
1

[Title page]

Prediction of the Mortality Risk in Peritoneal Dialysis Patients using

Machine Learning Models: A Nation-wide Prospective Cohort in Korea

1,*Junhyug Noh, 2,*Kyung Don Yoo, 3Wonho Bae, 2Jong Soo Lee, 4Kangil Kim, 5Jang-Hee

Cho, 6Hajeong Lee, 6,7Dong Ki Kim, 7,8Chun Soo Lim, 9Shin-Wook Kang, 5Yong-Lim Kim ,

6,7Yon Su Kim, 1,¶Gunhee Kim,7,8,¶Jung Pyo Lee

1Department of Computer Science and Engineering, College of Engineering, Seoul National

University, Seoul, South Korea

2Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of

Medicine, Ulsan, South Korea

3College of Information and Computer Sciences, University of Massachusetts Amherst,

Massachusetts, United States

4School of Electrical Engineering and Computer Science, Gwangju Institute of Science and

Technology (GIST), Gwangju, South Korea

5Department of Internal Medicine, Kyungpook National University College of Medicine,

Daegu, South Korea

6Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea

7Department of Internal Medicine Seoul National University College of Medicine, Seoul,

South Korea

8Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul,

South Korea

9Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South

Korea

*J Noh and KD Yoo contributed equally to the manuscript as lead authors.

2

The Table of Contents for Supplemental Material

Treatment of missing values

Table S1. The number of missed values in each observation

Modelling process with data splitting

Table S2. Longitudinal measurement for time-sequential information in the study cohort

using deep neural network algorithm

Approach to classification problems using individual learners and ensemble variants

Table S3. Performance of the 5-year prediction model by conventional decision tree with

imputation, and without weighting methods in PD patients

Table S4. Performance of the 5-year prediction model by conventional decision tree with

weighting methods in PD patients

Weighting method for classification

Logistic regression

Decision-tree

Neural network

Approach to survival problems using individual learners and ensemble variants

Table S5. Performance of the prediction models for mortality by survival statistics with

imputation methods in PD patients

Deep leaning algorithm process including recurrent neural network with autoencoder

imputation

Figure S1. The longitudinal data management for the recurrent neural network (RNN) and

long- and short-term memory network (LSTM)

Figure S2. The missing value learning (a) utilizing the auto encoder, (b) the inference process,

(c) form combined with RNN

3

Treatment of missing values

Our data were collected over 7 years from 2008–2014, so it is inevitable to have some missing values. Of the total 1,730 observations, 38.5%

contained at least one missing value. Table S1 shows numbers of observations for the given numbers of missing values. To manage these

missing values, we used the following two methods: complete case analysis only, using existing attributes; and imputation with, in our case,

Multivariate Imputation by Chained Equation (MICE). The MICE, defined in statistical libraries in R (version R 3.4.4; The Comprehensive R

Archive Network: http://cran.r-project.org), creates imputations for multivariate missing values of both continuous and categoric data based

on fully conditional specification, where each incomplete variable is imputed by a separate model, MICE method, with imputation of missing

values for supplemented attributes 1. Although several observed values were randomly drawn as the imputation, we drew only one value for

each missing value.

Note that imputation methods were applied to observations with ≤4 missing values. That is, if an observation had too many missing values,

imputation methods, which estimated missing values based on other existing attributes, could not properly impute missing values. If an

observation contained >4 missing values, we simply dropped those values. Overall, we used 1,664 observations from a total of 1,730 patients

(Table S1).

Table S1. The number of missed values in each observation

The number of

missed values in each

observation 0 1 2 3 4 5 6 7 8 9 10 11 12

Frequency 1063 226 251 81 43 13 9 4 1 1 1 22 14

4

Cumulative frequency 1063 1289 1540 1621 1664 1677 1686 1690 1691 1692 1693 1715 1729

Modelling process with data splitting

For experiments, we split our data into training (70%) and test (30%) sets. Due to the limited quantity of data, we performed a 5-fold cross-

validation to prevent our model from being overfitted. After the cross-validation, we evaluated our model using the test sets. We set five

different seeds to measure model performance using concordance index as a main criterion. We applied deep learning using longitudinal data.

The repeated measured data include 24-hour urine volume, RAAS blockade use, and dialysis efficiency (weekly KT/V). The study protocol of

this study cohort was measured KT/V after 3 months of study enrollment, and the detailed protocol was presented in Table S2.

5

Table S2. Longitudinal measurement for time-sequential information in the study cohort using deep neural network algorithm

 Information of RAAS blockade use 24 hr urine study as urine volume

(ml)

Peritoneal Dialysis Adequacy as

KT/V

Prevalence PD patient at 0 month o o o

Incident PD patient at 0 month o o x

Incident PD patient at 3 month o o o

Prevalence PD patient at 12 month o o o

Incident PD patient at 12 month o o o

6

Approach to classification problems using individual learners and ensemble variants

We employed widely used, individual learning models (classification and regression trees, and logistic regression 2,3 and ensemble learning

models [bagging and random forest] 1,4). Our methods were detailed in a recently published study 5. To predict survival at N years after PD

initiation, we conducted various experiments using different algorithms. In this section, we introduce several classification algorithms and

their ensemble variants. Besides the classification models, we also present machine-learning algorithms based on survival statistics. The

performance of the machine-learning algorithm for classification is compared in Tables 2, Table S3, and S4, according to test performance

using the area under the curve (AUC) with different settings.

7

Table S3. Performance of the 5-year prediction model by conventional decision tree with imputation, and without weighting methods

in PD patients

Imputation

method

Validation

method

Validation ratio Test set size Main algorithm Parameters Training

performance

Test

performance

MICE/CART One validation 0.285 129 Bagging nbagg=50 1 0.7891

MICE/CART Cross-validation 129 Bagging nbagg=80 1 0.7233

MICE/CART One validation 0.285 129 Decision tree cp=-1 /

maxdepth=2

0.8194 0.6869

MICE/CART Cross-validation 129 Decision tree cp=-1 /

maxdepth=2

0.78 0.6135

MICE/CART One validation 0.285 129 Lasso lambda=0.003 0.8815 0.7988

MICE/CART Cross-validation 129 Lasso lambda=0.04 0.8566 0.7816

MICE/CART One validation 0.285 129 Logistic

regression

Nothing 0.889 0.8062

MICE/CART One validation 0.285 129 Random forest ntree=500 1 0.7783

MICE/CART Cross-validation 129 Random forest ntree=300 1 0.7426

MICE/CART One validation 0.285 129 Ridge lambda=0.002 0.8808 0.7815

MICE/CART Cross-validation 129 Ridge lambda=0.06 0.8749 0.8186

Test ratio fix 0.3, and test performance were presented as AUC.

MICE/CART, multivariate imputation by chained equation/classification and regression trees.

8

Table S4. Performance of the 5-year prediction model by conventional decision tree with weighting methods in PD patients

Imputation

method

Validation method Validation ratio Test set size Main algorithm Parameters Training

performance

Test performance

nothing One validation 0.285 95 Bagging nbagg=130 0.6353 0.6615

nothing Cross-validation 95 Bagging nbagg=160 0.6351 0.7151

nothing One validation 0.285 95 Decision tree cp=-1 /

maxdepth=2

0.56 0.6836

nothing Cross-validation 95 Decision tree cp=-1 /

maxdepth=4

0.5693 0.6144

nothing One validation 0.285 95 Lasso lambda=0.03 0.5651 0.7767

nothing Cross-validation 95 Lasso lambda=0.02 0.5645 0.7761

nothing One validation 0.285 95 Logistic

regression

Nothing 0.5673 0.744

nothing One validation 0.285 95 Random forest ntree=700 0.6353 0.7609

nothing Cross-validation 95 Random forest ntree=1000 0.6351 0.75

nothing One validation 0.285 95 Ridge lambda=0.06 0.5662 0.7745

nothing Cross-validation 95 Ridge lambda=0.08 0.5645 0.7767

MICE/CART One validation 0.285 129 Bagging nbagg=190 0.6261 0.7063

MICE/CART Cross-validation 129 Bagging nbagg=170 0.6263 0.7272

MICE/CART One validation 0.285 129 Decision tree cp=-1 /

maxdepth=2

0.5569 0.6837

9

MICE/CART Cross-validation 129 Decision tree cp=-1 /

maxdepth=2

0.5584 0.6993

MICE/CART One validation 0.285 129 Lasso lambda=0.001 0.5675 0.7779

MICE/CART Cross-validation 129 Lasso lambda=0.004 0.5659 0.7595

MICE/CART One validation 0.285 129 Logistic

regression

Nothing 0.5665 0.7532

MICE/CART One validation 0.285 129 Random forest ntree=1000 0.6261 0.762

MICE/CART Cross-validation 129 Random forest ntree=1000 0.6263 0.7267

MICE/CART One validation 0.285 129 Ridge lambda=0.02 0.5638 0.7617

MICE/CART Cross-validation 129 Ridge lambda=0.04 0.5662 0.7645

Test ratio fix 0.3, and test performance were presented as AUC.

MICE/CART, multivariate imputation by chained equation/classification and regression trees.

Weighting methods were applied according to the methods of Zupan, et al.

10

Weighting method for classification

It was necessary to determine period to characterize the survival analysis problem as a classification problem. We set the period to 5 years.

Thus, we redefined our problem as “whether a patient survives 5 years after PD initiation”. This definition produced right-censored data 5,

which were handled by either dropping, or applying the weighted method proposed by Zupan et al. 6. The weighting method created two

copies, 0 and 1, for each piece of right-censored data and assigned a probability for each case as a weight, based on survival function.

Logistic regression

One of the most common machine-learning algorithms is logistic regression. It is a generalized linear model (GLM) used for classification

problems. Instead of assuming that a dependent variable is a normal distribution in the case of a linear regression model, it assumes that a

dependent variable is a Bernoulli distribution. Hence, logistic regression converts a linear combination of independent variables to binary-

valued outcomes using a logit function formulated as 𝜋(X) = 1 (1 + exp(−𝛽X))⁄ , where π(X) indicates probability of the dependent variable,

y, being in class 1 given the independent variables, or simply p(y=1|X) 7. A logistic regression model is trained to minimize a predefined cost

function which, in our case, was defined as 𝑐𝑜𝑠𝑡(ŷ, y) = ∑(−y log ŷ − (1 − y) log(1 − ŷ) where ŷ is equivalent to p(y=1|X). Further, to

avert a problem of overfitting, which prevents a model from generalizing unseen data, we also applied Lasso and Ridge, which constrains the

cost function using ‖w‖1 and ‖w‖2
2, respectively, so that it prevents a model being overfitted.

Decision-tree

The decision-tree algorithm, another commonly used classification algorithm, is a simple and intuitive yet robust machine-learning algorithm.

It is easier to implement a decision-tree algorithm, and interpret its results, than many other machine-learning methods. Further, it is robust

due to its nature of non-linearity 4. We employed a classification and regression tree (CART) algorithm, which is a specific type of decision-

11

tree algorithm. CART forms a binary tree and gradually expands its leaf nodes to maximize purity measurement or equivalently minimize

impurity measurement. Among three commonly used impurity measurements, we chose Gini index, which measures the impurity of internal

nodes. The algorithm expands until it meets stopping rules specified as hyperparameters 4.

To enhance the performance of individual algorithms, ensemble methods are often employed. These methods are machine-learning

algorithms that combine multiple base learners with the aim of improving predictive performance of the given base model. In this paper, we

used bootstrap aggregating, also known as bagging 2, and random forest 3 as ensemble methods. Bagging consists of multiple base models

independently trained on bootstrapped samples of the same size from the training dataset. In inference time, it aggregates output predictions

by averaging and voting for regression and classification, respectively. The random forest algorithm adds more randomness to bagging. It not

only bootstraps samples but randomly chooses a fixed number of attributes among all the attributes available and finds the best split using

them 1. In this way, it improves accuracy of the output predictions. We chose CART as a base learner for both bagging and random forest 4.

Neural network

A neural network is a network of neurons that aims to recognize underlying relationships of data through a process that imitates the way a

human brain operates. It consists of input, hidden, and output layers. An input layer corresponds to the variables of input data. After a neural

network takes input data through an input layer, it is passed into a hidden layer, which linearly combines the input data and modifies it using a

nonlinear function, also known as an activation function. Then, output of the hidden layer is passed into either the next hidden layer or output

layer. A neural network can approximate a function for both classification and regression problems. In our case, it was designed to solve the

binary classification problem.

12

In general, a neural network can be formulated in a mathematical form as follows:

𝑧𝑚 = 𝜎(𝛼0𝑚 + 𝛼𝑚
𝑇𝑥) ,𝑚 = 1,2, . . . , 𝑀

𝑡𝑘 = 𝛽0𝑘 + 𝛽𝑘
𝑇𝑧, 𝑘 = 1,2, . . . , 𝐾

𝑓𝑘(𝑥) = 𝑔𝑘(𝑡)

where 𝑧 = (𝑧1, 𝑧2, . . . , 𝑧𝑀)
𝑇 is a hidden layer and 𝑡 = (𝑡1, 𝑡2, . . . , 𝑡𝑀)

𝑇is an output layer. Also, 𝜎(⋅) and 𝑔(⋅) are activation functions, which

add nonlinearity to the inputs.

The network can be trained by minimizing a loss function as a proxy to improve its performance, which in our case, is classification accuracy.

Although there are many options for a loss function, in a classification task, cross entropy loss (defined below) is generally used. Due to

nonconvexity of cross entropy loss, it is not possible to compute a global minimizer using analytical optimization methods. Instead, numerical

optimization methods, such as gradient descent or its variants, are used to estimate a global minimizer.

Approach to survival problems using individual learners and ensemble variants

As a characteristic of observational cohort datasets, much data is censored. It is often omitted for the sake of simplicity, but this degrades the

performance of a model due to insufficient follow-up. An alternative solution is to treat censored data as non-recurring samples (classification)

and their follow-up times as survival times (regression).

Both of these solutions, however, introduce bias that is amplified when the rate of event occurrence is low. To avoid such bias and include all

censored data, we modeled a Survival Decision Tree (SDT) algorithm using survival statistics 5,8.

13

As described in the previous subsection, a general decision-tree algorithm recursively finds the best attribute to split a node using an

impurity measurement such as Gini index or entropy index, which measures impurity in a classified outcome. Conversely, SDT uses survival

statistics as a split criterion. It expands its nodes to maximize the improvement, which is formulated as:

1) 𝑐_𝑖: the observed event count for observation 𝑖; 2) 𝑡_𝑖: the observation time for observation 𝑖; 3) observed event rate: �̂� =
𝑒𝑣𝑒𝑛𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒
=

∑𝑐𝑖

∑𝑡𝑖
 ;

4) within-node deviance: 𝐷 =
1

𝑁
∑[𝑐𝑖 log (

𝑐𝑖

�̂�𝑡𝑖
) − (𝑐𝑖 − �̂�𝑡𝑖)]; and 5) maximize the improvement of: 𝐷𝑝𝑎𝑟𝑒𝑛𝑡 − (𝐷𝑙𝑒𝑓𝑡 + 𝐷𝑟𝑖𝑔ℎ𝑡).

As with a general decision-tree method, SDT expands until it meets stopping rules. For our experiments, we set the model to stop splitting

when either split did not improve the fit by a certain threshold or the depth of any node reached a certain threshold. Through the stopping rule,

we prevented the model from being overfitted to the training dataset. To boost performance of the STD model, we applied ensemble methods

in a similar manner to the classification models. We employed both bagging and random forest with STD as a base model 8. Table 3, and S5

show the final results for survival model parameters as concordance index (C-index).

14

Table S5. Performance of the prediction models for mortality by survival statistics with imputation methods in PD patients

Validation method Validation ratio Test set size Main algorithm Parameters Training

performance

Test performance

One validation set 0.285 502 Survival tree cp=0.016 /

maxdepth=4

0.7547 0.7526

Cross-validation 502 Survival tree cp=0.018 /

maxdepth=4

0.7617 0.7526

Cross-validation 502 Survival ridge lambda=0.02 0.7776 0.7353

One validation set 0.285 502 Survival ridge lambda=0.1 0.7735 0.734

Cross-validation 502 Survival random

forest

splitrule=logrank /

ntree=100

0.9706 0.7236

One validation set 0.285 502 Survival random

forest

splitrule=logrank /

ntree=100

0.9715 0.716

One validation set 0.285 502 Survival Lasso lambda=0.02 0.7698 0.7365

Cross-validation 502 Survival Lasso lambda=0.01 0.7795 0.7333

Cross-validation 502 Survival bagging nbagg=140 0.8286 0.7304

One validation set 0.285 502 Survival bagging nbagg=30 0.8622 0.7269

One validation set 502 Cox regression Nothing 0.7832 0.7205

Test ratio fix 0.3, and test performance were presented as concordance index.

15

Deep leaning algorithm process including a recurrent neural network with an

autoencoder imputation

We have not been satisfied with the performance of the model despite its analysis process, so

we tried to strengthen the model by solving two problems after our CRC-ESRD cohort by

using a deep learning algorithm: i) The time-sequential longitudinal observational nature of

data was attempted to overcome and perform deep learning algorithms, such as the recurrent

neural network (RNN) and long short-term memory network (LSTM); (ii) missing data was

managed by an autoencoder (AE), which was used to strengthen the model (Table 5).

(i) The first feature of the longitudinal observational cohort is the presence of time-variable

attributes. Changes in these attributes might have played an important role in predicting the

target variable. The recurrent neural network (RNN) is a type of artificial neural network, and

the connection between its units has a cyclic structure.9 These structures allow states to be

stored inside the neural network to model time-variable dynamic attributes. Unlike

conventional feed-forward artificial neural networks, the RNN can process sequence-type

inputs using internal memory. Thus, the RNN can process data with time-variable

characteristics. In the case of vanilla RNN, gradients cannot be propagated normally as they

either vanish or explode if the input sequence is long during the training process. This is

called the problem of long-term dependencies (LTD)10. To solve this problem, a special case

of RNN, the LSTM, was introduced. An LSTM unit consists of an input gate, an output gate,

a forget gate, and a memory cell. The process is shown in Figure S1. Figure S1 shows the

structure when applying RNN/LSTM to the classification model; X is a static variable, and

Xt is a time-dependent variable. In the study protocol for our cohort as shown in Figure S1,

the time-dependent variables were traced at 0/3/12 months (Table S2) and their use was

expressed as input values of RNN/LSTM units according to the time order. In the case of a

patient without a tracking value, the first unit predicted the value of the target variable

immediately (𝑃(Death|𝑋, 𝑋0) in Figure S1). In the case of the patient with a tracking value,

the unit made predictions according to these changes (𝑃(Death|𝑋, 𝑋0, 𝑋3) or

𝑃(Death|𝑋, 𝑋0, 𝑋3, 𝑋12)).

16

Figure S1. The longitudinal data management for the RNN and LSTM.

17

(ii) The second feature of inevitable nature for the observational cohort is the existence of

missing data. When the data is missing values, the simplest processing method is a complete

data analysis that omits the missing data. However, this method can cause two major

problems. The first is that statistical significance can be lost due to a decrease in the size of

the data, and the second is that the bias of the model as a result of the difference in the

population distribution can occur. To solve these problems, we used an autoencoder (AE),

which is a neural network that simply predicts the input value as an output value. If we set the

number of nodes in the hidden layer to less than the input layer, the AE can learn the compact

representation of the input. This constraint enables us to learn how to express data efficiently,

and it is possible to use this AE to express information, including missing values, as shown in

Figure S2. In the training process, some input variable values were randomly removed, and

the AE was trained to restore them as the original values. In the inference process, the

encoding value of the input was utilized regardless of the existence of the missing value.

Figure S2(c) shows the overall structure in which the AE is combined with RNN/LSTM.

Among the various algorithms, the AUC value for logistic regression was the best at 0.804.

Using these longitudinal data, the AUC of DT was also improved to 0.801 (Figure 5). Our

proposed deep learning model was 0.840 when using only LSTM and 0.858 when combined

with an autoencoder (Table 5).

18

Figure S2. The missing value learning (a) utilizing the AE, (b) the inference process, (c) form

combined with RNN/LSTM.

19

Hyperparameter Description

The hyperparameters for each algorithm in Tables 2, 3 and 5 of the main paper are as follows;

 Decision tree

 cp: complexity parameter

 maxdepth: maximum depth of any node of the final tree

 Bagging

 nbagg: number of bootstrap replications

 Random forest

 ntree: number of trees in the forest

 splitrule: splitting rule

 Ridge, Lasso

 lambda: weight of the penalty

 Neural networks

 FC hunits: number of hidden units in FC layers

 AE hunits: number of hidden units in Auto-Encoder layers

 RNN hunits: numbr of hidden units in RNN cell

20

REFERENCE

1. Buuren, S., & Groothuis-Oudshoorn, K. Mice: Multivariate imputation by chained equations

in R. JSS. 45(2011).

2. Breiman, L. Bagging Predictors. Mach. Learn 24, 123-140 (1996).

3. Breiman, L. Random forests. Mach. Learn (2001).

4. Breiman, L., Friedman, J., Stone, C.J., & Olshen, R.A. Classification and Regression Trees.

CRC press (1984).

5. Yoo, K.D., et al. A Machine Learning Approach Using Survival Statistics to Predict Graft

Survival in Kidney Transplant Recipients: A Multicenter Cohort Study. Sci Rep 7, 8904

(2017).

6. Zupan B, D.J., Kattan MW, Beck JR, Bratko I. Machine learning for survival analysis: a case

study on recurrence of prostate cancer. Artificial Intelligence in Medicine 20, 59-75 (2000).

7. Dobson, A.J. An introduction to generalized linear models. Journal of Statistical Planning

and Inference 32, 418-420 (1992).

8. LeBlanc, M., & Crowley, J. Relative Risk Trees for Censored Survival Data. Biometrics 411-

425 (1992).

9. Mikolov, T., et al. Recurrent neural network based language model. International speech

communication association (2010).

10. Hochreiter, S., and Jürgen Schmidhuber. Long short-term memory Neural computation

1735-1780 (1997).

