Supplemental information

¹⁸F-FAC PET visualizes brain-infiltrating leukocytes in a mouse model of multiple sclerosis

Bao Ying Chen^{1,2}, Chiara Ghezzi^{1,2}, Brendon Villegas³, Andrew

Quon^{1,4}, Caius G. Radu^{1,4}, Owen N. Witte^{1,5,6}, Peter M. Clark^{1,2,5}

¹ Department of Molecular and Medical Pharmacology, ² Crump Institute for Molecular Imaging, ³ Department of Pulmonary and Critical Care Medicine, ⁴ Ahmanson Translational Imaging Division, ⁵ Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, ⁶ Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095.

Supplemental Figure 1. Timeactivity curves of 18 F-FAC accumulation in the blood and brains of healthy mice. *n*=5.

THE JOURNAL OF NUCLEAR MEDICINE • Vol. 61• No. 5 • May 2020

Chen et al.

Supplemental Figure 2. Brainto-blood ratios of ¹⁸F-FAC in healthy mice, as measured from the PET/CT images and *ex vivo* biodistribution studies. n=4.

Supplemental Figure 3. ¹⁸F-FAC accumulation in immunocompetent and immunocompromised mice pre- and post-immunization, and co-injected with non-radiolabeled FAC (FAC block) or treated with vehicle or fingolimod. H = heart, S = spleen, B = bladder.

Supplemental Figure 4. ¹⁸F-FAC PET can be used to monitor peripheral immune activation at specific locations throughout the body in EAE mice and following treatment with an immunomodulatory drug. Representative transverse ¹⁸F-FAC PET/CT images of immunocompetent mice pre-immunization, post-immunization, and post-immunization and treated with fingolimod. Spleen, lymph nodes, bone marrow, and spinal cord encircled in a white dotted line (*top*). Quantification (*bottom*). Pre-immunization and treated with fingolimod: *n*=7; post-immunization and treated with fingolimod: *n*=3. *: P<0.05; ****: P<0.0001, ns: not significant.

Pre-immunization Post-immunization

Supplemental Figure 7. dCK immunostaining of spinal cord tissue sections from immunocompetent mice pre- and post-immunization. 40x magnification images. Scale bars: 50 microns. Representative images of n=2.

Supplemental Figure 9. ¹⁸F-CFA does not readily cross the blood-brain barrier in healthy human subjects. Representative coronal PET images of healthy volunteers injected with ¹⁸F-CFA at 135 min post-tracer injection (*left*). Blood and brain ¹⁸F-CFA accumulation, quantified from the PET images of healthy volunteers (*right*). The PET scans analyzed here are the same as those reported in Ref. 25. 45 and 90 min time point: *n*=2; 135 min time point: *n*=3. ***: P<0.001.