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Treatment of missing values 

Our data were collected over 7 years from 2008–2014, so it is inevitable to have some missing values. Of the total 1,730 observations, 38.5% 

contained at least one missing value. Table S1 shows numbers of observations for the given numbers of missing values. To manage these 

missing values, we used the following two methods: complete case analysis only, using existing attributes; and imputation with, in our case, 

Multivariate Imputation by Chained Equation (MICE). The MICE, defined in statistical libraries in R (version R 3.4.4; The Comprehensive R 

Archive Network: http://cran.r-project.org), creates imputations for multivariate missing values of both continuous and categoric data based 

on fully conditional specification, where each incomplete variable is imputed by a separate model, MICE method, with imputation of missing 

values for supplemented attributes 1. Although several observed values were randomly drawn as the imputation, we drew only one value for 

each missing value. 

Note that imputation methods were applied to observations with ≤4 missing values. That is, if an observation had too many missing values, 

imputation methods, which estimated missing values based on other existing attributes, could not properly impute missing values. If an 

observation contained >4 missing values, we simply dropped those values. Overall, we used 1,664 observations from a total of 1,730 patients 

(Table S1). 

Table S1. The number of missed values in each observation 

The number of 

missed values in each 

observation 0 1 2 3 4 5 6 7 8 9 10 11 12 

Frequency 1063 226 251 81 43 13 9 4 1 1 1 22 14 
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Cumulative frequency 1063 1289 1540 1621 1664 1677 1686 1690 1691 1692 1693 1715 1729 

 

Modelling process with data splitting 

For experiments, we split our data into training (70%) and test (30%) sets. Due to the limited quantity of data, we performed a 5-fold cross-

validation to prevent our model from being overfitted. After the cross-validation, we evaluated our model using the test sets. We set five 

different seeds to measure model performance using concordance index as a main criterion. We applied deep learning using longitudinal data. 

The repeated measured data include 24-hour urine volume, RAAS blockade use, and dialysis efficiency (weekly KT/V). The study protocol of 

this study cohort was measured KT/V after 3 months of study enrollment, and the detailed protocol was presented in Table S2. 
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Table S2. Longitudinal measurement for time-sequential information in the study cohort using deep neural network algorithm 

 

  

 Information of RAAS blockade use 24 hr urine study as urine volume 

(ml) 

Peritoneal Dialysis Adequacy as 

KT/V 

Prevalence PD patient at 0 month o o o 

Incident PD patient at 0 month o o x 

Incident PD patient at 3 month o o o 

Prevalence PD patient at 12 month o o o 

Incident PD patient at 12 month o o o 
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Approach to classification problems using individual learners and ensemble variants 

We employed widely used, individual learning models (classification and regression trees, and logistic regression 2,3 and ensemble learning 

models [bagging and random forest] 1,4). Our methods were detailed in a recently published study 5. To predict survival at N years after PD 

initiation, we conducted various experiments using different algorithms. In this section, we introduce several classification algorithms and 

their ensemble variants. Besides the classification models, we also present machine-learning algorithms based on survival statistics. The 

performance of the machine-learning algorithm for classification is compared in Tables 2, Table S3, and S4, according to test performance 

using the area under the curve (AUC) with different settings. 
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Table S3. Performance of the 5-year prediction model by conventional decision tree with imputation, and without weighting methods 

in PD patients 

Imputation 

method 

Validation 

method 

Validation ratio Test set size Main algorithm Parameters Training 

performance 

Test 

performance 

MICE/CART One validation  0.285 129 Bagging nbagg=50 1 0.7891 

MICE/CART Cross-validation  129 Bagging nbagg=80 1 0.7233 

MICE/CART One validation 0.285 129 Decision tree cp=-1 / 

maxdepth=2 

0.8194 0.6869 

MICE/CART Cross-validation  129 Decision tree cp=-1 / 

maxdepth=2 

0.78 0.6135 

MICE/CART One validation  0.285 129 Lasso lambda=0.003 0.8815 0.7988 

MICE/CART Cross-validation  129 Lasso lambda=0.04 0.8566 0.7816 

MICE/CART One validation 0.285 129 Logistic 

regression 

Nothing 0.889 0.8062 

MICE/CART One validation 0.285 129 Random forest ntree=500 1 0.7783 

MICE/CART Cross-validation  129 Random forest ntree=300 1 0.7426 

MICE/CART One validation 0.285 129 Ridge lambda=0.002 0.8808 0.7815 

MICE/CART Cross-validation  129 Ridge lambda=0.06 0.8749 0.8186 

Test ratio fix 0.3, and test performance were presented as AUC. 

MICE/CART, multivariate imputation by chained equation/classification and regression trees. 
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Table S4. Performance of the 5-year prediction model by conventional decision tree with weighting methods in PD patients 

Imputation 

method 

Validation method Validation ratio Test set size Main algorithm Parameters Training 

performance 

Test performance 

nothing One validation  0.285 95 Bagging nbagg=130 0.6353 0.6615 

nothing Cross-validation  95 Bagging nbagg=160 0.6351 0.7151 

nothing One validation 0.285 95 Decision tree cp=-1 / 

maxdepth=2 

0.56 0.6836 

nothing Cross-validation  95 Decision tree cp=-1 / 

maxdepth=4 

0.5693 0.6144 

nothing One validation  0.285 95 Lasso lambda=0.03 0.5651 0.7767 

nothing Cross-validation  95 Lasso lambda=0.02 0.5645 0.7761 

nothing One validation 0.285 95 Logistic 

regression 

Nothing 0.5673 0.744 

nothing One validation 0.285 95 Random forest ntree=700 0.6353 0.7609 

nothing Cross-validation  95 Random forest ntree=1000 0.6351 0.75 

nothing One validation 0.285 95 Ridge lambda=0.06 0.5662 0.7745 

nothing Cross-validation  95 Ridge lambda=0.08 0.5645 0.7767 

MICE/CART One validation  0.285 129 Bagging nbagg=190 0.6261 0.7063 

MICE/CART Cross-validation  129 Bagging nbagg=170 0.6263 0.7272 

MICE/CART One validation 0.285 129 Decision tree cp=-1 / 

maxdepth=2 

0.5569 0.6837 
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MICE/CART Cross-validation  129 Decision tree cp=-1 / 

maxdepth=2 

0.5584 0.6993 

MICE/CART One validation  0.285 129 Lasso lambda=0.001 0.5675 0.7779 

MICE/CART Cross-validation  129 Lasso lambda=0.004 0.5659 0.7595 

MICE/CART One validation 0.285 129 Logistic 

regression 

Nothing 0.5665 0.7532 

MICE/CART One validation 0.285 129 Random forest ntree=1000 0.6261 0.762 

MICE/CART Cross-validation  129 Random forest ntree=1000 0.6263 0.7267 

MICE/CART One validation 0.285 129 Ridge lambda=0.02 0.5638 0.7617 

MICE/CART Cross-validation  129 Ridge lambda=0.04 0.5662 0.7645 

Test ratio fix 0.3, and test performance were presented as AUC. 

MICE/CART, multivariate imputation by chained equation/classification and regression trees. 

Weighting methods were applied according to the methods of Zupan, et al.  
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Weighting method for classification 

It was necessary to determine period to characterize the survival analysis problem as a classification problem. We set the period to 5 years. 

Thus, we redefined our problem as “whether a patient survives 5 years after PD initiation”. This definition produced right-censored data 5, 

which were handled by either dropping, or applying the weighted method proposed by Zupan et al. 6. The weighting method created two 

copies, 0 and 1, for each piece of right-censored data and assigned a probability for each case as a weight, based on survival function. 

Logistic regression 

One of the most common machine-learning algorithms is logistic regression. It is a generalized linear model (GLM) used for classification 

problems. Instead of assuming that a dependent variable is a normal distribution in the case of a linear regression model, it assumes that a 

dependent variable is a Bernoulli distribution. Hence, logistic regression converts a linear combination of independent variables to binary-

valued outcomes using a logit function formulated as 𝜋(X) = 1 (1 + exp(−𝛽X))⁄ , where π(X) indicates probability of the dependent variable, 

y, being in class 1 given the independent variables, or simply p(y=1|X) 7. A logistic regression model is trained to minimize a predefined cost 

function which, in our case, was defined as 𝑐𝑜𝑠𝑡(ŷ, y) = ∑(−y log ŷ − (1 − y) log(1 − ŷ) where ŷ is equivalent to p(y=1|X). Further, to 

avert a problem of overfitting, which prevents a model from generalizing unseen data, we also applied Lasso and Ridge, which constrains the 

cost function using ‖w‖1 and ‖w‖2
2, respectively, so that it prevents a model being overfitted. 

Decision-tree 

The decision-tree algorithm, another commonly used classification algorithm, is a simple and intuitive yet robust machine-learning algorithm. 

It is easier to implement a decision-tree algorithm, and interpret its results, than many other machine-learning methods. Further, it is robust 

due to its nature of non-linearity 4. We employed a classification and regression tree (CART) algorithm, which is a specific type of decision-
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tree algorithm. CART forms a binary tree and gradually expands its leaf nodes to maximize purity measurement or equivalently minimize 

impurity measurement. Among three commonly used impurity measurements, we chose Gini index, which measures the impurity of internal 

nodes. The algorithm expands until it meets stopping rules specified as hyperparameters 4. 

To enhance the performance of individual algorithms, ensemble methods are often employed. These methods are machine-learning 

algorithms that combine multiple base learners with the aim of improving predictive performance of the given base model. In this paper, we 

used bootstrap aggregating, also known as bagging 2, and random forest 3 as ensemble methods. Bagging consists of multiple base models 

independently trained on bootstrapped samples of the same size from the training dataset. In inference time, it aggregates output predictions 

by averaging and voting for regression and classification, respectively. The random forest algorithm adds more randomness to bagging. It not 

only bootstraps samples but randomly chooses a fixed number of attributes among all the attributes available and finds the best split using 

them 1. In this way, it improves accuracy of the output predictions. We chose CART as a base learner for both bagging and random forest 4. 

Neural network 

A neural network is a network of neurons that aims to recognize underlying relationships of data through a process that imitates the way a 

human brain operates. It consists of input, hidden, and output layers. An input layer corresponds to the variables of input data. After a neural 

network takes input data through an input layer, it is passed into a hidden layer, which linearly combines the input data and modifies it using a 

nonlinear function, also known as an activation function. Then, output of the hidden layer is passed into either the next hidden layer or output 

layer. A neural network can approximate a function for both classification and regression problems. In our case, it was designed to solve the 

binary classification problem. 
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In general, a neural network can be formulated in a mathematical form as follows: 

𝑧𝑚 =  𝜎(𝛼0𝑚 + 𝛼𝑚
𝑇𝑥) ,𝑚 = 1,2, . . . , 𝑀 

𝑡𝑘 = 𝛽0𝑘 + 𝛽𝑘
𝑇𝑧, 𝑘 = 1,2, . . . , 𝐾 

𝑓𝑘(𝑥) = 𝑔𝑘(𝑡) 

where 𝑧 = (𝑧1, 𝑧2, . . . , 𝑧𝑀)
𝑇 is a hidden layer and 𝑡 = (𝑡1, 𝑡2, . . . , 𝑡𝑀)

𝑇is an output layer. Also, 𝜎(⋅) and 𝑔(⋅) are activation functions, which 

add nonlinearity to the inputs. 

The network can be trained by minimizing a loss function as a proxy to improve its performance, which in our case, is classification accuracy. 

Although there are many options for a loss function, in a classification task, cross entropy loss (defined below) is generally used.   Due to 

nonconvexity of cross entropy loss, it is not possible to compute a global minimizer using analytical optimization methods. Instead, numerical 

optimization methods, such as gradient descent or its variants, are used to estimate a global minimizer. 

Approach to survival problems using individual learners and ensemble variants 

As a characteristic of observational cohort datasets, much data is censored. It is often omitted for the sake of simplicity, but this degrades the 

performance of a model due to insufficient follow-up. An alternative solution is to treat censored data as non-recurring samples (classification) 

and their follow-up times as survival times (regression). 

Both of these solutions, however, introduce bias that is amplified when the rate of event occurrence is low. To avoid such bias and include all 

censored data, we modeled a Survival Decision Tree (SDT) algorithm using survival statistics 5,8. 
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As described in the previous subsection, a general decision-tree algorithm recursively finds the best attribute to split a node using an 

impurity measurement such as Gini index or entropy index, which measures impurity in a classified outcome. Conversely, SDT uses survival 

statistics as a split criterion. It expands its nodes to maximize the improvement, which is formulated as: 

1) 𝑐_𝑖: the observed event count for observation 𝑖; 2) 𝑡_𝑖: the observation time for observation 𝑖; 3) observed event rate: �̂� =
# 𝑒𝑣𝑒𝑛𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒
=

∑𝑐𝑖

∑𝑡𝑖
 ; 

4) within-node deviance: 𝐷 =
1

𝑁
∑[𝑐𝑖 log (

𝑐𝑖

�̂�𝑡𝑖
) − (𝑐𝑖 − �̂�𝑡𝑖)]; and 5) maximize the improvement of: 𝐷𝑝𝑎𝑟𝑒𝑛𝑡 − (𝐷𝑙𝑒𝑓𝑡 + 𝐷𝑟𝑖𝑔ℎ𝑡). 

As with a general decision-tree method, SDT expands until it meets stopping rules. For our experiments, we set the model to stop splitting 

when either split did not improve the fit by a certain threshold or the depth of any node reached a certain threshold. Through the stopping rule, 

we prevented the model from being overfitted to the training dataset. To boost performance of the STD model, we applied ensemble methods 

in a similar manner to the classification models. We employed both bagging and random forest with STD as a base model 8. Table 3, and S5 

show the final results for survival model parameters as concordance index (C-index).  
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Table S5. Performance of the prediction models for mortality by survival statistics with imputation methods in PD patients 

Validation method Validation ratio Test set size Main algorithm Parameters Training 

performance 

Test performance 

One validation set 0.285 502 Survival tree cp=0.016 / 

maxdepth=4 

0.7547 0.7526 

Cross-validation  502 Survival tree cp=0.018 / 

maxdepth=4 

0.7617 0.7526 

Cross-validation  502 Survival ridge lambda=0.02 0.7776 0.7353 

One validation set 0.285 502 Survival ridge lambda=0.1 0.7735 0.734 

Cross-validation  502 Survival random 

forest 

splitrule=logrank / 

ntree=100 

0.9706 0.7236 

One validation set 0.285 502 Survival random 

forest 

splitrule=logrank / 

ntree=100 

0.9715 0.716 

One validation set 0.285 502 Survival Lasso lambda=0.02 0.7698 0.7365 

Cross-validation  502 Survival Lasso lambda=0.01 0.7795 0.7333 

Cross-validation  502 Survival bagging nbagg=140 0.8286 0.7304 

One validation set 0.285 502 Survival bagging nbagg=30 0.8622 0.7269 

One validation set  502 Cox regression Nothing 0.7832 0.7205 

Test ratio fix 0.3, and test performance were presented as concordance index. 
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Deep leaning algorithm process including a recurrent neural network with an 

autoencoder imputation 

We have not been satisfied with the performance of the model despite its analysis process, so 

we tried to strengthen the model by solving two problems after our CRC-ESRD cohort by 

using a deep learning algorithm: i) The time-sequential longitudinal observational nature of 

data was attempted to overcome and perform deep learning algorithms, such as the recurrent 

neural network (RNN) and long short-term memory network (LSTM); (ii) missing data was 

managed by an autoencoder (AE), which was used to strengthen the model (Table 5).  

(i) The first feature of the longitudinal observational cohort is the presence of time-variable 

attributes. Changes in these attributes might have played an important role in predicting the 

target variable. The recurrent neural network (RNN) is a type of artificial neural network, and 

the connection between its units has a cyclic structure.9 These structures allow states to be 

stored inside the neural network to model time-variable dynamic attributes. Unlike 

conventional feed-forward artificial neural networks, the RNN can process sequence-type 

inputs using internal memory. Thus, the RNN can process data with time-variable 

characteristics. In the case of vanilla RNN, gradients cannot be propagated normally as they 

either vanish or explode if the input sequence is long during the training process. This is 

called the problem of long-term dependencies (LTD)10. To solve this problem, a special case 

of RNN, the LSTM, was introduced. An LSTM unit consists of an input gate, an output gate, 

a forget gate, and a memory cell. The process is shown in Figure S1. Figure S1 shows the 

structure when applying RNN/LSTM to the classification model; X is a static variable, and 

Xt is a time-dependent variable. In the study protocol for our cohort as shown in Figure S1, 

the time-dependent variables were traced at 0/3/12 months (Table S2) and their use was 

expressed as input values of RNN/LSTM units according to the time order. In the case of a 

patient without a tracking value, the first unit predicted the value of the target variable 

immediately (𝑃(Death|𝑋, 𝑋0) in Figure S1). In the case of the patient with a tracking value, 

the unit made predictions according to these changes ( 𝑃(Death|𝑋, 𝑋0, 𝑋3) or 

𝑃(Death|𝑋, 𝑋0, 𝑋3, 𝑋12)). 
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Figure S1. The longitudinal data management for the RNN and LSTM. 
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(ii) The second feature of inevitable nature for the observational cohort is the existence of 

missing data. When the data is missing values, the simplest processing method is a complete 

data analysis that omits the missing data. However, this method can cause two major 

problems. The first is that statistical significance can be lost due to a decrease in the size of 

the data, and the second is that the bias of the model as a result of the difference in the 

population distribution can occur. To solve these problems, we used an autoencoder (AE), 

which is a neural network that simply predicts the input value as an output value. If we set the 

number of nodes in the hidden layer to less than the input layer, the AE can learn the compact 

representation of the input. This constraint enables us to learn how to express data efficiently, 

and it is possible to use this AE to express information, including missing values, as shown in 

Figure S2. In the training process, some input variable values were randomly removed, and 

the AE was trained to restore them as the original values. In the inference process, the 

encoding value of the input was utilized regardless of the existence of the missing value. 

Figure S2(c) shows the overall structure in which the AE is combined with RNN/LSTM.  

Among the various algorithms, the AUC value for logistic regression was the best at 0.804. 

Using these longitudinal data, the AUC of DT was also improved to 0.801 (Figure 5). Our 

proposed deep learning model was 0.840 when using only LSTM and 0.858 when combined 

with an autoencoder (Table 5).  
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Figure S2. The missing value learning (a) utilizing the AE, (b) the inference process, (c) form 

combined with RNN/LSTM.  
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Hyperparameter Description 

The hyperparameters for each algorithm in Tables 2, 3 and 5 of the main paper are as follows; 

 Decision tree 

 cp: complexity parameter 

 maxdepth: maximum depth of any node of the final tree 

 Bagging 

 nbagg: number of bootstrap replications 

 Random forest 

 ntree: number of trees in the forest 

 splitrule: splitting rule 

 Ridge, Lasso 

 lambda: weight of the penalty 

 Neural networks 

 FC hunits: number of hidden units in FC layers 

 AE hunits: number of hidden units in Auto-Encoder layers 

 RNN hunits: numbr of hidden units in RNN cell 
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