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Supplementary figures:

Figure S1 Stability of AID tagged proteins in different culture media and integration of the AID

tagged subunits in the cohesin core complex

A C) Degradation by the AID tag can be induced by components of the culture medium, as also

described (Natsume et al. 2013) (Yesbolatova et al. 2019), leading to strongly reduced levels of the

AID tagged protein compared to wildtype levels. We tested McCoy medium supplemented with a

standard fetal bovine serum batch (FBS) and two batches of commercially available charcoal/dextran

treated FBS (C/D) and noted that the treated FBS batches retain the levels of AID tagged proteins in

case of STAG1 AID (A), STAG2 AID (B) and also RAD21 AID (C) much better than standard FBS. The

effect on STAG1 AID and STAG2 AID is stronger than on RAD21 AID, likely since these subunits are not

essential for cell viability (van der Lelij et al. 2017). D) Levels of SMC1A in RAD21 AID, STAG1 AID and

STAG2 AID cells compared to wildtype levels. E, F) Immunoprecipitation of SMC3 from STAG1 AID (E)

and STAG2 AID (F) cells demonstrates that the modified subunits are incorporated in the cohesin

complex.G)Quantitation of the respective other STAG protein level after auxin mediated degradation

of STAG1 or STAG2. STAG2 levels were quantified in STAG1 AID cells and STAG1 levels in STAG2 AID

cells after 12 hours auxin treatment and normalized to no auxin treatment. Three independent

western blots corresponding to the ones shown in Figures 1 C and D were quantified using Image J.
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Figure S2 Comparison of ChIP sequencing data from HCT116 (this manuscript) with MCF10A cells

(Koijc et al., 2018)

A) Heatmaps showing the ChIP sequencing signals of STAG1 (blue) and STAG2 (green) from STAG1

AID and STAG2 AID HCT116 cells (this manuscript, using anti EGFP antibodies) andMCF10A cells (Kojic

et al. 2018). Common and unique sites from both cell types are shown. B) Number of shared or unique

peaks for STAG1 and STAG2 in STAG1 AID or STAG2 AID cells and MCF10A cells (Kojic et al. 2018). C)

Correlation between the different samples and replicates of the ChIP seq experiments in this study

and in Koijc et al., 2018 (Kojic et al. 2018).
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Figure S3 STAG1 and STAG2 have overlapping as well as discrete binding sites

A) Heatmaps showing the ChIP seq signals for RAD21, STAG1, STAG2, CTCF and SMC3. RAD21 and

CTCF ChIP seq data are from Rao et al., 2017 (Rao et al. 2017). B) Venn diagrams showing the number

of shared peaks between RAD21 ChIP seq data from Rao et al., 2017 and STAG1, STAG2 and SMC3

ChIP seq data presented in this manuscript. C) ChIP qPCR showing that SMC3 binding at sites in the

PAGE2B/FAM104B locus (also in Figure 2D, E) is reduced upon degradation of STAG1 or STAG2 on

STAG1 or STAG2 only sites but is also on STAG1/STAG2 shared sites. D, F) Two more loci were

analyzed to confirm the presence of STAG1 and STAG2 only sites, the LY86 AS1/LY86 locus (D) and the

ICOS locus (F). E, G) STAG1 only, STAG2 only and STAG1/2 shared sites at the LY86 AS1/LY86 locus (E)

and the ICOS locus (G) were tested in anti EGFP ChIP (upper panel) and SMC3 ChIP from STAG1 AID

and STAG2 AID cells w/o and with auxin treatment. H, I) STAG1 ChIP was performed from STAG2 AID

cells with and without auxin treatment to test whether STAG1 accumulates more at these sites after

STAG2 depletion. STAG1/STAG2 shared sites (H) and STAG2 only sites (I) were analyzed. J, K) STAG2

ChIP was performed from STAG1 AID cells with and without auxin treatment to test whether more

STAG2 accumulates more at these sites after STAG1 depletion. STAG1/STAG2 shared sites (J) and

STAG1 only (K) sites were analyzed.
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Figure S4 Enrichment of transcription factor (TF) motifs and signals at STAG1 and STAG2 sites

A) The probability of the presence of another TF at the STAG1/STAG2 shared binding sites was

calculated based on the accessibility of the sites (DNase hypersensitivity) and the presence of TFmotifs

(Lin et al. 2015). The differences of enrichment between STAG1 and STAG2 are plotted as heatmap.

B) GO term analysis of the TFs plotted in (A) using Metascape (Zhou et al. 2019). C) Enrichment of

histone marks and TFs at STAG1 and STAG2 only peaks. Published datasets for HCT116 cells were

used (Rao et al. 2017; Davis et al. 2018) (Table S8). Wilcoxon Mann Whitney U test with Benjamini

Hochberg correction p values are shown. D) The probability of the presence of another TF at the

STAG1 and STAG2 only binding sites was calculated based on the accessibility of the sites (DNase

hypersensitivity) and the presence of transcription factor motifs (Lin et al. 2015). The differences of

enrichment between STAG1 and STAG2 are plotted as heatmap.
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Figure S5 STAG1/STAG2 sites investigated by Re CHIP

ChIP sequencing profiles for STAG1, STAG2, SMC3 and RAD21 (Rao et al. 2017) of the ten positive sites

and one negative site investigated by Re ChIP and qPCR. The positions of the qPCR primers are

indicated below the ChIP seq tracks.
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Figure S6 Immunostaining and dSTORM of fibroblasts using secondary antibodies only

Human skin fibroblasts were treated with the identical protocol for immunostaining as described for

the dSTORM sample preparation in the Supplemental Methods section, except that the primary

antibody was omitted. The secondary antibodies used were donkey anti rabbit Alexa647 (Jackson

Immuno Research 711 605 152), donkey anti goat Alexa488 (Thermo Fisher Scientific A11055),

donkey anti mouse CF568 (Biotium #20105 1). The upper panel shows a transmission lightmicroscopy

image to indicate the position of the cell nucleus and widefield images (contrast enhanced to show

low residual signal) of the three different colors. The lower panel shows the accumulated dSTORM

signal from 12000 frames. These signals were too sparse to perform clustering. Additionally, detected

molecules were randomly distributed over the complete imaged area and the nucleus was not

discernable in the reconstructed STORM images. This in contrast to the samples stained also with

specific primary antibodies.
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Figure S7 Single molecule localization

A)Merged reconstructed triple color dSTORM image of a single nucleus stained for STAG1 (magenta),

STAG2 (red) and CTCF (green). The images were analyzed with the same pipeline as shown in Fig. 3D.

B) The cluster area size (nm2) for CTCF is plotted grouped per number of adherent clusters of STAG1

or STAG2. C) Frequency of CTCF cluster groups per cell measured for 7 cells. All CTCF clusters falling in

other groups are depicted as “Others”. This group contains 26 subgroups, eg. adhering to more than

2 clusters or 2 clusters of the same STAG. All error bars show standard error of the mean (+/ SEM).

D) dSTORM using anti CTCF was performed in HCT116 RAD21 AID cells (Natsume et al. 2016) w/o and

with auxin treatment for 6 hours and the size of the CTCF signal clusters analyzed as in Figure 3D. E)

The size of the CTCF clusters decreases after RAD21 degradation (+/ standard deviation of mean

SEM; t test p value is indicated, * P< 0.05). F) Fractionation of human skin fibroblasts used for

dSTORM in Figure 3 in soluble fraction and chromatin bound fraction.Western blotting with anti CTCF

shows that CTCF is not detectable in the soluble fraction and therefore fully chromatin bound. As

controls for the chromatin bound fraction anti Topoisomerase II was used and anti tubulin as control

for the soluble fraction.
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Figure S8 STAG1 and STAG2 affect long range interactions differently

A) Correlation between the different samples and replicates of the Hi C experiments in this study.

B) Zoom in into the contact maps for STAG1 AID cells (left) and STAG2 AID cells (right) for regions on

Chromosome 5 and Chromosome 17. The maps for untreated cells (w/o auxin), treated cells (+auxin)

and the differential interaction maps split in loss of interactions (blue) and gain of interactions (red)

are shown.
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Figure S9 STAG1 and STAG2 affects long range interactions differently

A) Contacts between and within A and B compartments are correlated between the contact matrices

of STAG1 AID and STAG2 AID cells without (w/o) auxin and then with and without auxin in STAG1 AID

and STAG2 AID cells. Total contacts observed, correlation coefficient as well as the percentage and

number of the contacts between the specific compartments are indicated. PC1 = principal component

1. B) Normalized interaction frequencies are plotted against the distance between interacting bins (at

50 kb resolution) without and with auxin mediated degradation for STAG1 AID and STAG2 AID cells.

Chromosomes 6 and 17 are shown. C) Change of contacts between bins (at 25 kb resolution) relative

to the separation of the contacting fragments after STAG1 or STAG2 degradation are shown for all

chromosomes, except Chromosomes 6 and 17 that are displayed in Fig. 4E. D) Comparison of TADs

before and after degradation of STAG1 or STAG2. E) Changes in STAG1 AID and STAG2 AID cells before

and after auxin treatment in terms of number of TADs per chromosome. F) Changes in STAG1 AID and

STAG2 AID cells before and after auxin treatment in terms of TAD border strength. G) Changes in

STAG1 AID and STAG2 AID cells before and after auxin treatment in terms of TAD border conservation.

H) Intra TAD or inter TAD changes of contacts after STAG1 or STAG2 degradation between and within

A and B compartments. Statistical test performed in E H: Wilcoxon Mann Whitney U test; p values

corrected by the Benjamini Hochberg method are indicated. I) Aggregate peak analysis of STAG2 only

peaks showing that STAG2 only peaks do not contact each other. J) Aggregate peak analysis of the

contacts of STAG2 only peaks to other cohesin sites showing that these contacts persist after STAG2

degradation.
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Figure S10 Contacts between STAG1 only sites

A) Aggregate peak analysis of persistent contacts between STAG1 only sites without (w/o) and with

auxin in STAG1 AID cells. B) Number and distances between interacting bins with STAG1 only sites

with contacts in STAG1 AID cells without (w/o) auxin, with auxin (+auxin) and persistent in both

situations. C) Orientation of the CTCF motif at STAG1 only sites engaged in the different contact

categories shown in (B) without (w/o) auxin, with auxin and persistent. Wilcoxon Mann Whitney U

test p values with Benjamini Hochberg correction are shown, * P< 0.05.



Figure S11
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Figure S11 STAG1 or STAG2 regulate different genes

A,B) Volcano plots representing the transcriptional changes after STAG1 degradation (A) or STAG2

degradation (B), presented without genes overlapping between the datasets. Significantly changing

genes are plotted in green. Genes that lie outside of the plotted range are indicated with their fold

change and p value. C) Pie chart showing the overlap of the genes differentially expressed after STAG1,

STAG2 and RAD21 degradation (Rao et al. 2017). D) Functional analysis of the genes differentially

expressed after STAG1 or STAG2 degradation using Metascape (Zhou et al. 2019).
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Figure S12 Depletion of cohesin in neural stem cells

A C) Depletion of STAG1, STAG2 and SMC1A by siRNA mediated depletion in neural stem cells was

confirmed by Western blotting for STAG1 (A), STAG2 (B) and SMC1A (C). Tubulin (TUBB) was used as

loading control. D F) Depletion of STAG1, STAG2 and SMC1A by siRNA mediated depletion in neural

stem cells was confirmed by RT qPCR analysis for the mRNA of STAG1, STAG2 and SMC1A. SNAPINwas

used as housekeeping gene. Please note that some of these controls are also shown in Kruska et al.

2019 (Kruszka et al. 2019). (mean of n=3, t test p values are indicated, *** P< 0.001; **** P < 0.0001).
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Figure S13 Analysis of gene subsets regulated after auxin mediated depletion of STAG1 or STAG2

A) Mean RAD21, SMC1A, and CTCF ChIP seq signal was plotted along the bodies ( 6 kbp) of genes

specifically up or down regulated after depletion of STAG1 or STAG2. B) Insulation plots showing

mean Hi C signal from untreated maps (no auxin) around the TSSs of genes specifically up or down

regulated after depletion of STAG1 or STAG2. For these same TSSs mean changes in Hi C signal are

also plotted. The maps are presented with a bin size of 25 kbp for the 20 bins around each TSS.
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Figure S14 STAG1 and STAG2 affects long range interactions differently

A) Length of the contact loops engaged between SMC3 sites in STAG1 AID and STAG2 AID cells before

and after auxin addition. Wilcox test: p value= 0.013 (STAG1) and p value = 0.009 (STAG2). B C)

Combined Hi C maps of cells depending only on STAG1 for their loops (STAG2 AID +auxin) versus Hi C

maps of cells depending only on STAG2 (STAG1 AID +auxin). The maps were generated with Juicebox

(Durand et al. 2016) using Balanced (Knight Ruiz) Hi C contact frequencies for sections of

Chromosomes 11 (B) and 12 (C). Arrows indicate changes.
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Figure S15 Use of an alternative “wildtype” control Hi C dataset for HCT116 cells shows similar

chromatin contact changes

Instead of the Hi C matrices obtained from STAG1 AID and STAG2 AID cells without auxin treatment,

we used publicly available Hi C data, in the figure referred to as “control” or “control cells” , from

untreated RAD21 AID HCT116 (Rao et al., 2017) to assess chromatin organization changes following

STAG1 and STAG2 degradation. Despite the caveats of different Hi C library preparations (6 cutter

restriction enzyme in our protocol compared to the 4 cutter used by Rao et al.) and different

sequencing depths of the Hi C libraries (in favour of the Rao et al. data), we still observe the same

changes across different scales.

A) Insulation plots showing the averaged Hi C signals for all STAG1/STAG2 shared peaks as well as all

STAG1 only and STAG2 only peaks in the control maps. For the same peaks the averaged differential

Hi C signals in the different maps are shown. The maps are presented with a bin size of 25 kb and 10

bins to the left and right of each binding site.

B) STAG1 and STAG2 affect long range interactions differently as can be seen in the zoom in into the

contact maps for STAG1 AID cells (left) and STAG2 AID cells (right) for regions on Chromosome 5 and

Chromosome 17. The maps for control, auxin treated STAG1 AID cells and STAG2 AID cells (+auxin)

and the differential interaction maps split in loss of interactions (blue) and gain of interactions (red)

are shown.

C) Contacts between and within A and B compartments are correlated between the contact matrices

of control cells and STAG1 AID and STAG2 AID cells with auxin treatment. Total contacts observed,

correlation coefficient as well as the percentage and number of the contacts between the specific

compartments are indicated. PC1 = principal component 1.

D) Normalized interaction frequencies are plotted against the distance between interacting bins (at

50 kb resolution) for control and for auxin treated STAG1 AID and STAG2 AID cells. Chromosomes 6

and 17 are shown.



E) Change of the contact frequencies after STAG1 or STAG2 degradation relative to control cells (at 25

kb resolution) are plotted relative to the separation of the contacting fragments (Chromosomes 1, 20

and X are shown).

F) Intra TAD or inter TAD changes of contacts after STAG1 or STAG2 degradation (relative to control

cells) between and within A and B compartments. Statistical test performed in E H: Wilcoxon Mann

Whitney U test; p values corrected by the Benjamini Hochberg method are indicated.
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