
Dear Abigail Morrison and Lyle Graham, dear reviewers,

Thank you very much for the response to our submitted manuscript ”Biophys-
ically grounded mean-field models of neural populations under electrical stim-
ulation” for review by PLOS Computational Biology. We also want to thank
the reviewers for taking their time to carefully evaluate our work and making
valuable comments on our manuscript. We have answered all the questions of
the reviewers to our best abilities and have considered all comments to improve
the quality of our manuscript. We hope to have addressed all issues raised
appropriately.

Following your suggestions, we have integrated our research better into the
existing experimental literature and added a self-contained paragraph on the
limits of our theory to our Discussion section. We also present a stronger mo-
tivation of our work in the Introduction, better highlighting the significance of
electrical stimulation in experiments. Moreover, our main theoretical and exper-
imental questions are now clearly stated at end of our Introduction, additional
to the Discussion section.

We found and corrected an error in the calculation of the equivalent electric
field strengths in Figure 5 in the main manuscript, where we mistakenly used
peak-to-peak amplitude values instead of zero-to-peak amplitudes, which we
now use consistently. Using the translation function from electric field to electric
current (Figure 8), we recalculated the electric field strengths that we report
throughout our manuscript which fortunately leaves our conclusions unaffected.

Four new figures that are related to the questions of the reviewers were
added to the Supplementary Material to extend our results and improve our
manuscript. An extensive list of all changes can be found at the end of this
document.

We are looking forward to hearing from you soon.

Best regards,

Caglar Cakan and Klaus Obermayer

1



Response to Reviewer #1

Issue 1

”The paper [...] assumes that the main effect of imposed electrical fields
comes from the effect on dendrites, rather than axons [...]. See, for example,
the work of Rattay [...]. This limitation should be discussed [...] and maybe
it should be considered to change the title.”

As far as we are aware, the work of Rattay studies the effects of comparatively
strong and non-uniform external fields which are generated by an electrode
positioned close to the soma. In this case, the field effect scales with the sec-
ond spatial derivative of the extracellular potential and the depolarization is
strongest in the axon compared to other parts of the neuron. The stimuli in
Rattay’s work can cause up to 100 mV of membrane voltage change which can
make the axonal segments generate action potentials [1, 2].

In our manuscript, we consider the case of a cortical mass in a uniform and
weak electric field which is relevant for noninvasive stimulation techniques such
as tACS in vivo or neuronal tissue immersed within two electrodes in vitro (such
as in Ref [3]) that generates a uniform extracellular electric field. We now point
this out more clearly in the Introduction. In this case, currents enter the cell
at one end and leave it at the other, depending on the cell’s alignment relative
to the field [4]. Compared to Rattay’s work, the external fields we consider
are very weak and a DC field of 1 V/m increases the membrane potential of a
single neuron by up to 0.5 mV from its resting potential in our model, which is
in agreement with in vitro measurements [4]. Thus, the fields considered here
are too weak to elicit a spike by themselves but can only modulate the spike
timing properties of a single neuron, as it is shown in Ref. [5]. However, in the
network, the effects on the population activity sum up considerably causing a
significant influence of these weak electric fields, compatible with experimental
observations [6].

Due to the uniformity of the field, the effect on a neuron largely depends on
its angle of its main axis (defined by the direction of extension of the dendritic
tree) to the electric field [4]. Although we expect that, in principle, axons could
contribute to the somatic polarization due to a weak and uniform external field,
most cortical axons are not geometrically aligned with each other the way that
dendrites are organized in the columnar structure of the cortex [7] which would
weaken the contribution of the axons to the overall somatic polarization of the
population in a subthreshold field.

Despite the simplicity of the ball-and-stick model, it was shown in Ref. [5]
that it can be used to reproduce the polarization behavior of a pyramidal cell
in weak uniform fields. This was then translated into effective inputs to point
neurons, such as the one used in our manuscript which lacks any morphological
features.

To clearly communicate all of the assumptions and limits concerning our
electric field model, we have now added a separate paragraph to our Discussion.
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We believe the part of the title ”under electrical stimulation” is general
enough, as it does not specify whether the stimulation effects considered in our
manuscript come from electric current input or from an external electric field.
We use the results from [5] to convert between the two quantities and report
most of our results in both, input currents in units of pA and extracellular field
strengths in units of V/m.

Issue 2

”I am also a bit uncertain about what is argued when it comes to electrical
fields, are we only talking about externally imposed electrical fields or also
ephaptic effects.”

Throughout our manuscript, we speak of ”external fields”, which could could be
generated by any arbitrary source, including endogenous fields of the brain. Our
main focus, however, is put on fields generated during stimulation techniques
such as tACS at experimentally and clinically relevant field strengths.

Indeed, the field strengths that we consider in our model are in the range
of endogenous fields in the human brain, generated by the neural activity it-
self. Electrophysiological experiments show that ephaptic coupling can modu-
late subthreshold membrane voltages by up to 0.5 mV [8] and generate endoge-
nous field strengths of more than 3.5 V/m [9]. Therefore, our findings actually
support this observation from a theoretical perspective, since one of our main
results is that considerable field effects are expected at these field strengths.

Currently, we do not have a straightforward method to incorporate the elec-
tric field generated by the population into our model yet. We certainly think
that this is an interesting question and a possible extensions to our work in the
future.

Issue 3

”As I understand it, the mean field (MF) model assumes very weak synaptic
couplings (c� 1) [...]. However, in vivo synapses have been shown to have
long tail distributions. This is a possible shortcoming of the model and the
paper as it aims to be experimentally relevant.

The Reviewer’s remark is valid in the sense that the approximation of using a
small PSP amplitude c is a limitation of the theory, which is in a more general
sense a mathematical property of the mean-field approach. In the diffusion
approximation, we assume that an incoming spike to a neuron causes only small
increases in the mean synaptic current, in order to replace the individual spike
input to a neuron by a continuous variable representing the input rate and a
Gaussian white noise term (as laid out in Ref. [10]). With increasing coupling
strengths, this approximation may break down. To be more precise, we assumed
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c/J � 1, which is a stronger assumption and which we state in our Methods
now. Our values for c are chosen from previously used values in the mean-field
literature [11] such that single spikes cause PSP amplitudes of 0.3 mV - 0.5
mV which agrees with in vitro measurements of pyramidal cells [12, 4]. Our
approximation also preserves the assumption of c � VT − Vr that is typically
found in spiking mean-field models without synaptic integration, for example in
Refs. [10, 13].

Synaptic strengths are known to be log-normally distributed [14]. Other
computational papers have specifically studied the effect of strong synapses on
the population activity in Refs. [15] and [16]. Therein, they conclude that the
incorporation of strong synapses causes the emergence of a new asynchronous
state in which the firing rates of individual neurons fluctuate strongly, qualita-
tively different from the up-state that we observe. As a sanity check, we have
computed the statistics of the spiking activity in our up-state and can confirm
that in our case, the system exhibits the classical asynchronous state described
in Ref. [17]. In Ref. [16], the author shows that firing rate models similar
to ours break down and cannot capture the large fluctuations present in this
state. In Ref. [15], a different model is used to specifically study the effect of
log-normally distributed synaptic weights on the emergence of this new asyn-
chronous state. If the mean of the coupling strengths is kept fixed, an increasing
variance of the distribution of synaptic weights leads to an emergence of this
highly irregular state for even weaker input values. We therefore conclude that
1) our mean-field model is limited to describing only weak synaptic coupling
and that 2) incorporation of strong synapses leads to a new asynchronous state
with large fluctuations in the single neuron’s firing rates. We have now added
a paragraph concerning this limitation of our model to our Discussion section.

”Simulations of the Mean Field model with varying coupling strengths are
given in Fig S4, and it is mentioned in the discussion that bifurcation
diagrams seems fairly robust. A comparison with the AdEx model would
strengthen these claims and possibly shed light on differences.”

Following the suggestion, we have now computed a subset of the diagrams for the
AdEx model in Fig S4 and show them here and in the Supplementary Figures.

In Fig. R1 it is visible that also the state space of the AdEx network model
is fairly robust against similar changes of the coupling strengths, strengthening
the fact that our operating point (middle panel of Fig. R1) is not specifically
chosen to exhibit the kind of dynamics that we describe or optimized to fit the
state space of the mean-field model. It remains that the mean-field model still
produces a good approximation of the state space in this extended regime. We
now mention this result in our manuscript.

”It would be interesting to see when/if similarities between AdEx and mean
field brake when e.g. increasing synaptic couplings or making them hetero-
geneous.”
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Figure R1: Bifurcation diagrams of the AdEx network model for chang-
ing coupling strengths. Stacked bifurcation diagrams for a subset of the
values depicted in Fig. S4 depending on the mean input current to populations
E and I showing dynamical states for changing JEE and JII (outer axis), JIE
and JEI (inner axis) by intervals of 0.5 mV/ms. The middle rows and columns
correspond to the default value of the corresponding parameter (see Table 1). In
this figure, all of the four coupling parameters have been varied independently.
Empty plots were not computed. White contours within the plots denote the
boundaries of the oscillatory areas LCEI, green dashed contours the boundaries
of bistable regions. Position in the middle (blue box) corresponds to bifurcation
diagram Fig. 2 b in the main manuscript. Number of neurons N = 20 × 103,
a = b = 0. For all other parameters, see Table 1 in the main manuscript.

We agree that it is of value to analyse the differences of the mean-field model
and the AdEx network more carefully. To stress this, we have now devoted a
separate paragraph to the limitations of our model in our Discussion section. In
the relevant ranges of parameters that we have explored (adaptation parameters,
Fig. 3 in the main manuscript and synaptic coupling strengths, Fig. R1), we
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could not find substantial mismatch of the mean-field model with the AdEx
network, except the ones that we report in detail, such as the differences in the
bifurcation diagrams Figs. 2, and in the time series Fig. 4. The authors in Ref.
[18] have shown that heterogeneous synaptic strengths, drawn from a Gaussian
distribution, can be incorporated in a straightforward way and the mean-field
approximation is still in good agreement with the spiking network in this case.

However, the limits of the theory should become more apparent once the
underlying assumptions are violated. One of these central assumptions is the
large network assumption, namely for infinitely large networks, N → ∞. To
see what the effects of finite network sizes are, we have now computed new
bifurcation diagrams of the AdEx network for smaller N (see Fig. R2). Even in
these cases, the bifurcation diagrams largely coincide for as low as N = 4× 103

neurons, however the dynamics is dominated more and more by finite-size noise
making it harder to clearly define the edges of the oscillatory region. We have
added this additional result to our Supplementary Material and mention it in
our manuscript.

Figure R2: Finite-size effects on bifurcation diagrams of the AdEx net-
work with increasing number of neurons N. Bifurcation diagrams depict
the state space of the E-I system without adaptation in terms of the mean exter-
nal input currents C ·µext

α to both subpopulations α ∈ {E, I}. Up (bright area)
and down-states (dark blue area), a bistable region bi (green dashed contour)
and an oscillatory region LCEI (white solid contour) are visible. All parameters
are given in Table 1 and 2 in the main manuscript.
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Issues 4

”In Fig 4. a-b there seems to be a beating in the AdEx firing rate not
apparent in mean field model.”

The apparent modulation in Fig. 4 b is due to finite size noise. Although we
used a very large number of neurons for this figure (N = 100× 103), the firing
rate trajectories are not as smooth as in the N →∞ mean-field limit. To show
that no additional frequencies are present in the system, we have simulated the
same condition for a longer time and with different network sizes N and show
frequency spectra in Fig. R3. As expected from a noisy oscillation, the spectrum
widens around the peaks and the baseline power is increased with decreasing N .
Since the modulation is due to finite size effects, we have analysed in more detail
and show in Fig. R6 how the coefficient of variation (CV) of the amplitudes
of this oscillation decreases and the AdEx network more closely resembles the
dynamics of the mean-field model as the network size N increases. We have
added this to our Supplementary Material and mention it in our manuscript in
our Results section.

Figure R3: Finite-size effects on frequency power spectrum of oscilla-
tions in the AdEx network. The power spectrum of the oscillation in the
fast limit cycle LCEI is shown for different network sizes N . All parameters are
as in Fig. 2b.

”In Fig 4. g-h there seems to be a re-bound after initial transient in the
AdEx firing rate not apparent in mean field - this would also be interesting
to visualize in frequency spectrum.”

The rebound visible in the AdEx firing rates in Fig. 4 h is a reflection of the
fact that the up-state fixed point is actually a focus with a frequency associated
to it and the same process is also visible in Fig. 4 f. This ”ringing”, or damped
oscillation, into the fixed point from the initial overshoot is what is visible in
the AdEx firing rates. The emergence of this oscillation can be explained by the
fact that a common input transiently synchronizes many neurons that have been
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Figure R4: Transient dynamics of down/up transitions in the AdEx
network as in Fig. 4h. (a) Bifurcation diagram of spiking neural network
with adaptation as in Fig. 2 d in the main manuscript with a parameter trajec-
tory (green bar) along the slow limit cycle (b) Frequency spectrograms along
the trajectory show mainly a change of fast components of the oscillation (c)
Time series of the population rate (black) and stimulus (red) as in Fig. 4 h for
different parameters along the green line in (a).

asynchronous before. At the onset of the stimulus, the neurons fire together,
leading to a sharp increase of the firing rate. Then, all neurons that have fired
together, collectively undergo a refractory period, which causes the down-swing.
This repeats until all neurons desynchronize again due to their independent
noisy inputs and other sources of heterogeneity. This process can be seen in the
rasterplot in Fig. R5 a, lower panel. We have analyzed the power spectrum of
this oscillation and have chosen different parameters along the slow limit cycle
in Fig. R4. We see that the frequency of the ringing activity changes along
the limit cycle, while the dominant slow oscillation frequency stays constant,
indicating successful frequency entrainment at the stimulation frequency.

This ringing at the onset of a steep input, was observed experimentally (see
for example [19])) and has been a challenge to reproduce in mean-field models,
such as in [20]. Our mean-field model only captures a very small part of this
overshoot which is nearly invisible to see. One of such an overshoot can be seen
in our manuscript in Fig. 4 c, where the transient from the oscillatory state to
the up-state has a very small amplitude and is visible for only one oscillation
period.

We believe that the reason our model only poorly reproduces these effects is
due to the approximation of the linear response function of the AdEx network

8



by a decaying exponential (represented by a linear ODE in Eq. 7 with the
timescale shown in Fig. 7c in the main manuscript ), which itself doesn’t produce
any oscillations. A better approximation of this function could be a damped
oscillation, as it was done in [13] to capture these transients and where it is shown
that this oscillatory linear response function can capture over- and undershoots
more closely. We now discuss this limitation in our manuscript and mention it
as a possible extensions of our work.

”Fig 6 shows AdEx vs Mean field phase locking, but also with calculated
external fields. However, it is mentioned earlier that fields may only be
calculated without adaptation, are these results thus without adaptation i.e.
the exponential integrate and fire model, not the AdEx?”

This is correct. We observed similar phase locking behavior and Arnold tongues
for the AdEx network with finite adaptation values. However, due to the lim-
itations of the methods developed in Ref. [5], we can calculate the equivalent
input currents only for EIF neurons (without adaptation), which is why we have
included only the latter case in our manuscript.

Minor issues

”I couldn’t find the point B2 (mentioned in the text) in Figure 2.”

B2 was a typo and was meant to be A2, which we now have fixed.

”What is meant by “the biophysical parameters of the AdEx network model
are preserved in the mean-field description”. I assume that there are not
explicit formulas giving all mean-field parameters in terms of AdEx param-
eters?”

Our goal was to highlight the fact that our mean-field approach (in contrast
to so-called phenomenological models) does not introduce new and abstract
parameters for the mean-field equations and the population description. Specif-
ically, for a given set of single AdEx neuron parameters, we (pre-)compute
transfer functions that are used in the mean-field model. All other parameters,
such as input currents, network parameters and synaptic coupling strengths,
as well as the parameters that govern the somatic adaptation mechanism and
the membrane timescale and the synaptic timescale, are identical and directly
represented in the equations of the mean-field model. This also allows for direct
comparison of both models under changes of said parameters.

We have added a better explanation to our Methods Section and want to
thank the reviewer for bringing this to our attention.
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Response to Reviewer #2

Issue 1

”The work in this manuscript thus builds on the previous work in [13] and
[5] but lacks a strong conclusion. This work could benefit from either a
sound embedding in experimental literature or a more clear cut theoretical
question”

We have restructured our Discussion section with a better integration into ex-
perimental literature and a separate paragraph for each result that explains how
our results relate to previous theoretical and experimental findings.

We also updated both Introduction and Discussion to highlight our main
goals more clearly, which are twofold: our main theoretical goal is to assess the
validity of the mean-field approach in a wide range of parameters and multiple
populations with synapses, delays, and with non-stationary inputs in order to
extend its validity to a more realistic case than it was done in Ref. [13]. Our
results confirm that the mean-field model is in good agreement with results from
network simulations.

The second, more experimentally relevant objective of our paper is to esti-
mate the necessary field strengths to observe various electric field interaction
effects. Our principal result here is that fields on the order of several V/m are
able to affect the population rate considerably while the same field strengths
have only a small effect on a single isolated neuron. This is well in line with
experimental observations [4, 6] and indicates that field effects are strongly am-
plified in the network.

”The authors of [13] already showed that the mean-field model captures the
oscillatory dynamics displayed by coupled populations of AdEx neurons.”

In Ref. [13], the authors considered only a single recurrent population at a time
(excitatory neurons with adaptation or recurrent inhibitory neurons) whereas
our cortical models consists of coupled excitatory and inhibitory neurons. Al-
though isolated states with oscillations were studied in Ref. [13], the state
space was not systematically explored. In Ref. [18], it was shown that adapta-
tion causes oscillations in a mean-field model using the Fokker-Planck equation
of recurrent E and I neurons, however the validity of these observations were
checked on only a few points and the rest of the state space was not explored.
In Ref. [13], the authors hypothesize about the relation between bifurcation pa-
rameters of the mean-field model and the AdEx network but parameters were
not determined and validated.

One of our main goals was to study the interaction of oscillations and time-
dependent external inputs. Therefore, we believe that our work is a solid exten-
sion of the work in Ref. [13] and our results are of interest for anyone studying
the dynamics of a cortical E-I motif.
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”This analysis also shows that stronger adaptation shrinks the region of
bi-stability and replaces it with slow oscillations. It would be interesting
to strengthen this nice mechanistic insight by theoretical analysis of the
mean-field model. How does this result relate to other theoretical works of
adaption?”

The replacement of a bistability with a slow oscillation due to adaptation has
been a focus of earlier theoretical works, including [21, 22, 23, 24, 25]. For
example, in Ref. [24], the authors performed a linear stability analysis of the
Fokker-Plank equation for two populations of LIF neurons. Their findings agree
with our results: two stable fixed points are found in the inhibition-dominated
region and the up-state loses its stability due to a Hopf bifurcation. Since our
model is derived from a Fokker-Plank equation, we expect the mathematical
properties of this transition to be very similar. However, the final mean-field
model that we study is based on precomputed lookup tables (see Fig. 7 in the
main manuscript), which does not allow for a purely analytical treatment. Our
main goal was to show that the above-mentioned bifurcations also take place in
the analogous spiking neural network and how this transition is represented in
the state space.

To better relate our result to previous research, we have now included ref-
erences to other theoretical works (in addition to the ones mentioned above)
that focus on the interaction of adaptation with state switching between the
resulting up- and down-state [21, 22] and how adaptation affects the intrinsic
timescales of the network [26, 18] to our Discussion section.

”The authors state that realistic electrical currents can initiate transitions
between dynamical states in the mean-field model. However, as far as I
can tell, there is neither a discussion nor a reference to experiments and
it is therefore not clear what these realistic current values are based on.
Similarly, the statement that weak electrical inputs to the brain affect brain
dynamics is not explored or substantiated further in the manuscript”

In our Introduction and in our Discussion section, we refer to several experi-
ments and reviews on modulation of brain oscillations using noninvasive tACS
stimulation in vivo [27, 28, 29, 30, 31, 32, 33, 34] with relatively weak fields
(around 1 V/m) as well as in vitro stimulation of neural populations with elec-
tric fields [3, 35, 36] (with higher amplitudes up to 8 V/m). Furthermore, we cite
works that argue that endogenous fields, generated by the brain’s activity itself,
are able to entrain oscillatory activity of neighboring populations [9, 8] (with
field strengths between 0.5 - 4 V/m). These experiments report electric field
strengths at which several observations were made. In our Discussion, we refer
to these amplitudes for each observed phenomenon (state switching, frequency
entrainment and phase locking) and argue that they are compatible with the
results of our model.
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In order to embed our findings more clearly into the experimental context
and cite all relevant works more visibly, we have restructured a significant part
of our Discussion section in which we recapitulate our results.

Issue 2

”The work could be motivated in more detail.”

The main theoretical motivation for our work is to assess the validity of our
mean-field approach and to prove that reduced models are useful for modeling
time-varying electrical inputs. Our second main goal is to predict necessary field
strengths for observing various stimulation effects that are relevant in experi-
mental research. We now point our goals out more carefully at the end of our
Introduction and relate them more clearly to the relevant experimental research
in our Discussion.

Issue 3

”What is the motivation for analyzing frequency entrainment?”

Frequency entrainment is an actively researched phenomenon in neural stimu-
lation experiments [3, 35] and computational modeling [37, 38] which show that
the amount of frequency entrainment depends on the stimulation amplitude
and that the necessary amplitudes for frequency entrainment are higher than
for phase locking. Our results confirm both of these observations.

In a broader sense, frequency entrainment is a more general phenomenon
than phase locking: in order for two signals to have a constant phase relation-
ship, the frequencies (or its harmonics) must to be similar. Therefore, experi-
ments that study synchronization of neural oscillations often chose frequency-
matched stimulation. Our results show that the frequency mismatch can be
compensated up to a certain degree (i.e. frequency range) by choosing a stronger
stimulation amplitude in order to achieve synchronization with the input.

Issue 4

”Why do the authors consider phase locking between input and population
rate? Why at this particular stimulus frequency range?”

Phase locking, sometimes referred to as ”phase coherence” or simply ”entrain-
ment” in the literature, has been of significant interest in in vivo stimulation
experiments. It was shown repeatedly that brain oscillations can be phase-
locked to external stimuli and that this can affect information processing in the
brain in various experiments [39, 29]. Particularly, sensory information process-
ing depends on phase coherence of oscillations between distant brain regions
[40, 41].
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The chosen frequency range is dictated by the endogenous frequency of the
system: in a small range around this frequency, and in an amplitude-dependent
manner, the stimulus is able to lock the ongoing oscillation’s phase. The result-
ing diagram in Fig. 6 is often referred to as an Arnold tongue.

Issues 5 and 6

”The authors could explore differences between the microscopic dynamics
of the AdEx neurons and the mean-field model. How heterogeneous are the
microscopic dynamics?”

In order to answer this question, we present raster plots and statistics of the
spiking neuron activity in three different network states in Fig. R5 and have
added them to our Supplementary Material. In the oscillatory state in LCEI, in
which the network oscillates at around 30 Hz, The neurons have a very low CV
and the neurons fire in a mainly regular and synchronous state. In the up-state,
the CV is higher and the spike counts between neurons vary more, indicating
an asynchronous irregular state. Finally, in the slow oscillatory state LCaE due
to adaptation, the neurons have a much higher CV due to successive periods
of rapid firing and no firing within the slow global oscillation. In this state,
oscillations caused by adaptation can be seen as cycles of rapid and synchronous
firing onset and slow asynchronous decline of the spiking activity.

Issue 7

”Are there finite-size effects?”

Initially, for the simulation experiments in our manuscript, we have chosen the
number of neurons to be high enough to minimize the effects of its finite size,
ranging from N = 20×103 - 100×103 neurons. However, to answer the reviewer’s
question, we have conducted additional simulations to assess the magnitude of
finite-size effects.

First, we computed new bifurcation diagrams of the AdEx network for
smaller N (see Fig. R2). Even in these cases, the bifurcation diagrams largely
coincide for as low as N = 4× 103 neurons, however the dynamics is dominated
more and more by finite-size noise making it harder to clearly define the edges
of the oscillatory region.

Furthermore, we measured the effect of finite-size noise on the coefficient of
variation of the oscillation amplitude within the fast E-I limit cycle, visible in
Fig. R6. With increasing network size N, the variance of the peak amplitude
drops and the amplitude itself approaches the amplitude of the mean-field more
closely. We have added both of these new results to our Supplementary Material
and mention it in our manuscript.
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Figure R5: Spiking network activity and statistics (a) Population firing
rate rE of the excitatory population in Hz (upper panels) and raster plots of
100 randomly chosen excitatory neurons (lower panels) in three different network
states A2, A3 and B3, located in the bifurcation diagrams Fig. 2 in the main
manuscript. A2 is located in the fast excitatory-inhibitory limit cycle LCEI, A3
in the high-activity asynchronous irregular up-state, and B3 in the adaptation-
mediated slow limit cycle LCaE. (b) The upper panel shows the distribution
of coefficients of variation (CV) of the inter-spike-intervals (ISI) calculated as
the variance of ISIs divided by the mean ISI of excitatory neurons for all three
states. The lower panel shows spike count distributions. For each neuron, the
spike count was calculated from the inverse of the mean of the ISI distribution.
Simulations were run with N = 100× 103 neurons for 10 s each. The statistics
were computed for t > 500 ms for the neurons shown in (a). All parameters are
given in Table 1 in the main manuscript.
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Figure R6: Finite-size effects in the AdEx network on E-I oscillation
amplitudes. Oscillation amplitudes in the limit cycle LCEI fluctuate due to
finite-size effects in the AdEx network. The system is parameterized in point
A1 and pushed into the limit cycle by a constant input as in Fig. 4 b in the
main manuscript. (a) Traces of the population firing rates are shown (black)
with the oscillation’s maxima marked (red dots) for an increasing number of
neurons N in each panel (excitatory plus inhibitory). (b) The left panel shows
the mean amplitude and the standard deviation as a function of the population
size N on a semi-logarithmic scale. With increasing N , the amplitude of the
oscillation decreases. The right panel shows the coefficient of variation (CV) of
the amplitudes on a semi-logarithmic scale. The CV decreases with increasing
number of neurons. Each point was measured from 20 realizations of 2 seconds
of oscillatory activity. One randomly chosen realization for each N is shown in
(a). All parameters are given in Table 1 and 2 in the main manuscript.

Minor issues

”What is the number of neurons used in the simulation?”

The number of neurons in the network simulations are listed in the Subsection
”Numerical Simulations” in the Methods Section. Additionally, we now also
mention the number of neurons in all of the relevant figure captions.
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”The frequency entrainment for the mean-field and the AdEx network look
quite different (Fig. 5c,d). It would be interesting to comment on that.”

The difference in the power spectra patterns is mostly due to the fact that the
stimulus in the AdEx network was too weak to produce the same effects as
for the mean-field model. This causes narrower entrainment frequency ranges
and the system reverts back more easily to its endogenous frequency, producing
horizontal lines in the diagram. We have now replaced the plot with a case with
a slightly stronger stimulus, producing more similar entrainment patterns.

Even at these slightly stronger stimulus strengths, the remaining differences
between the spectrogram of the AdEx network in Fig. 5 d and the mean-field
model Fig. 5 c can be largely attributed to the fact that the AdEx network
consistently needs stronger inputs to obtain the same effect as the mean-field
model. This results in horizontal lines in areas where frequency entrainment is
not effective and in faint and short diagonal lines between the lines that repre-
sent the (sub-)harmonics that are caused by interactions of the (sub-)harmonics.
In the mean-field model, we mainly observe clear diagonal lines, indicating suc-
cessful entrainment. Another source for the differences is the inherently noisy
dynamics of the AdEx network, due to its finite size. We now comment on this
more clearly in our manuscript.

”The time traces of Fig. 6c,d are zoomed out too far to see the phase
locking.”

The dephasing of the input and the population activity happens at very slow
timescales (over the course of seconds) which makes it hard to depict it in a
readable plot. For this reason, we have plotted the Kuramoto order parameter
below each time series to show that dephasing is actually happening. Following
the reviewer’s suggestion, we have now added zoomed-in insets to each time
series that show a short time frame of the stimulus and the population activity,
hopefully making the figure more accessible.

Moreover, we want to thank the reviewer for making us aware of typos that
we have overlooked prior to submission which we have corrected in our updated
manuscript.
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List of all changes

Figures

• Added number of neurons N in all relevant figure captions (Figs. 2-6).

• Figure 5 d now showing frequency diagram for a stronger stimulus for
better equivalence to Figure 5 c.

• Figure 5: All amplitude values are now measured from zero-to-peak.

• Figure 5: Equivalent field strengths are corrected accordingly.

• Figure 6 a and b: Equivalent field strengths are corrected accordingly.

• Figure 6 c and d: Time series now show a zoomed-in inset for better
visibility.

• Figure 6: Updated caption.

Abstract

• Explicitly mention weak field effects in Abstract and Author summary.

Introduction

• Relation to in vivo tACS and in vitro stimulation in Introduction (Lines
6-8)

• Reference to enhancing memory consolidation with tACS (Line 11)

• Added alternative common abbreviation for AdEx: ”aEIF” (Line 39)

• Clearly state the goals of the paper (Lines 56-61)

• Briefly summarize implications of our results (Lines 67 - 72)

Results

• Mention irregular firing activity of neurons and refer to new Supplemen-
tary Figure 1 (Line 110)

• Differences explained better between AdEx and mean-field model in Fig.
4 (Lines 188-194).

• More detailed explanation of the differences between Fig. 5 c and d (Lines
216 - 224)

• Corrected field amplitude values for Fig 6 (Line 250)
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Discussion

• Major restructuring of the Discussion section.

• Added subsections for better readability.

• Add ”same set of parameters for both models” statement (Lines 261-265)

• Clarify the bifurcation parameters and what they represent (Lines 273-
275)

• Mention new result from Figure S6 (Lines 278-281)

• Reference new result Figure S1 (Line 282)

• Relation of our results to other theoretical works on adaptation (Lines
294-297)

• Report our results for DC fields and reference in vitro experiment (Lines
305-310)

• Briefly explain frequency entrainment (Lines 312-313)

• Report frequency entrainment results and reference in vitro experiments
(Lines 316-320)

• Discuss relevance for ephaptic coupling (Lines 321-327)

• Reference in vitro observations of entrainment of (sub-)harmonics (Line
328-330)

• Experimental relevance of phase entrainment, embedding into literature
(Lines 337-346)

• Summary of stimulation results and experimental relevance (Lines 347-
355)

• Discuss weaker susceptibility of AdEx network (Lines 362-364)

• Discuss new results on finite-size effects (Lines 365-371)

• Frequency differences of AdEx and mean-field model (Line 372-373)

• Discuss limitation of our model: ringing activity at sharp transitions.
Reference other mean-field models that focus on this (Lines 377-385)

• Discuss limitation of our model: weak synaptic coupling. Reference other
theoretical papers that focus on this (Lines 386-397)

• Discuss limitation of our model: simplifying assumptions about field ef-
fects (Lines 398-410)

• Discuss possible axonal contributions (Lines 411-415)
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• Discuss limitation of our model: assumption of weak fields (Lines 416-418)

• Discuss state-dependent effect of stimulation and relate to divergent ex-
perimental results in the literature (Lines 440-446)

Methods

• Assumption of weak synaptic coupling more specific (Line 454)

• Clarify ”same set of parameters for both models” statement (Lines 505-
512)

• Explain role of adaptive timescale in Eq. 7 (Lines 532-533)

• Removed ”fast-spiking” (Line 608)

• Field effects only without adaptation (Line 688-690)

• Add reference for morphological neuron parameters (Line 704)

• Correct equivalent field strength effect (Lines 708, 712)

• Add reference for field effect size (Line 709)

• Explicitly mention identical number of neurons for both E and I (Line
721)

• Add reference to our code repository for easy reproduction of all results
(Lines 731-735)

References

• New references were added.

Supplementary Figures

• Figure S1: New figure

• Figure S6: New figure

• Figure S7: New figure

• Figure S8: New figure
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[28] Thut G, Bergmann TO, Fröhlich F, Soekadar SR, Brittain JS,
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