SUPPLEMENTAL MATERIAL

Synthetic Chemistry

All reagents were purchased from commercially available sources and used as received. Reactions were magnetically stirred under a nitrogen atmosphere, unless otherwise noted and reactions were monitored by either thin layer chromatography (TLC) with 0.25 mm E. Merck pre-coated silica gel plates or liquid chromatography mass spectrometry (LCMS). Proton (¹ H) and carbon (¹³ C) NMR spectra were recorded on a Bruker Avance III 500-MHz spectrometer or on a Bruker DRX500 500-MHz spectrometer. Chemical shifts (δ) are reported in parts per million (ppm) relative to chloroform (δ 7.26) for 1 H NMR, and (δ 77.0) for 13C NMR. Infrared spectra were recorded using a JASCO 480-Plus FT-IR spectrometer, or a Perkin-Elmer Spectrum Two FT-IR spectrometer. Accurate mass measurement data were acquired on Waters Instruments. Waters software calibrates and reports by use of neutral atomic masses. The mass of the electron is not included. Preparative scale HPLC was pre-formed with a Gilson 333/334 preparative pump system equipped with a 5 mL injection loop, Sunfire C18 OBD column (5 µm packing material, 19 x 100 mm column dimensions) equipped with a UV-Vis dual wavelength (210 and 254 nm) detector and 215 liquid handling module. Solvent systems were comprised of H₂O containing 0.1% trifluoroacetic acid, and acetonitrile containing 0.1% trifluoroacetic acid. Lyophilization was performed in a Labconco FreeZone 12 Plus lyophilizer (0.035 mbar). The purity of new compounds was judged by NMR.

Synthesis of AEG-II-159

1

To a solution of **S1** (0.074 g, 0.15 mmol) (58), TDBA (0.052 g, 0.23 mmol, 1.5 eq.), EDCI•HCI (0.071 g, 0.46 mmol, 3 eq.), and HOBt•H₂O (0.070 g, 0.46 mmol, 3 eq.) in CH₂Cl₂ (6.8 mL) in a round bottom flask shielded from light under N₂ was added NEt₃ (0.11 mL, 0.76 mmol, 5 eq.). After 90 min, no starting material was observed by TLC. The crude reaction mixture was purified by flash column chromatography (SiO₂, 50-100% EtOAc/Hexanes) to afford **AEG-II-159** as a (0.066 g, 62%) yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ11.26 (s, 1 H), 8.15 (d, 1 H, *J* = 3.3 Hz), 7.82 (app. d, 1 H, *J* = 6.6 Hz), 7.42 (br. s, 5 H), 7.38 (d, 1 H, *J* = 8.3 Hz), 7.20 (d, 2 H, *J* = 8.2 Hz), 7.07 (t, 1 H, *J* = 6.2 Hz), 6.66 (d, 1 H, *J* = 8.3 Hz), 6.52 (d, 1 H, *J* = 3.3 Hz), 6.33 (d, 1 H, *J* = 3.3 Hz), 4.66 (d, 2 H, *J* = 6.1 Hz), 3.91 (s, 3 H), 3.97-3.38 (m, 8 H).

¹³C NMR (500 MHz, CDCl₃): 170.9, 167.9, 167.8, 153.8, 152.9, 149.6, 135.7, 135.2, 134.9, 134.4, 133.0, 130.3, 128.8, 127.7, 127.2, 126.8, 120.9, 120.3, 115.6, 115.1, 109.5, 109.4, 103.9, 77.4, 56.1, 37.4, 29.9, 28.6, 28.3.

IR vmax 3849, 3404, 2917, 2849, 2359, 1629, 1577, 1541, 1511, 1467, 1432, 1284, 1155

HRMS (ESI) *m*/*z* 699.2180 [calcd for (M+H)⁺ 699.2179]

Synthesis of AEG-II-168

To a solution of **S1** (0.100 g, 0.206 mmol), **(a)** (0.073 g, 0.31 mmol, 1.5 eq.), EDCI•HCI (0.096 g, 0.62 mmol, 3 eq.), and HOBt•H₂O (0.095 g, 0.62 mmol, 3 eq.) in CH₂Cl₂ (6.8 mL) in a round bottom flask shielded from light under N₂ was added NEt₃ (0.14 mL, 1.03 mmol, 5 eq.). The reaction was allowed to proceed overnight. The crude reaction mixture was concentrated, and purified by flash column chromatography (SiO₂, 60-100% EtOAc/Hexanes) to afford **AEG-II-168** (0.080 g, 55%) as a viscous orange oil.

¹H NMR (500 MHz, CDCl₃) δ 10.95 (s, 1 H), 8.06 (app. s, 1 H), 7.43 (m, 5 H), 7.20 (m, 1 H), 6.68 (d, 1 H, J = 8.3 Hz), 6.56 (d, 1 H, J = 3.3 Hz), 6.37 (d, 1 H, J = 3.3 Hz), 4.68 (d, 2 H, J = 6.1 Hz), 3.90 (s, 3 H), 3.97-3.30 (m, 8 H).

¹³**C** NMR (500 MHz, CDCl₃): 185.8, 170.8, 167.6, 159.3, 153.7, 152.9, 148.9, 145.3, 139.4, 139.3, 136.1, 134.9, 139.3, 136.1, 134.9, 134.2, 130.2, 128.7, 127.1, 122.3, 120.5,

115.3, 114.8, 110.6, 110.4, 110.3, 109.7, 109.2, 109.1, 108.9, 104.1, 103.9, 55.9, 41.6, 37.3, 29.7

IR υ_{max} 3299, 2918, 2849, 2360, 2341, 2128, 1631, 1545, 1510, 1486, 1429, 1401, 1364, 1271, 1131

HRMS (ESI) *m*/*z* 704.1859 [calcd for C₃₄H₂₅F₄N₇O₆ (M+H)⁺ 704.1881]

Synthesis of AEG-III-032

To a solution of **S1** (0.039 g, 0.081 mmol) in CH₂Cl₂ (2 mL) under N₂ at 0°C was added 4-DMAP (0.020 g, 0.16 mmol, 2 eq.). After 10 min, benzoyl chloride was added (0.023 g, 0.16 mmol, 2 eq.) and the reaction was allowed to gradually warm to room temperature overnight. The crude reaction mixture was concentrated and subjected to flash column chromatography (SiO₂, 50% EtOAc/Hexanes – 20% MeOH/EtOAc), concentrated, dissolved in 1.5 mL ACN + 0.8 mL water, and further purified by reverse phase HPLC (15 mL/min 45-80% ACN/H₂O + 0.1% TFA, 6 min) to afford **AEG-III-032** (0.004 g, 8%).

¹H NMR (500 MHz, CDCl₃) δ 11.31 (s, 1 H), 8.21 (s, 1 H), 7.80 (d, 1 H, *J* = 7.3 Hz), 7.52 (t, 1 H, *J* = 7.5 Hz), 7.43 (m, 8 H), 6.99 (t, 1 H, *J* = 6.4 Hz), 6.69 (d, 1 H, *J* = 8.3 Hz), 6.53

(d, 1 H, *J* = 3.3 Hz), 6.34 (d, 1 H, *J* = 3.3 Hz), 4.69 (d, 1 H, *J* = 6.1 Hz), 3.93 (s, 3 H), 3.99-3.39 (m, 8 H).

¹³C NMR (500 MHz, CDCl₃): 171.5, 169.6, 167.9, 158.6, 158.3, 153.9, 152.9, 149.7, 136.1, 134.5, 133.7, 132.4, 130.6, 129.0, 128.9, 127.2, 127.2, 120.4, 116.0, 115.7, 115.0, 113.7, 109.6, 109.4, 104.1, 103.9, 56.1, 37.4

IR vmax 3434, 2360, 2095, 1645, 1517, 1432, 1272, 1206, 1147, 916

HRMS (ESI) *m*/*z* 591.2265 [calcd for C₃₄H₃₀N₄O₆ (M+H)⁺ 591.2244]

Synthesis of S4

To 7-nitroindole (0.50 g, 3.1 mmol) in THF (8 mL) under N₂ at room temperature was added oxalyl chloride (1.4 mL, 15.4 mmol, 5 eq.). After 23 hours the crude reaction mixture was concentrated and redissolved in THF under N₂. To this solution was added 1-boc-piperazine (0.69 g, 3.7 mmol, 1.2 eq.) then NEt₃ (1.2 mL, 6.16 mmol, 2 eq.). The reaction was allowed to proceed for 24 h. The crude reaction mixture was diluted with CH₂Cl₂ and washed with NaHCO₃. The organic layer was dried with MgSO₄, decanted, and concentrated. The crude reaction mixture was purified using flash column

chromatography (SiO₂, 0-100% EtOAc/Hexanes) to afford **S2** as a (0.626 g, 51%) yellow solid.

¹H NMR (500 MHz, CDCl₃) δ 10.56 (s, 1 H), 8.76 (d, 1 H, *J* = 7.9 Hz), 8.28 (d, 1 H, *J* = 8.1 Hz), 8.21 (d, 1 H, *J* = 3.1 Hz), 7.47 (app. t, 1 H, *J* = 8.0 Hz), 3.75 (m, 2 H), 3.58 (m, 2 H), 3.55-3.47 (m, 4 H).

¹³C NMR (500 MHz, CDCl₃): 185.3, 165.3, 154.6, 137.0, 133.6, 130.5, 129.8, 128.8, 123.1, 121.2, 115.7, 80.8, 46.2, 41.8, 28.5

IR υ_{max} 3273, 2976, 1699, 1634, 1532, 1485, 1412, 1364, 1332, 1302, 1286, 1249, 1166, 1125, 1063, 1035, 995, 974, 928, 863, 810, 795, 772, 734, 659

HRMS (ESI) *m/z* 425.1255 [calcd for C₁₉H₂₂N₄O₆ (M+Na) 425.1437]

To a solution of **S2** (0.386 g, 0.959 mmol) in CH_2Cl_2 (6.5 mL) was added TFA (1.5 mL, 1.5 mL / mmol). After four hours, no starting material was observed by LC/MS. The reaction mixture was concentrated repeatedly with CH_2Cl_2 . The crude product was then put under N₂ atmosphere and dissolved in CH_2Cl_2 (10 mL). To this solution was added

benzoic acid (0.129 g, 1.05 mmol, 1.1 eq.), EDCI•HCI (0.203 g, 1.05 mmol, 1.1 eq.), and HOBt•H₂O (0.142 g, 1.05 mmol, 1.1 eq). After 25 minutes NEt₃ was added and to the reaction mixture, and the reaction was allowed to proceed overnight. The crude reaction mixture was washed with NaHCO₃ then NH₄CI. The organic layer was dried with MgSO₄, decanted, and concentrated. The crude reaction mixture was purified using flash column chromatography (SiO₂, 50% EtOAc/Hexanes – 10% MeOH/EtOAc) to afford **S3** as a (186 mg, 49%) yellow solid.

¹H NMR (500 MHz, CDCl₃) δ 10.58 (s, 1 H), 8.74 (s, 1 H), 8.27 (d, 1 H, *J* = 8.1 Hz), 8.23 (d, 1 H, *J* = 2.9 Hz), 7.45 (m, 6 H), 4.08-3.41 (m, 8 H).

¹³C NMR (500 MHz, CDCl₃): 185.0, 170.9, 165.2, 137.2, 135.0, 133.6, 130.4, 129.8, 128.9, 128.8, 127.2, 123.2, 121.3, 115.6, 42.1, 29.9

IR υ_{max} 3449, 2925, 2854, 1741, 1631, 1532, 1438, 1369, 1333, 1251, 1116, 1050, 975, 792, 736, 440, 425, 410

HRMS (ESI) *m*/*z* 407.1341 [calcd for C₂₁H₁₈N₄O₅ (M+H) 407.1355]

To a solution of **S3** (0.186 g, 0.458 mmol) in methanol (10 mL) under N₂ was added Pd/C (0.010 g). H₂ gas was then bubbled into the solution and the reaction was allowed to stir overnight. The crude reaction mixture was filtered through sand and concentrated to afford **S4** (163 mg, 95%) as an olive green solid.

¹H NMR (500 MHz, CDCl₃) δ 10.89 (s, 1 H), 7.64 (app. s, 1 H), 7.40 (m, 6 H), 7.07 (t, 1 H, *J* = 7.7 Hz), 6.56 (d, 1 H, *J* = 7.6 Hz), 3.49 (s, 2 H), 3.94-3.32 (m, 8 H).

¹³C NMR (500 MHz, CDCl₃): 185.0, 171.0, 167.2, 135.2, 134.8, 132.8, 130.5, 129.8, 128.9, 127.2, 127.0, 126.3, 124.7, 114.6, 112.1, 110.2, 51.0, 46.3, 41.7

IR vmax 3583, 3366, 3237, 2914, 1717, 1621, 1522, 1434, 1251, 1158, 1003, 427

HRMS (ESI) *m/z* 377.1600 [calcd for C₂₁H₂₀N₄O₃(M+H)⁺ 377.1614]

Synthesis of AEG-III-087

To a solution of **S4** (0.156 g, 0.414 mmol), TDBA (0.143 g, 0.622 mmol, 1.5 eq.), EDCI•HCI (0.119 g, 0.622 mmol, 1.5 eq.), and HOBt•H₂O (0.095 g, 0.622 mmol, 1.5 eq.)

in CH₂Cl₂ (18.4 mL) in a round bottom flask shielded from light under N₂ was added NEt₃ (0.11 mL, 0.828 mmol, 2 eq.). After 18 h, the crude reaction material was concentrated, dissolved in 1:1 ACN/H₂O and purified using reverse phase HPLC (15 mL/min 20-95% ACN/H₂O + 0.1% TFA, 15 min) to afford **AEG-III-087** as a green-yellow solid (3.4 mg, 1.4%).

¹**H NMR** (500 MHz, CDCl₃) δ 9.10 (s, 1 H), 8.10 (s, 1 H), 8.00(d, 2 H, *J* = 8.1 Hz), 7.64 (s, 1 H), 7.43 (m, 5 H), 7.30 (d, 2 H, *J* = 8.1 Hz), 7.20 (m, 1 H), 7.01 (d, 1 H, *J* = 7.6 Hz), 4.02-3.33 (m, 8 H)

¹³C NMR (500 MHz, CDCl₃): 184.9, 171.3, 166.7, 165.2, 135.6, 134.7, 134.5, 133.5, 130.6, 130.5, 128.9, 128.7, 128.2, 127.7, 127.2, 126.9, 126.5, 123.6, 123.1, 122.9, 120.9, 119.9, 116.8, 114.2, 41.8, 29.9, 28.7, 28.4, 28.0

IR υ_{max} 3281, 2923, 2861, 1784, 1717, 1627, 1429, 1250, 1156, 999, 939, 440, 425, 409

HRMS (ESI) *m*/*z* 589.1798 [calcd for C₃₀H₂₃F₃N₆O₄ (M+H)⁺ 589.1811]

Synthesis of AEG-III-095

9

To a solution of **(a)** (0.024 g, 0.10 mmol, 1.5 eq.) in CH₂Cl₂ (4 mL) in a round bottom flask shielded from light under N₂ at 0°C was added EDCI•HCI (0.016 g, 0.010 mmol, 1.5 eq.), HOBt•H₂O (0.015 g, 0.10 mmol, 1.5 eq.), NEt₃ (0.02 mL, 0.13 mmol, 2 eq.), then **S4** (0.025 g, 0.066 mmol). The reaction mixture was allowed to gradually warm to room temperature overnight. The crude reaction mixture was concentrated, dissolved in 1:1 ACN/H₂O, and purified using reverse phase HPLC (15 mL/min 20-95% ACN/H₂O + 0.1% TFA, 15 min) to afford **AEG-III-095** as a green-yellow solid (0.68 mg, 2%).

¹H NMR (500 MHz, CDCl₃) δ 10.47 (s, 1 H), 8.80 (s, 1 H), 8.24 (s, 1 H), 7.81 (s, 1 H), 7.45 (m, 5 H), 6.96 (d, 1 H, *J* = 7.6 Hz), 4.03-3.40 (m, 8 H).

¹³**C** NMR (500 MHz, CDCl₃): 184.7, 171.0, 166.4, 156.3, 135.5, 134.5, 130.4, 128.8, 128.1, 127.8, 127.1, 123.5, 121.8, 120.5, 116.4, 114.3, 29.7

IR vmax 3265, 2359, 2127, 1634, 1486, 1422, 1257, 1157, 999, 912, 731, 668

HRMS (ESI) m/z 594.1520 [calcd for C₂₈H₁₉F₄N₇O₄ (M+H)⁺ 594.1513]

Synthesis of AEG-III-096

To a solution of **S4** (0.044 g, 0.12 mmol) in CH₂Cl₂ (2.5 mL) under N₂ at 0°C was added benzoyl chloride (0.049 g, 0.35 mmol, 3 eq.), then 4-DMAP (0.043 g, 0.35 mmol, 3 eq.). The reaction mixture was allowed to gradually warm to room temperature overnight. After 15 h, the crude reaction mixture was purified using flash column chromatography (SiO₂, 0-100% EtOAc/Hex) to afford **AEG-III-096** (0.041 g, 73%) as a white solid.

¹H NMR (500 MHz, CDCl₃) δ 11.07 (s, 1 H), 8.95 (s, 1 H), 8.10 (s, 1 H), 7.96 (d, 1 H, *J* = 7.6 Hz), 7.70 (s, 1 H), 7.58 (t, 1 H, *J* = 7.5 Hz), 7.40 (m, 5 H), 7.18 (app. s, 1 H), 7.06 (d, 1 H), *J* = 7.51 Hz), 3.93-3.29 (m, 8 H).

¹³C NMR (500 MHz, CDCl₃): 185.1, 170.9, 166.6, 166.4, 135.6, 135.0, 133.8, 132.5, 130.4, 129.0, 128.9, 128.8, 127.7, 127.2, 123.5, 123.4, 119.5, 116.6, 114.4, 29.9

IR vmax 3283, 1629, 1528, 1425, 1251, 1157, 998, 710, 427

HRMS (ESI) *m*/*z* 481.1876 [calcd for C₂₈H₂₄N₄O₄ (M+H)⁺ 481.1876]