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SUPPLEMENTARY DERIVATION 

 

 

Summary: 

We provide a derivation for how quantitative phase rheology (QPR) generates effective cell 

stiffness and viscosity using the autovariance of quantitative phase imaging (QPI) data. To do 

this, we establish a basic definition of the autovariance function and a basic equation that extracts 

stiffness and viscosity from dry mass, or non-aqueous biomass, displacement. We combine this 

definition and equation with QPI data to extract stiffness and viscosity regimes from the 

autovariance function. 

  



Autocovariance 

To measure the similarity of quantitative phase data over time we used an unbiased estimate of 

autocovariance1 of the phase-shift signal, which is an autocorrelation of the mean subtracted 

data. We normalized the temporal autocovariance to the number of data points used in each 

autocovariance window, referenced to the end of the time shift window (t0), and defined as: 

/

0 0 0 0

0

0 /
2

0 0

0

( ( , , ) ( , , ) ) ( ( , , ) ( , , ) )

( , , , )

( ) ( ( , , ) ( , , ) )

w t

j

w t

j

w x y t j t x y t x y t j t x y t

C x y t

w x y t j t x y t
t



 

    




 

 



 



       



   





  (S1) 

Where x and y are positions after removing rigid translational motion of a cell cluster, t0 is the 

time, ϕ is phase-shift, N is the number of data points used to calculate the signal, w is the number 

of images, Δt is time between measurements, and τ is time lag. The autocovariance was then 

averaged over a cell or cell cluster area as: 
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where A is the area of a cell or cell cluster in imaging pixels. We also took the average of the 

autocovariance through time for all times corresponding to cells in interphase of the cell cycle, 
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where n is the number of different end time points. 

 

Two-parameter 

We treat the cellular structures imaged by quantitative phase as particles immersed in a Maxwell 

liquid (Fig. 1A). Therefore, these structures feel the effect of a spring damper system in series 

described as the following system of equations: 
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where k is the long term effective spring constant of the cell felt by a particle, μ is the effective 

damping coefficient from the viscous forces of the cell felt by a particle, f(t) is the applied 

impulse force, X1 is the elastic displacement, X2 is the viscous displacement, Xtot is the total 

displacement of the biomass, and m  is the average biomass of particles in the system. We 

observe long timescales that are much greater than the average relaxation times of a cell (Fig. 

S3), so the long timescale effects dominate and the active force can be considered as applied 

nearly instantaneously. Rearranging equation (S4) in terms of only the elastic displacement X1 or 

only the viscous displacement X2 yields the following differential equations: 
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Assuming that the total displacement Xtot contributes to the majority of biomass rearrangement 

and oscillation, we integrate equation (S8) over time, add it to equation (S7), and rearrange this 

equation of a damper spring system in series to obtain an inhomogeneous ordinary differential 

equation (ODE) for the total displacement: 
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where c1 could be seen as a buildup of stress from past deformation or a memory function. 

Solving for the general solution of equation (S9) gives a homogenous component and a particular 

solution by the method of undetermined coefficients: 
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where Xtot,0 is the initial displacement and Xtot,rest is the long term resting displacement of our 

system. Because the relaxation timescale (Fig. S3) is over an order of magnitude lower than the 

period of measurement, the active force can be modeled as an instantaneous displacement 

represented as a delta function, δ, at some time, tj, not equal to zero. Solution of this spring 

damper system without this active force yields: 
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With each individual impulse the displacement from the active force can be modeled as: 
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where tj is the time of each impulse displacement. Assuming a linear viscoelastic material, the 

total displacement in time can be represented as the superposition of the various impulse 

displacements from the active forces, which then simplifies to: 
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where T is the period of observation. We then establish the relationship between biomass and 

displacement of biomass by: 
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where M is biomass as a function of position x and time t, and v is velocity as a function of x and 

t. We assume that the main contribution to the partial derivative of biomass with time is due to 

growth and since our measurement occurs over a short time interval, growth is negligible, 

therefore: 

  . (S16) 

We further assume that the cell velocity, v, and biomass, M, fields are isotropic with no 

dependence on direction. Averaging over θ in polar coordinates yields: 
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Assuming that this change in biomass over radial distance is small compared to the total biomass 

over a radial distance r we obtain: 
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Averaging over a radial distance and assuming that velocity, v, radial position, r, and biomass, 

M, do not correlate over the radial distance because the system is isotropic we obtain: 
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Assuming this system is ergodic, the local spatial average of biomass is equal to the temporal 

average biomass, which is constant with respect to time, and therefore the average biomass over 

radial distance term is only a function of r, which we call κ(r): 
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where γ(r) is the local spatial average of the biomass, which is constant over time and is therefore 

only a function of radial position: 
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Since κ is independent of time, we can integrate and obtain: 
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Thus, the ratio of biomass over initial biomass is equivalent to the displacement over initial 

displacement: 
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The biomass for a particular area is directly proportional to the phase-shift4-7: 
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where ϕ is phase-shift, and α is the specific refractive index, which is determined experimentally. 

Therefore, phase-shift data, ϕ, obtained via QPI can be used to obtain information about the 

displacement of cell biomass over time. 

 

Predicted autocovariance of cell biomass distributions 



Using biomass as a tracer for displacement and translating this equation into autocovariance 

space yields:  
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where a and b are described in terms of coefficients as: 
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where w, τ, ϕ, and Δt are the same as in equation (S12), the average autocovariance function is 

the same as in equation (S3), and a and b are the coefficients described in equations (S26) and 

(S27). Assuming that the system is ergodic:  
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where  
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The autocovariance equation then reduces to: 
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This means that the fitting parameter, a, describes the effective damping particles encounter 

within the cell, whereas the effective stiffness is described as: 
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Relaxation time, τrelax, was calculated as: 
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where Δt is the time interval between measurements. 

  



SUPPLEMENTARY FIGURES 

 
 



FIGURE S1 Cell division induces large mass fluctuations affecting QPR stiffness and viscosity 

measurements. (a, c, e, g) QPI of MCF-7 colonies before each mitosis plotted as 4 decorrelation 

rate peaks in (i). (b, c, f, h) QPI of MCF-7 colonies after each mitosis corresponding to the 

period after each trough in (i). (i) Time course of QPR stiffness measurement for MCF-7 cell 

colony in (a-h) with 4 cell divisions during 24 h of QPI. (j) Time course of QPR viscosity 

measurement for MCF-7 cell colony in (a-h) with 4 cell divisions over 24 h of QPI. 

  



 

 

FIGURE S2 Assessment of cell division by fluorescence and QPI to remove mitotic events. (a) 

QPI of MCF-7 cells. (b) Filtered image of the same MCF-7 cells in (b) used to identify mitosis 

and cell division. The filter kernel consists of a sigmoid function in time and a disk in space to 

mimic and highlight round cells with a large phase shift in mitosis. (c) Simultaneous 

fluorescence image of MCF-7 cells in (b and c) expressing FUCCI fluorescence ubiquitination 

cell cycle indicator plasmids mKO2-hCdt1 and mAG-hGem. (d) ROC curves for detecting 



MCF-7 mitosis and cell division events using the computational filter versus fluorescence in 0 

and 10 μM concentrations of cytochalasin B. 

 

FIGURE S3 The average autocovariance of compliant (aka softer) cells decays more rapidly  

than for stiffer cells. (a) Individual and population averaged autocovariance curves for all 0 (R2 = 

0.99±0.01) and 5 μM (R2 = 0.99±0.01) cytochalasin B treated MCF-7 cells analyzed. (b) 

Individual and population averaged autocovariance curves for 0 (R2 = 0.98±0.01) and 5 μM (R2 = 

0.99±0.01) cytochalasin B treated HeLa, and (c) 0 (R2 = 0.98±0.01) and 5 μM (R2 = 0.99±0.01) 

cytochalasin B treated BT-474 cells. Error bars represent SEM. 

 



 

 

FIGURE S4 Interphase relaxation time calculated from QPR measurements are similar for 

multiple cell types and drug concentrations. Cells exposed to a range of cytochalasin B doses 

mainly display similar relaxation times despite changes in stiffness and viscosity. QPR samples 

were collected at 0 μM (n=12), 1.25 μM (n=20), 2.5 μM (n=14), and 5 μM (n=25) for HeLa, at 

0 μM (n=31), 1.25 μM (n=11), 2.5 μM (n=22), and 5 μM (n=34) for MCF-7, and at 0 μM 

(n=51) and 5 μM (n=31) for BT-474 cells. Error bars represent SEM.  



 

FIGURE S5 QPR predictions for viscosity using a Kelvin-Voight model show reduced 

correlation with AFM data relative to a Maxwell material model (Fig. 4b, R2 = 0.89). QPR 

samples were collected at 0 μM (n=12), 1.25 μM (n=20), 2.5 μM (n=14), and 5 μM (n=25) for 

HeLa, at 0 μM (n=31), 1.25 μM (n=11), 2.5 μM (n=22), and 5 μM (n=34) for MCF-7, and at 0 

μM (n=51) and 5 μM (n=31) for BT-474 cells. Error bars represent SEM.  

 

  



 

FIGURE S6 Effective viscoelastic modulus of MCF-7 cells at different measurement 

frequencies remains constant at an imaging rate under 15 minutes per frame. (a) Effective 

stiffness divided by effective stiffness at 5 minutes per frame for a range of QPI measurement 

frequencies. (b) Effective viscosity divided by effective viscosity at 5 minutes per frame for a 

range of QPI measurement frequencies. Blue represents the population average for analysis of 

MCF7 cells. A select MCF7 cluster was imaged at higher frequency and is shown in red. Error 

bars represent SEM. 

  



 

 

 

FIGURE S7 Representative AFM stiffness and viscosity measured using best fit of the 

retraction force curve and area difference between retraction and extend force curve. Data used 

for effective stiffness from AFM consists of the force data between 20% and 80% of maximum 

force signal, while viscosity measurements used data over 1 μm distance from contact with cell. 

 



SUPPLEMENTARY UNPROCESSED WESTERN BLOTS 

 

Western blot 1: Unprocessed immunoblot for E-cadherin (green) and β-actin (red) corresponding 

to Figure 5B. 

 

Western blot 2: Unprocessed immunoblot for vimentin (green) and β-tubulin (red) corresponding 

to Figure 5B. 
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