Supporting Information

Iridium Corroles Exhibit Weak Near-Infrared Phosphorescence but Efficiently Sensitize Singlet Oxygen Formation

Ivar K. Thomassen,^a Laura J. McCormick-McPherson,^b Sergey M. Borisov^c and Abhik Ghosh^{*,a}

 ^aDepartment of Chemistry, UiT – The Arctic University of Norway, N-9037 Tromsø, Norway; Email: abhik.ghosh@uit.no.
^bAdvanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8229, United States

^cInstitute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria; Email: sergey.borisov@tugraz.at

Table of Contents

A. UV-vis spectra	S2
B. Mass spectra	S 7
C. ¹ H NMR spectra	S18

A. UV-vis spectra

Figure 1. UV-vis spectrum of Ir[TPC]tma₂.

Figure 2. UV-vis spectrum of Ir[TPC]py₂.

Figure 3. UV-vis spectrum of Ir[T*p*OMePC]tma2.

Figure 4. UV-vis spectrum of Ir[T*p*OMePC]py₂.

Figure 5. UV-vis spectrum of Ir[T*p*CF₃PC]tma₂.

Figure 6. UV-vis spectrum of Ir[T*p*CF₃PC]py₂.

Figure 7. UV-vis spectrum of Ir[T*p*CF₃PC]dmap₂.

Figure 8. UV-vis spectrum of Ir[T*p*CF₃PC]4pa₂.

Figure 9. UV-vis spectrum of Ir[T*p*CF₃PC]isoq₂.

B. Mass spectra

Figure 10. Electrospray ionization mass spectrum of Ir[TPC]tma2.

Figure 11. Electrospray ionization mass spectrum of Ir[TPC]py2.

Figure 12. Electrospray ionization mass spectrum of Ir[TpMePC]tma2.

Figure 13. Electrospray ionization mass spectrum of Ir[TpMePC]py₂.

Figure 14. Electrospray ionization mass spectrum of Ir[TpOMePC]tma2.

Figure 15. Electrospray ionization mass spectrum of Ir[TpOMePC]py₂.

Figure 16. Electrospray ionization mass spectrum of Ir[TpCF₃PC]tma₂.

Figure 17. Electrospray ionization mass spectrum of Ir[T*p*CF₃PC]py₂.

Figure 18. Electrospray ionization mass spectrum of Ir[TpCF₃PC]dmap₂.

Figure 19. Electrospray ionization mass spectrum of Ir[TpCF₃PC]4pa₂.

Figure 20. Electrospray ionization mass spectrum of Ir[TpCF₃PC]isoq₂.

C. ¹H NMR spectra

Figure 21. ¹H NMR spectrum of Ir[TPC]tma₂ in acetone-*d*₆.

Figure 22. (a) COSY of $Ir[TPC]tma_2$ in acetone- d_6 . (b) Close-up of aromatic area.

Figure 23. ¹H NMR spectrum of Ir[TPC]py₂ in acetone-*d*₆.

Figure 24. (a) COSY of $Ir[TPC]py_2$ in acetone- d_6 . (b) Close-up of aromatic area.

Figure 25. ¹H NMR spectrum of Ir[T*p*MePC]tma₂ in chloroform-*d*.

Figure 26. (a) COSY of Ir[T*p*MePC]tma₂ in chloroform-*d*. (b) Close-up of aromatic area.

Figure 27. ¹H NMR spectrum of $Ir[TpMePC]py_2$ in benzene-*d*₆.

Figure 28. (a) COSY of $Ir[TpMePC]py_2$ in benzene- d_6 . (b) Close-up of aromatic area.

Figure 29. ¹H NMR spectrum of Ir[TpOMePC]tma₂ in chloroform-d.

Figure 30. (a) COSY of Ir[T*p*OMePC]tma₂ in chloroform-*d*. (b) Close-up of aromatic area.

Figure 31. ¹H NMR spectrum of Ir[TpOMePC]py₂ in benzene-*d*₆.

Figure 32. (a) COSY of $Ir[T_pOMePC]py_2$ in benzene- d_6 . (b) Close-up of aromatic area.

Figure 33. ¹H NMR spectrum of Ir[T*p*CF₃PC]tma₂ in chloroform-*d*.

Figure 34. (a) COSY of Ir[T*p*CF₃PC]tma₂ in chloroform-*d*. (b) Close-up of aromatic area.

Figure 35. ¹H NMR spectrum of $Ir[TpCF_3PC]py_2$ in benzene-*d*₆.

Figure 36. (a) COSY of $Ir[T_pCF_3PC]py_2$ in benzene- d_6 . (b) Close-up of aromatic area.

Figure 37. ¹H NMR spectrum of $Ir[T_pCF_3PC]dmap_2$ in benzene-*d*₆.

Figure 38. (a) COSY of $Ir[T_pCF_3PC]dmap_2$ in benzene- $d_{6.}$ (b) Close-up of aromatic area.

Figure 39. ¹H NMR spectrum of $Ir[TpCF_3PC]4pa_2$ in methanol- d_4 .

Figure 40. (a) COSY of $Ir[T_pCF_3PC]4pa_2$ in methanol- d_4 . (b) Close-up of aromatic area.

Figure 41. ¹H NMR spectrum of Ir[T*p*CF₃PC]isoq₂ in chloroform-*d*.

Figure 42. (a) COSY of Ir[T*p*CF₃PC]isoq₂ in chloroform-*d*. (b) Close-up of aromatic area.