[15	5] POSDQASLLAVAQ FIGEKPVMF-VKT-GSS	P <mark>GLFRHLLVGTLVVAFF</mark>	LLLFQIC	MHVSFQ[3]]	142
<u>XP_021084589.1</u>	1	[15] MKLQQWvsIWVCLWMAELGTVGA	APRRDGTKASTPGADIRL	FVDRPDFFDY	PDSDQASLFAVAQ FIGEKPVTF-VET-GPG	PGLFRHILVGALAVAFS	LFLFQFC	гну		121
<u>XP_005591661.2</u>	1	[4] MRLWPWVLVWVWLSAIGAIDT	VPRPKRATASVLGTESPR	FLORPOFFDY	PDSDQARLLAVAQ FIGEKPIMF-VNS-GSS	P <mark>GLFHHILVGFLVVVF</mark>	FLLFQFC	ГНІ[3]] KGA	114
XP_023471801.1	1	MRLWQWVWGWVWLVGLGATET	APSPESAKILAPEAEPPL	FIDGTDFFDY	POLDOARLLALAO FIGERPVVFdNSA-DSK	SEFFHHILVGALVLAFF	FLLF@FC	THMSCQ	KGĂ	111
XP_029460801.1	1	[8] HWSF-slpisamavsgeclpw[21]	SPSPFPSPPSPLKVTNEA [2	1] FVKNSMWFDY	PDHDTNKSGAVYK FIGEKPMSTsSKAI	SKLLQRILIGATILILV	LLAYQLL	AHTFCN[3]]	158
XP_003762137.2	1	MKLWLWLWLTGVWAVGA	AIFPRDSR-DMTPRDTLF	LEDNPNFFDY	PDSAKDKILAVSN FIGEKPVYFtSDS-GFK	S <mark>rflhkilfgsfillli [</mark> 1]-ILYQFC	Г нм анн-са[з]]	106
XP_006914291.1	1	MRLWQWVWLWLWLVGLGAIET	APSQENAKVLALGAESPL	FIDRPDFFDY	POSDQARLLALAQ FIGEKPISF-ANS-GSN	SREFHHILAGALI VAAF	FLLFQFC	ГНМ		104
XP_024416141.1	1	MNLWQWARVWVWLVGLGAIET	APSPESAKTLPLGAESPL	FMDRPDFFDY	POSDRARLLALAR FIGEKPVIF-VNS-DSS	SFFHHILAGSLIVAFF	FLLFQFC	FHMSFQ	KGA	110
XP_024648911.1	1	[40] MRLWPWVLVWVWLAAIGAIDT	VPRPKRATASALGTESPR	FLORPOFFDY	POSDRARLLAVAR FIGERPIME-VNSaGSS	GLFHHILVGFLVVVVF	FLLFQFC	ГНМ [11]] KGA [14]	173
XP_021788977.1	1	[40] MRLWPWVLVWVWLAAIGAIDT	APRPKRATASALGTESPR	FLORPOFFDY	POSDRARLLAVAR FIGEKPIMF-VNSaGSS	GLFHHILVGFLVVVVF	FLLFQFC	ГНІ [3)] KGA	151
XP_024781780.1	1	MRLWPWVLVWVWLAALGAIET	APRPKRATASALGTESPR	FLORPOFFDY	POSDRARLLAVAR FIGEKPIVE-INS-GSS	GLFHHILVGFLVVAFF	FLLFQFC	THIIVggKE [26]] KGK [17]	156
XP_024089881.1	1	MRLWPWVLVWVWLAALGAIET	APRPKRATASALGTESPR	FLORPOFFDY	POSDOARLLAVAO FIGEKPIVE-INS-GSR	GLFHHILVGFLVVAFF	FLLFQFC	THITVESKE [26]] KGK [17]	156
XP_019676281.1	1	MRLWLWAWVWVWLLGLGAIET	APSPRRANTLTRRAESVF	FLORPOFFDY	PDSDQARLLAVAR FIGEKPVIF-VNS-GMN	LETASFLAGVWRRAAL[18]LALCPEC	NLPSF	PAD[1]	129
XP_019291908.1	1	MRLWLWAWVWVWLLGLGAIET	APSPORANTLIRGAESVL	FLORPOFFDY	POSDQARLLAVAR FIGEKPVIE-VNS-GMN	LETASFLAGVWRRAAL[18	LALCPEC	PNLPSF	PAD[1]	129
XP_025775725.1	1	MRLWLWAWVWVWLLGLGAIET	APSPORANTLIRGAESVL	FLORPOFFDY	LDSDQAGLLAVAR FIGEKPVIF-VNS-GYN	SEFFYHILVGALVVAFL	FLLFQFC	ГНМ		104
XP_027468046.1	1	MRLWQWAWGWVWLVGLGAIET	APSRERASTLVRGAESLL	FIDRPDFFDY	POSDQARLLAVAQ FIGEKPVIF-VNS-GPN	SKLFHHILVGALVVAFL	FLLY@FC	THMSCQ	KGA	110
XP_004322135.1	1	MRPWQWAQVWMWLAGLGTVES	APILENAKALARGAESPL	FLORPOFFDY	PDSDQARLLALAQ FIGERPVIF-VNS-GSD	MEFHHIEVGALVVAFI	FLLFQFC	ГНМ		104
XP_028354856.1	1	MTPWQWVQVWMWLAGLGTVES	APSLESAKAMARVAESPL	FLORPOFFDY	PDSDQARLLALAQ FIGERPVIF-GNS-GSD	SRLFHHILVGALVVAFF	FLLFQFC	THImvGE	KGR[8]	119
XP_010596870.1	1	MKPRLWSLVWLCLAGLGATET	APRPERAETSAPGAESLP	FIDRPDFFDY	PDSDQARVLALSQ FIGEKPVIF-ANS-GSS	SDEFHHIRVAALMLAEF	FLLFQFC	\$НМ		104
XP_020740246.1	1	MRPRQWVWVWMWLLGLGSLES	APSMERAKASGRGAESPL	FLORPOFFDY	PDSDQAKLLAVAQ FIGEKPVIF-ANS-GSD	SRLFHHILVGALLVAFF	FLLFQFC	THMSCE	KGA	110
XP_019842700.1	1	MRPGQWVWVWIWLLRLGPLES	APNLESAKALGRGAESPL	FLORPOFFDY	PDSDQARLLAVAQ FIGEKPVIF-ANS-DSD	SRLFHHILVGALLVAFF	FLLFQFC	СНМ		104
XP_005698060.1	1	MRPGQWVWVWMWLLRLGPLES	APSLESAKASGRGAESPL	FLORTDFFDY	PDSDQARLLAVAQ FIGEKPVIF-ANS-DSD	SRLFHHILVGALLVAFF	FLLFQFC	ГНМ		104
XP_026236702.1	1	MRRWQWVPMWVWLAGLGAIET	APSPELAPGSEPPR	FIDRLDFFDY	PDSDQASILAVAQ FIGERPVVF-VKS-GSG	GLENHILVGALVVAFL	FLLFQFC	THMSFQ	KGA	106
XP_003510157.1	1	MKLRQWysVWVCLWMAELGTVET	APRRDVTKASTPGADTQL	FIDRPDFFDY	PDSDQDSLFAVAQ FIGEKPVTF-VKT-GSG	GLFQHILVGMLAVAFF	LFLFQFC	FHVSFQ[3]]	112
XP_021491510.1	1	MRLWQWIPVCMWMWLAELETGEA	APRODGTRASGLOASPRL	VVDRPDFFDY	PDSDQASLLAVAQ FIGEKPVTF-VRT-DSG	SKLFQHILVGALVVGFF	FLLFQFF	THVSFQ	KGA	112
XP_007499498.1	1	M-LWLYLCLAGEWAAGA	ATYHODSTTDMVPKELSF	LED-PNFFDY	PDSAQDKILAISR _IGEKPVYFtSNS-GFK	SRFLHHILFGSFILLLI[1]-ILYQFC	ГНМSС0[З]]	105
XP_008151135.2	1	MSLW0WARLWVWLVGLGAIET	APSPGSAETWAPGAEAPL	FLORPOFFDY	PDSDQARHLAVAR FIGEKPVIF-VKS-GSN	PKLFHHILVGILAAAFF	FLLFKFC	THMSCQ	KGĂ	110
XP_021556072.1	1	MBLW9WAWAWVWLVGLGAIET	APSRERASTSVRGAGSLL	FIDRPDFFDY	PDSDQARLLAVAQ FIGEKPVIF-VNS-GSN	SEFFHHILVGALVVAFL	FLLY@FC	СНМ		104
XP 020137317.1	1	[19] MRLCOWVLAWVWLAGLGAIET	APSPKRAKTLVLGTESPV	FIDRPDFFDY	PDSDQAKVLAVAR FIGERPVVF-TRS-GSN	SELFQHILVGALVLAFF	FLLFQFC	HVAVMB[25]]KNW[17]	172
XP_003795833.1	1	MBLW0WALAWMWLTGLWAVET	APSPKSTKALAPGMESPV	FIDRPDFFDY	PDSDQARLLAVAQ FIGERPVIF-TRS-GSD	GLEHRILVGALVVAFF	FLLFQFC	THVSFQ	KGA	110
XP 026907355.1	1	MRLWLWAWVWVWLLGLGAIET	APSPORANTLIRGAESVL	FLORPOFFDY	PDSDQARLLAVAR FIGEKPVIE-VNS-GMN	LETASFLAGVWRRAAL [18	LSLCPEC	PNLPSF	PAD[1]	129
XP_029803280.1	1	MRLWLWACLLGLGAIET	APSPERANTLPGRAESVL	FMDRPDFFDY	PDSDQTRLLAVAQ FIGEKPIIF-VNS-GSN	SEFFHRILVGALVVAFL	FLLFQFC	THMSFQ	KGA	106
XP_020862576.1	1	MKLWLWLCLTGVWAAGA	AFHPRDSM-KVAPRGSLF	LEDNPNFFDY	PDSARDKIQAVSN FIGEKPVYFtSDS-GFK	SRFLHQILFGSFILLLI[1	1-ILYQFC	THMSCQ[3]	106
XP 028560415.1	1	[1] AQCYSF-GAEDPRENIC	-ISRGKARAGNPGNATET[41HOPLWEDY	PDTDEKKILALYK LIGERPEYIPPSSF	PHQLRYILVGSIILILL	FFLYQII	SKVYVS [22]	1	125
XP 026981320.1	1	MRLWOWARVWMWLAGLGTVES	APILENAKALARGAESPL	FLORPOFFDY	PDSDQASLLALAQ FIGERPVIF-VNS-GSD	MUFHHILVGALVVAFI	FLLFQFC	СНМ		104
XP_020654487.1	1	[10] QLLWAF-aVPTKVILAA	-PPLGTAPAENLGATNEL[51ROPLWEDY	PDSDRKKILALYK _IGEEHEFV@PSVF	PYFLRYILIGSVILILL	FFLYQII	SKLYV-[25]]	137
XP_011377119_1	1	MBI WOWVWI WI WI VGI GALET	APSRENAKVI AL GAESPI	FLORPOFFOY	POSTRABILALAR FLOEKPISE-ANS-GSN	SREEHHILAGALIVAAE	FLLEREC	снм		104
XP 020013549.1	1	MBLW9WVLMWVWLABL9AIDT	APNPESIKALAQGADSSA	FIDRSDFFDY	PDSDQTSLLAVAQ FIGEKPVIF-VKS-DSG	GEFHHILVAALVVAEF	FLLFQFC	THMSFQ	KGA	110
XP 006201327 1	1	MRI WOWAWVWVWI VGI GTVES	ADNDESAKAI ADGAESDI	FLORPOFFOY	PRSNOARIIAIAO FIGERRVIE-NSA-DSD	SRI FHHI I VGAL VAAFF	FLLEREC	CHMNFO	KGA	110
XP_004386820_1	1	MBPBI WPI VWI WI AGPSALET	APSI EBAKAI APEAESI P	FLORPOFFDY	PRSRABILALSO FLOFKPVLF-ATS-655	SDEEHHLI VAALMLAEE	FLLEDEC	SHM		104
XP 007452897 1	1	MBPWewARVWMWLAGLATVES	APILENAKALABGAVSPI	FLORPOFFDY	PDSDBARLLALAB FIGERDVIE-VNS-GSD	SRI FHHII VGAL VVAFI	FLLEDEC	THIPkeuGD	EGL [14]	127
XP 007093532 1	1	MBLWLWAWVWVWLLGLGAIFT	APSPARANTLIBGAESVI	FLORPDFFDY	PDSDBARLLAVAR FIGEKPVIE-VNS-GVN	SEFFYHILVGALVVAF	FLLEREC	CHMSCR	KGA	110
XP_014385310_1	1	[12] VSSI I PI HACNWYTRELEI BR [15]	APTPEGARTWALGAESUR	FLOBPOFFDY	PRSPARRI AVAG FLOFKDVLF-VKS-OSN	RIEHHLI VOLLVAAFE	FELEDEC	CHMSC0[3]	1	137
XP 022382344 1	1	MRI WOWAWAWVWI VGI GALET		FLORPOFFOY	PRSNOARI LAVAO FIGEKDVI E-VNS-ESN	SEEFHHII VGAL VVAEF	FLLYDEC	CHMSCE	RGA	110
XP 010835734.1	1	MRPGPWVWIWILRLGPLFS	APSLESAKALGRGAESPI	FLORPOFFOY	PDSDQARLLAVAQ FIGEKPVIE-ANS-DSD	SRLFHHILVGALLVAFF	FLLFOFC	CHM		102
	-					the second se	1 1 1 1 1 1 1 V			

Fig. S1. Nucleotide and amino acid sequence alignments of 4930451111Rik. (A) Nucleotide sequence alignments of TM (+) and (-) forms of 4930451111Rik. The sizes of the coding regions of TM (+) and (-) isoforms are 336 bp and 279 bp, respectively. Two variants match from the start codon (ATG) to the 226th nucleotide (75 of 111 amino acids in TM form). Black indicates a match in two sequences. (B, C) Protein structure prediction of the TM form of 4930451111Rik. 4930451111Rik is predicted to be a type I single-pass transmembrane protein with a signal peptide (1-23 aa), extracellular region (24-79 aa), transmembrane domain (80-102 aa), and intracellular region (103-111 aa). TMHMM-2.0 (B; https://services.healthtech.dtu.dk/service.php?TMHMM-2.0) and SignalP-5.0 (C; http://www.cbs.dtu.dk/services/SignalP-5.0/) software were used for this prediction. (D) Amino acid sequence similarity of 4930451111Rik (C16ORF92) among 51 eutherian mammals [Mus musculus (TM form) (NP 898954.2), Homo sapiens (NP 001103129.1), Rattus norvegicus (XP 006230382.1), Macaca mulatta (XP 028696348.1), Pan troglodytes (XP 024205252.1), Pongo abelii (XP 024089881.1), Equus caballus (XP 023471801.1), Loxodonta africana (XP 010596870.1), Canis lupus familiaris (XP 022275594.1), Cricetulus griseus (XP 003510157.1), Sarcophilus harrisii (XP 003762137.2), Otolemur garnettii (XP 003795833.1), Pan paniscus (XP 024781780.1), Papio anubis (XP 021788977.1), Felis catus (XP 019676281.1), Tursiops truncates (XP 004322135.1), Trichechus manatus latirostris (XP 004386820.1), Mesocricetus auratus (XP 021084589.1), Bos taurus (XP 024840882.1), Macaca fascicularis (XP 005591661.2), Capra hircus (XP 005698060.1), Myotis brandtii (XP 014385310.1), Vicugna pacos (XP 006201327.1), Pteropus Alecto (XP 006914291.1), Panthera tigris altaica (XP 007093532.1), Lipotes vexillifer (XP 007452897.1), Monodelphis domestica (XP 007499498.1), Eptesicus fuscus (XP 008151135.2), Bison bison bison (XP 010835734.1), Pteropus vampyrus (XP 011377119.1), Macaca nemestrina (XP 024648911.1), Microcebus murinus (XP 020137317.1), Panthera pardus (XP 019291908.1), Bos indicus (XP 019842700.1), Castor canadensis (XP 020013549.1), Pogona vitticeps (XP 020654487.1), Odocoileus virgunianus texanus (XP 020740246.1), Phascolarctos cinereus (XP 020862576.1), Meriones unguiculatus (XP 021491510.1), Neomonachus schauinslandi (XP 021556072.1), Enhydra lutris kenyoni (XP 022382344.1), Desmodus rotundus (XP 024416141.1), Puma concolor (XP 025775725.1), Urocitellus parryii (XP 026236702.1), Acinonyx jubatus (XP 026907355.1), Lagenorhynchus obliquidens (XP 026981320.1), Zalophus californianus (XP 027468046.1), Physeter catodon (XP 028354856.1), Podarcis muralis (XP 028560415.1), Rhinatrema bivittatum (XP 029460801.1), Suricata suricatta (XP 029803280.1)]. The green box indicates a putative transmembrane domain. 4930451111Rik is conserved broadly in mammals.

В

Wild-type TM (+)	1	MKLWLWVAVGVWMLMAELGTIETAPRRDGTRPSV <mark>SGARP</mark> QQVVNRLFFDYPDSDRASLLA	60
Wild-type TM(-)	1	MKLWLWVAVGVWMLMAELGTIETAPRRDGTRPSV <mark>SGARPQQVVNRLFFDYPDSDRASLLA</mark>	60
1 bp deletion	1	MKLWLWVAVGVWMLMAELGTIETAPRRDGTRPSV <mark>QEPD</mark> PSKL	42
Wild-type TM (+)	61	VARFIGEKPITFVKTDSSF <mark>GLFQNILVGTLVVAFFFLLFQFC</mark> LHVNFQKGA	111
Wild-type TM(-)	61	VARFIGEKPITFVKTGTSRKGPNEISSQSQLR	92

С

Fig. S2. Generation of 4930451111Rik KO mice with CRISPR/Cas9. (A) Direct sequencing waveforms of the 1 bp deletion (5'-T-3', indicated by red letter) in the second exon of *4930451111Rik* gene. Arrow indicates gRNA sequence. (B) Amino acid sequence of *4930451111Rik* KO mice. The 1 bp deletion caused a frameshift mutation leading to a premature termination codon after the 42nd amino acid of both isoforms (111 amino acids in wild-type TM (+) form and 92 amino acids in wild-type TM (-) form). The putative transmembrane domain is indicated by the red box. Black indicates a match in all sequences, whereas gray indicates a match in two sequences. (C) Representative testicular histology sections stained with hematoxylin and eosin. Spermatogenesis in *4930451111Rik* KO (-1/-1) mice is normal compared to that in wild-type (wt) mice. Scale bars: 200 μm. (D) Cauda epididymal spermatozoa from wild-type and *4930451111Rik* KO mice. Sperm morphology in *4930451111Rik* KO (-1/-1) mice is normal compared to that in wild-type (wt) mice. Scale bars: 10 μm.

D

Fig. S3. Generation of 4930451111Rik TM-deleted mice with CRISPR/Cas9. (A) Direct sequencing waveforms of the 246 bp deletions around the third exon of the *4930451111Rik* gene. Exons and introns are indicated by black and red letters, respectively. (B) Direct sequencing waveforms from testis cDNA in 4930451111Rik TM-deleted mice. A part of the second intron (5'-GTATGAATCAGCTTGATAG-3') and stop codon are indicated by red and blue letters, respectively. 19 bps of the second intron were abnormally expressed in the testis of 4930451111Rik TM-deleted mice. Nucleotides that match between wild-type and TM-deleted (-246/-246) mice are indicated by asterisks (226 of 336 bp match in wild-type mice). (C) Immunoblot analysis of IZUMO1 using sperm lysates from 4930451111Rik TM-deleted spermatozoa. BASIGIN was used as a loading control. (D) Immunostaining of IZUMO1 in 4930451111Rik TM-deleted spermatozoa. IZUMO1 is used as a marker of the acrosome reaction. Acrosome reaction occurred in 4930451111Rik TM-deleted (-246/-246) spermatozoa. Acrosome-reacted spermatozoa (determined by whole head pattern of IZUMO1) are indicated by asterisks. Scale bars: 10 μm.

B Fimp-mCherry Fimp-mCherry * sperm head * * * * 1sec _____10sec

Fig. S4. Analysis of *Fimp-mCherry* transgenic mice and COS-7-oocyte binding assay. (A)

Representative testicular histology of frozen sections of *Fimp-mCherry* transgenic (Tg) mice. The Fimp-mCherry Tg mice had another transgene [CAG/Acr-Egfp] which expressed EGFP throughout the entirety of the mouse and sperm acrosome. Spermatogenesis in Fimp KO (-1/-1) mice looked normal compared to that in wild-type mice. Scale bars: 50 µm. (B) Fluorescent observation of Fimp-mCherry Tg mouse spermatozoa. Although mCherry signals could not be detected on the sperm head using a short exposure time (1 sec), the signals could observe on sperm head using a longer duration of exposure (10 sec). Most of the FIMP-mCherry protein in cauda epididymal spermatozoa was concentrated in cytoplasmic droplets. Sperm heads with red signals are indicated by asterisks. Scale bars: 20 µm. (C) Confocal microscopic observation of Fimp-mCherry Tq mouse spermatozoa. The TM form of FIMP-mCherry fused protein is detected on the equatorial segment of the sperm head in acrosome-intact spermatozoa. Scale bar: 1 µm. (D) Observation of COS-7 cells expressing *Izumo1-mCherry* (upper panel, white signals) and Fimp-mCherry (lower panel, white signals) 2 days after transfection. Scale bars: 100 µm. (E) COS-7-oocyte binding assay. COS-7 cells expressing IZUMO1-mCherry (white signals) adhere to the plasma membrane of zona pellucida (ZP)-free oocytes, whereas the ones overexpressing FIMP-mCherry could not bind to the oocyte membrane. Scale bars: 100 µm. COS-7-oocyte binding assay was performed as described previously (8).

Fig. S5. HEK293T-oocyte binding assay. (A) Observation of HEK293T cells expressing *Izumo1-mCherry* (middle panel, red signals) and *Fimp-mCherry* (right panel, red signals) 2 days after transfection. Hoechst staining is indicated by blue signals. Scale bars: 50 μm. (B) HEK293T cells expressing mCherry-tagged IZUMO1 (red signals) adhere to the plasma membrane of ZP-free oocytes, whereas the ones overexpressing FLAG-tagged FIMP could not bind to the oocyte membrane. Hoechst staining is indicated by blue signals. Scale bars: 50 μm. (C) HEK293T cells solely expressing IZUMO1-mCherry showed a comparable index of oocyte binding compared with the ones simultaneously expressing IZUMO1-mCherry and FIMP-FLAG. Scale bars: 50 μm.

Figure	Sequence (5' to 3')	Name	
	TGTGGATGTTGATGGCTGAG	- 4930451111Rik	
14 10 10	AGAAGGCAGGGTAGATGTGT		
IA, IB, ID	TGGATATGCCCTTGACTATAATGAG	- Hprt	
	TGGCAACATCAACAGGACTC		
	GATTATCCGGACTCAGACCAAG	Human C16ORF92	
10	CAGGATGTGATGGAAGAGCC		
IC	AATCCCATCACCATCTTCCAG		
	ATGACCCTTTTGGCTCCC	numan GAPDn	
2 A 2D 52 A	GCCTTCTTGCTGTGGCCCGG	Primer #1	
3A, 3B, 33A	CGCCTGCAGCCTGGGAGG	Primer #2	
20 520	ATGAAGCTGTGGCTGTGGGTAGC	TM delation	
эс, бэв	TCACCTCAGCTGGCTCTGGCTG	I M-deletion	
	AATCTAGAGCCGCCATGAAGCTGTGGCTGTGGGTAGC	TM form for Ta	
1 4	TTAAGCTTGGCCCCTTTCTGGAAGTTCACATGC	TWI IOTIII IOT Tg	
4A	TTAAGCTTGTGAGCAAGGGCGAGGAGGATAAC	mChanny for Tr	
	TTCTCGAGTTACTTGTACAGCTCGTCCATGCCGC	menerry for fig	
	TTGAGCGGGCCGCTTGCGCACTGG	Primer #3	
4A, 4D	GGCCCCTTTCTGGAAGTTCACATGC	Primer #4	
	ATGAAGCTGTGGCTGTGGGTAGC	— 4930451111Rik (TM form)	
S1 4	TTAGGCCCCTTTCTGGAAGTTCACATG		
SIA	ATGAAGCTGTGGCTGTGGGTAGC	4930451111Rik	
	TCACCTCAGCTGGCTCTGGCTG	(secreted form)	
S2 A	GGCCCAGCCCAGGCC	4020451111D:1	
52A	GGAGATCAGATGAGGAGGGACACATAGG	4950451111Kik genotyping	

Table S1. List of primers.

References

- 1. Y. Fujihara *et al.*, Sperm equatorial segment protein 1, SPESP1, is required for fully fertile sperm in mouse. *J Cell Sci* **123**, 1531-1536 (2010).
- 2. Y. Fujihara *et al.*, Expression of TEX101, regulated by ACE, is essential for the production of fertile mouse spermatozoa. *Proc Natl Acad Sci U S A* **110**, 8111-8116 (2013).
- 3. M. Muto, Y. Fujihara, T. Tobita, D. Kiyozumi, M. Ikawa, Lentiviral Vector-Mediated Complementation Restored Fetal Viability but Not Placental Hyperplasia in Plac1-Deficient Mice. *Biol Reprod* **94**, 6 (2016).
- 4. Y. Fujihara *et al.*, SPACA1-deficient male mice are infertile with abnormally shaped sperm heads reminiscent of globozoospermia. *Development* **139**, 3583-3589 (2012).
- 5. Y. Satouh, N. Inoue, M. Ikawa, M. Okabe, Visualization of the moment of mouse sperm-egg fusion and dynamic localization of IZUMO1. *J Cell Sci* **125**, 4985-4990 (2012).
- Y. Fujihara, A. Oji, T. Larasati, K. Kojima-Kita, M. Ikawa, Human Globozoospermia-Related Gene Spata16 Is Required for Sperm Formation Revealed by CRISPR/Cas9-Mediated Mouse Models. *Int J Mol Sci* 18 (2017).
- K. Tokuhiro, M. Ikawa, A. M. Benham, M. Okabe, Protein disulfide isomerase homolog PDILT is required for quality control of sperm membrane protein ADAM3 and male fertility [corrected]. *Proc Natl Acad Sci U S A* **109**, 3850-3855 (2012).
- 8. N. Inoue *et al.*, Molecular dissection of IZUMO1, a sperm protein essential for sperm-egg fusion. *Development* **140**, 3221-3229 (2013).