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Supplementary Figure 1: Two synthetic samples with 10% CD4 T cell content. Sample 
1 is in blue, sample 2 is in orange. CD4+ T cell content was estimated in both samples 
using xCell and CIBERSORT-Absolute. Along the y-axis, the relative difference in 
scores to sample 1 for each deconvolution method are shown: (Estimated CD4+ T cell 
score in Sample 1 / Estimated CD4+ T cell score in Sample K; therefore, sample 1 
(blue) has a relative difference of 1). 
 



  
 
Supplementary Figure 2: Genes were shuffled within the GTEx gene expression 
profiles. For each signature gene (in the reference profile), we matched to another gene 
(via pan-tissue GTEx median gene expression values). We then replaced the gene 
expression values of the signature gene within the GTEx samples with the matched 
gene’s expression values. We then performed deconvolution using the original 
CIBERSORT reference profile (LM22). Next, median CIBERSORT-Absolute scores for 
the 14 immune cell types were calculated within each tissue. Median values were 
visualized in a heatmap (sorted by tissues alphabetically). Nearly all scores were close 
to 0 with little variability between tissues and cell types.   
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Supplementary Figure 3: Neutrophil content in lung tissue as estimated by 
CIBERSORT-Relative, CIBERSORT-Absolute, and xCell algorithms. (a) Individuals 
GTEX-14LLW (blue) and GTEX-17F96 (orange) have similar relative scores but 
different absolute scores. (b) Individuals GTEX-PLZ4 (blue) and GTEX-ZF2S (orange) 
have similar xCell scores, but very different CIBERSORT scores. 
  



 

 

 
Supplementary Figure 4: Hierarchical clustering of GTEx tissues according to immune 
content, estimated by CIBERSORT-Relative (top) and xCell (bottom). Heatmap displays 
cell type median scores, with extremely large median score values (>0.3 for 
CIBERSORT-Relative, >0.05 for xCell) set to 0.3 for CIBERSORT-Relative and 0.05 for 
xCell.  
  



 
 
 
Supplementary Figure 5: Pairwise correlations measured between all 189 filtered 
infiltration phenotypes within each deconvolution method. Top row: Correlations are 
displayed via heatmap, which have been sorted by tissue. Each row and column is the 
same infiltration phenotype in each of the three plots. Bottom row: Correlations between 
infiltration phenotypes are compared between deconvolution methods. X-axis 
represents the set of correlations from one deconvolution method, y-axis represents the 
set of correlations from another deconvolution method. Red line shows the line of best 
fit.  



 
Supplementary Figure 6: Estimates of CD8+ T cell content in n=11141 samples 
across 46 GTEx tissues, segmented by each deconvolution method: CIBERSORT-
Relative, then CIBERSORT-Absolute, and finally xCell. Tissues are sorted by median 
CIBERSORT - Absolute score. Data are summarized as boxplots where the middle line 
is the median, the lower and upper hinges represent the first and third quartiles, and the 
whiskers extend from the hinge with a length of 1.5 x the inter-quartile range. All data 
points are plot individually.  



 
Supplementary Figure 7: Estimates of macrophages in n=11141 samples across 46 
GTEx tissues, segmented by each deconvolution method: CIBERSORT-Relative, then 
CIBERSORT-Absolute, and finally xCell. Tissues are sorted by median CIBERSORT - 
Absolute score. Data are summarized as boxplots where the middle line is the median, 
the lower and upper hinges represent the first and third quartiles, and the whiskers 
extend from the hinge with a length of 1.5 x the inter-quartile range. All data points are 
plot individually.  



 
Supplementary Figure 8: Estimates of neutrophils in n=11141 samples across 46 
GTEx tissues, segmented by each deconvolution method: CIBERSORT-Relative, then 
CIBERSORT-Absolute, and finally xCell. Tissues are sorted by median CIBERSORT - 
Absolute score. Data are summarized as boxplots where the middle line is the median, 
the lower and upper hinges represent the first and third quartiles, and the whiskers 
extend from the hinge with a length of 1.5 x the inter-quartile range. All data points are 
plot individually. 
 



Supplementary Figure 9: Estimates of B cells in n=11141 samples across 46 GTEx 
tissues, segmented by each deconvolution method: CIBERSORT-Relative, then 
CIBERSORT-Absolute, and finally xCell. Tissues are sorted by median CIBERSORT - 
Absolute score. Data are summarized as boxplots where the middle line is the median, 
the lower and upper hinges represent the first and third quartiles, and the whiskers 
extend from the hinge with a length of 1.5 x the inter-quartile range. All data points are 
plot individually. 



 
 

 
 
 
Supplementary Figure 10: t-SNE clustering of immune content within a single tissue 
type. t-SNE was performed on the 22 original immune cell type scores from 
CIBERSORT-Absolute deconvolution. Each point represents a unique sample from a 
different individual, which has been colored by the amount of measured CD8+ T cell 
content (low content: blue; high content: red). 
  



 

Supplementary Figure 11: “Hot” (red) and “cold” (blue) consensus clusters for n=6741 
samples across 123 of the infiltration phenotypes where DEGs were identified. Immune 
cell type scores were converted into z-scores for visual purposes, such that all 
infiltration phenotypes could be visualized on the same scale (otherwise, the variation in 
phenotypes with lower mean and variances would be difficult to see). Data are 
summarized as boxplots where the middle line is the median, the lower and upper 
hinges represent the first and third quartiles, and the whiskers extend from the hinge 
with a length of 1.5 x the inter-quartile range. All data points are plot individually. 

  



 
 
Supplementary Figure 12: “Hot” CD8 T cell cases across the whole blood samples, 
labelled by three different approaches: k-means consensus clustering, top quintile, and 
top two quintiles. Each column represents a different sample, while each row represents 
a different hot-labeling approach. Red cells indicate hot cases, while blue indicates not 
hot cases.  
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Supplementary Figure 13: Examination of “hot” patterns across tissues for a single 
individual, separated by cell type. Individuals were subset to those that are in at least 
“one” hot cluster of that cell type and contributed at least 8 tissues (post-filtering). N is 
number of total tissues for that cell type, and n is median number of contributed tissues 
from a single individual. Clusters are based on consensus clustering. (a) Histograms 
describing the number of tissues that each individual is in the “hot” cluster. (b) Density 
plot showing the proportion of tissues from a single individual that are labeled “hot”.  



 

 
 
Supplementary Figure 14: Heatmaps display “hot” patterns across tissues and 
individuals. Clusters were determined by the consensus k-means clustering approach. 
Rows represent tissues and columns represent individuals. Red indicates the individual 
was labeled “hot” in that tissue type, while blue represents not “hot” (intermediate, cold, 
or missing data since an individual does not have a sample for every tissue type). Row 
and columns were clustered by Euclidean distance. In these figures, only tissues with > 
6 hot and cold samples are shown.  
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Supplementary Figure 15: Heatmaps display “hot” patterns across individuals with 
both lung and whole blood samples. If individuals do not have both whole blood and 
lung samples, individuals were removed from further analysis. “Hot” groupings were 
determined by (a) consensus k-means clustering, (b) quintiles, and (c) top two quintiles. 
Rows represent tissues and columns represent individuals. Red indicates the individual 
was labeled “hot” in that tissue type, while blue represents not “hot” (intermediate or 
cold). Columns (individuals) were clustered by Euclidean distance. Therefore, due to 
differences in clustering, one column across the three plots represents three different 
individuals. 
  



 

 
 
 
 
Supplementary Figure 16: t-SNE plot of immune content in breast tissue, calculated 
on the 22 immune cell type matrix from CIBERSORT - Absolute. Each point is a 
separate individual, colored by sex. 
 
  



 

 
 
Supplementary Figure 17: Myeloid:Lymphoid ratios were calculated in n=407 whole 
blood samples and adjusted for linear model covariates, minus age (see Methods). 
Left, the Myeloid:Lymphoid phenotype from xCell is plot against the phenotype derived 
from CIBERSORT. The Pearson product-moment correlation coefficient, r, is calculated 
between CIBERSORT and xCell, and p-value calculated using a t distribution. Right, the 
relationship between age and myeloid:lymphoid ratio in xCell. Beta represents the effect 
size from the linear model between age (numerical; discrete, binned into 10-year 
categories) and myeloid:lymphoid ratio, and the p-value represents the significance of 
the regression coefficient. Myeloid:lymphoid values are covariate-adjusted. Data is 
summarized as a boxplot where the middle line is the median, the lower and upper 
hinges represent the first and third quartiles, and the whiskers extend from the hinge 
with a length of 1.5 x the inter-quartile range. All data points are plot individually. 

  



 

 
 
Supplementary Figure 18: 5+ million genome-wide genetic variants were tested for 
association with Helper T cells in thyroid samples. The SNP-association P-values in the 
separate analyses are visualized along the y-axis in a qq-plot, where the x-axis 
represents the expected –log10 P-values under the null distribution. Figure 5c shows the 
combined Empirical Brown’s P-values from these 3 separate analyses. Each P-value is 
the coefficient significance of a SNP from a regression model on the helper T cell 
phenotype. 
  



 

 
 
Supplementary Figure 19: Overview of the test for eQTL enrichment in iQTL findings. 
This describes the statistical method based on a two-sided binomial test.  
  



 

 
 
Supplementary Figure 20: ieQTL directionality is unclear. Example describing the 
potential relationships between rs9989443 and its association with both CCDC40 gene 
expression and mast cells in the esophagus muscularis samples. 
 
 
  



 
  
 
Supplementary Figure 21: eQTL enrichment in iQTL results using a two-sided 
binomial test, as described in Supplementary Figure 19. The y-axis describes the -log10 
P-values from the test, and the x-axis describes each infiltration phenotype analyzed 
and sorted by significance. 
 
  



 

 
 
 
 
Supplementary Figure 22: GeneMania network of all ieGenes from ieQTLs that are 
associated with infiltration phenotypes at a relaxed p < 10-5 threshold. 
  



 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

SUPPLEMENTARY TABLES 
  



 
 

Cell Type Scenario 
CIBERSORT 
Mode Correlation 

CD4+ T cells Tissue Relative 0.8031571 
CD4+ T cells Tissue Absolute 0.8986278 
CD4+ T cells Immune Cell Relative 0.8460768 
CD4+ T cells Immune Cell Absolute 0.8106775 
CD8+ T cells Tissue Relative 0.6470465 
CD8+ T cells Tissue Absolute 0.7115709 
CD8+ T cells Immune Cell Relative 0.848441 
CD8+ T cells Immune Cell Absolute 0.8001204 

 
 
Supplementary Table 1: Correlation of estimated scores (from CIBERSORT) versus 
true quantity of cell type. True quantity of cell type measured as % of whole sample 
(absolute infiltration) and % of immune content (relative proportionality). 
  



 
Cell Type Scenario xCell mode Correlation 

CD4+ T cells Tissue Tissue-by-tissue 0.9583721 

CD4+ T cells Immune Cell Tissue-by-tissue 0.6517696 

CD8+ T cells Tissue Tissue-by-tissue 0.9037872 

CD8+ T cells Immune Cell Tissue-by-tissue 0.449362 

CD4+ T cells Tissue Simultaneous 0.9214696 

CD4+ T cells Immune Cell Simultaneous 0.6087092 

CD8+ T cells Tissue Simultaneous 0.8419683 

CD8+ T cells Immune Cell Simultaneous 0.4063541 

CD4+ T cells* Immune Cell* Tissue-by-tissue* 0.7313011* 

CD8+ T cells* Immune Cell* Tissue-by-tissue* 0.5955122* 

 
 
Supplementary Table 2: Correlation of xCell scores with true amounts, as tested on 
the simulated synthetic mixes in the “tissue” scenario. xCell mode “Tissue-by-tissue” 
describes estimation on each tissue separately, while mode “Simultaneous” describes 
estimation on the full gene expression matrix (including different tissues at once). 
Default scores are not normalized (do not sum to 1). Last 2 rows (denoted by asterisk) 
represent performance of xCell in the “immune cell” scenario when the xCell scores 
were normalized. 
  



Cell type 
phenotypes xCell phenotypes used CIBERSORT phenotypes used 

CD8+ T cells "CD8+ naive T-cells", "CD8+ T-
cells”, “CD8+ Tcm”, “CD8+ Tem” “T cells CD8” 

CD4+ naïve 
T cells "CD4+ naive T-cells” “T cells CD4 naïve” 

CD4+ 
memory T 

cells 

“CD4+ Tcm”, “CD4+ Tem”, 
“CD4+ memory T-cells” 

“T cells CD4 memory activated”, 
“T cells CD4 memory resting” 

Helper T 
cells  “Th1 cells”, “Th2 cells” “T cells follicular helper” 

Regulatory T 
cells “Tregs” “T cells regulatory (Tregs)” 

Gamma delta 
T cells “Tgd cells” “T cells gamma delta” 

B cells 

"B-cells", "Class-switched 
memory B-cells", "Memory B-
cells", "naive B-cells", "pro B-

cells", "Plasma cells" 

“B cells naive”, “B cells memory”, 
“Plasma cells” 

NK cells “NK cells” “NK cells activated”, “NK cells 
resting” 

Neutrophils “Neutrophils” “Neutrophils” 

Macrophages “Macrophages”, “Macrophages 
M1”, “Macrophages M2” 

“Macrophages M0”, 
“Macrophages M1”, 
“Macrophages M2” 

Dendritic 
cells “aDC”, “cDC”, “DC”, “iDC”, “pDC” “Dendritic cells resting”, 

“Dendritic cells activated” 

Mast cells “Mast cells” “Mast cells resting”, “Mast cells 
activated” 

Monocytes “Monocytes” “Monocytes” 
Eosinophils “Eosinophils” “Eosinophils” 

 
Supplementary Table 3: Merging of reference cell types to create the specific immune 
cell type phenotype scores used in the research study.  



Cell type 
phenotypes xCell phenotypes used CIBERSORT phenotypes used 

Lymphocytes 

"CD4+ memory T-cells", "CD4+ 
naive T-cells", "CD4+ T-cells", 

"CD4+ Tcm", "CD4+ Tem", 
"CD8+ naive T-cells", "CD8+ T-

cells", "CD8+ Tcm", "CD8+ 
Tem", "NKT", "Tgd cells", "Th1 
cells", "Th2cells", "Tregs", “NK 

cells”, "B-cells", "Class-switched 
memory B-cells", "Memory B-
cells", "naive B-cells", "pro B-

cells", "Plasma cells" 

"B cells naive", "B cells 
memory", "Plasma cells", "T 

cells CD8", "T cells CD4 naive", 
"T cells CD4 memory resting", 

"T cells CD4 memory activated", 
"T cells follicular helper", "T cells 

regulatory (Tregs)", "T cells 
gamma delta", "NK cells 

resting", "NK cells activated" 

Myeloid cells 

“Macrophages”, “Macrophages 
M1”, “Macrophages M2”, “aDC”, 
“cDC”, “DC”, “iDC”, “pDC”, “Mast 

cells”, “Monocytes”, 
“Eosinophils”, “Basophils”, 

“Neutrophils” 

“Neutrophils”, “Macrophages 
M0”, “Macrophages M1”, 

“Macrophages M2”, “Dendritic 
cells resting”, “Dendritic cells 

activated”, “Mast cells resting”, 
“Mast cells activated”, 

“Monocytes”, “Eosinophils” 
 
 
Supplementary Table 4: Merging of reference cell types to create the broader immune 
cell type phenotype scores used in the research study. 
 
  



 
 
 
Tissue 1 Tissue 2 Cell P-value 
Artery - Aorta Lung Mast cells 5.00E-06 
Esophagus - 
Gastroesophageal 
Junction Esophagus - Muscularis Mast cells 1.08E-07 
Esophagus - Mucosa Esophagus - Muscularis Mast cells 2.08E-05 
Adipose - Visceral 
(Omentum) Colon - Sigmoid Monocytes 5.83E-08 
Lung Whole Blood Lymphocytes 2.63E-09 
Adipose - Visceral 
(Omentum) Nerve - Tibial CD8 T cells 1.93E-05 
Adipose - Visceral 
(Omentum) Whole Blood CD8 T cells 1.09E-09 
Lung Whole Blood CD8 T cells 1.11E-17 
Thyroid Whole Blood CD8 T cells 1.04E-06 

 

Supplementary Table 5: Significant results from assessing the sharing of “hot” patterns 
between two tissues. Clusters are based on the top two quintiles (40%) approach, and 
P-values are based on Fisher’s exact P-values.  

  



Gene IDs 
ENSG00000173295 
ENSG00000272733 
ENSG00000189269 
ENSG00000129055 
ENSG00000182923 
ENSG00000240053 
ENSG00000143156 

 
 
Supplementary Table 6: Target ieGenes of ieQTLs (p < 10-5) in multiple infiltration 
phenotypes. 

  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SUPPLEMENTARY NOTES 
 
  



Supplementary Note 1: Theoretical comparison of relative versus absolute scores 
 
We motivate incorporating relative and absolute outputs from CIBERSORT into 
analyses by describing how both focus on capturing separate aspects of cellular 
heterogeneity.  
 
Let x be the true % of the sample that is immune cell type x.  
Let y be the true % of the sample that is immune cell type y.  
Let z be the total % of the sample represented by immune infiltration, x + y. 
 
Let there be three different samples with infiltration: (x1,y1), (x2,y2), (x3,y3) = (10,0), 
(10,10), (20,0). Therefore, (z1, z2, z3) = (10, 20, 20).  
 
Let 𝜅 be the relative percentage (%) of cell type x to the infiltration profile. This can be 
described generally by the following expectation: 
 
(Eq. 1) 

𝐸[𝜅] = 𝑥/𝑧 
 
CIBERSORT-Relative measures the relative % of a cell type to the other cell types in its 
reference (e.g. LM22). For example, CIBERSORT-Relative would directly estimate 𝜅 for 
immune cell type x. Using Equation 1, (𝐸[𝜅)], 𝐸[𝜅+], 𝐸[𝜅,]) = (1, 0.5, 1). CIBERSORT-
Absolute scales this relative score to reflect the amount of overall infiltration. Let 𝜋 
represent this scaling factor. For the purpose of this example, we allow: 
 
(Eq. 2) 

𝐸[𝜋] = 𝑧/min	(𝑧), 𝑧+, 𝑧,) 
 
such that (𝜋), 𝜋+, 𝜋,) = (1, 2, 2). Let g be the CIBERSORT-Absolute score, which should 
follow the below expectation: 
 
(Eq. 3) 

𝐸[𝛾] = 𝐸[𝜋]𝐸[𝜅] 
 
Using Equation 3, we can calculate: 
 

𝐸[𝛾)] = 𝐸[𝜋)]𝐸[𝜅)] = (1)(1) = 1 
𝐸[𝛾+] = ⋯ = (2)(0.5) = 1 
𝐸[𝛾,] = ⋯ = (2)(1) = 2 

 
Now, 𝐸[𝛾)] = 	𝐸[𝛾+] < 	𝐸[𝛾,] while 𝐸[𝜅+] < 	𝐸[𝜅)] = 	𝐸[𝜅,]. Therefore, absolute and 
relative scores are quantifying different measures of the immune infiltration: relative 
proportions (%) of immune cells versus absolute counts of immune cells. 
 



Furthermore, CIBERSORT-Relative calculates a better measure of the relative 
composition when 𝜋) = 𝜋+ = 	𝜋,. This is achieved by not including the scaling factor 𝜋: 
 
(Eq. 4) 

𝑉𝑎𝑟[𝛾] = 𝑉𝑎𝑟[𝜋𝜅] > 𝑉𝑎𝑟[𝜅] 
 
Constant 𝜋 reduces the variance of the output, since 𝜋 typically has non-zero variance 
between samples. 
 
 
Supplementary Note 2: Analyzing the utilization of multiple deconvolution 
methods in simulations 

In the main text, we describe how xCell and CIBERSRT calculate scores that 
correlate with the true amounts and correlate with each other, but do not perfectly 
correlate with each other. In Supplementary Figure 1, we show how even in simulated 
synthetic mixes where the true amounts are known to be equal, the immune cell 
estimates can differ. For example, in this particular scenario, CIBERSORT-Absolute 
correctly detects that CD4+ T cell content is equal between the two simulated samples. 
In contrast, xCell produces an estimate for Sample 2 that is roughly 60% of Sample 1. 
Therefore, the overall correlation results in our simulations have shown that these 
methods describe alternative yet reasonably accurate perspectives of immune cells in 
the test sample; but, there are clear cases where there exist differences. These 
differences can lead to effect size heterogeneity, where an effect may be better 
detected in one deconvolution method compared to another, such as xCell versus 
CIBERSORT (due to biases from different algorithms or reference matrices) or Relative 
versus Absolute (does the genetic effect alter the composition of immune cells in the 
sample or does the genetic effect alter the total amount of a particular immune cell in 
the sample?). To identify associations, we hypothesized that it makes sense to utilize 
this statistical heterogeneity within analyses by leveraging shared signals across 
deconvolutions rather than ignoring it by choosing a single deconvolution method. 

To test this hypothesis using our previously simulated N=80 synthetic samples, 
we consider a SNP analysis. We simulated a SNP genotype with MAF = 0.4 in N=80 
individuals, coded as 0, 1, or 2 from a binomial distribution. In the causal scenario, we 
let the SNP randomly explain 0 – 8% variance in each of the three deconvolution 
phenotypes (CIBERSORT-Abs, CIBERSORT-Rel, and xCell) by (1) randomly selecting 
three values from a uniform distribution between 0 and 0.08 to allow effect size 
heterogeneity across the deconvolution outputs, and (2) rescaling the genotypic 
(binomial) and environmental (original deconvolution score) components. In the non-
causal scenario, the SNP contributes 0% variance to each of the deconvolution 
phenotypes (thus, phenotypes used are the original deconvolution scores). We then 
tested the association between the SNP and phenotype for each deconvolution method 
using a linear model, merged these P-values using the combined Empirical Brown’s 
method, and rejected the null hypothesis of no association when P < 0.05. We repeated 
this 10,000 times in the causal scenario and 10,000 times in the non-causal scenario. 



We found that the power in the causal scenarios was 0.5164 using the Empirical 
Brown’s method, but 0.4585, 0.4664, and 0.4662 in the xCell, CIBERSORT-Rel, and 
CIBERSORT-Abs separate analyses. Furthermore, we found that the false positive rate 
increase in the non-causal scenario was negligible: 0.0555 using the Empirical Brown’s 
method, and 0.0517, 0.0509, and 0.0500 in the xCell, CIBERSORT-Rel, and 
CIBERSORT-Abs separate analyses. Finally, our analyses found zero non-causal SNPs 
with P < 5 x 10-8, but 5 of 10,000 using the EBM P-values, compared to 3, 1, and 2 in 
the separate analyses from xCell, CIBERSORT-Rel, and CIBERSORT-Abs. Therefore, 
the combined approach using Empirical Brown’s method revealed superior power while 
maintaining low false positive rates as compared to the separate analyses. 
 

Supplementary Note 3: Influence of random genes on deconvolution estimates as 
a control 

When performing CIBERSORT deconvolution, we relied on an author-provided 
reference matrix (LM22). This matrix consists of specific sets of signature genes that 
differentiate the immune cell types. As a result, we could not swap the signature genes 
with non-signature genes within the CIBERSORT LM22 reference profile to test the 
influence of signature genes on deconvolution. 

Instead, we shuffled the genes within the GTEx gene expression profiles. For 
each signature gene (in the reference profile), we matched to another gene (via pan-
tissue GTEx median gene expression values). We then replaced the gene expression 
values of the signature gene within the GTEx samples with the matched gene’s 
expression values. We then performed deconvolution using the original CIBERSORT 
reference profile (LM22). 

Overall, the “shuffled” deconvolutions results had low variability and poor 
detection of immune cell types. CIBERSORT computes a P-value which tests the null 
hypothesis that no cell types from the reference profile (22 different immune cell types) 
are in the sample. In the actual (original) GTEx expression profiles, 2866 of 11141 
samples had CIBERSORT P-values < 0.05. In contrast, only 4 of the 11141 shuffled 
GTEx expression profiles had CIBERSORT P-values < 0.05. This first observation 
describes how CIBERSORT did not identify conclusive immune cell concentrations in 
nearly all shuffled GTEx expression profiles, in stark contrast to the original GTEx data. 
Second, heatmaps of median CIBERSORT-Absolute scores across tissues (similar to 
Figure 2a) in shuffled GTEx expression profiles show low variability and low values 
across tissue types (Supplementary Figure 2). (The high amounts of some cell types in 
GTEx testis tissue can be explained by vastly different expression of some genes in 
GTEx testis tissue compared to other tissues, which might now be used as the 
“signature genes” for deconvolution.) Lastly, none of the inferred immune cell types will 
pass our infiltration phenotype filtering procedure described in the procedure. Therefore, 
the shuffled GTEx profiles result in 0 infiltration phenotypes. These observations 
suggest that the actual gene expression profiles result in infiltration results that are 
distinct from the shuffled expression profiles, and thus the shuffled expression profiles 
should be discarded from further analysis. 
 



 
Supplementary Note 4: Deconvoluting GTEx expression profile and comparing 
methods 

We first analyzed the reliability of cell type estimation between methods and 
noted that mean cell scores for immune cell types of interest demonstrated marked 
heterogeneity between deconvolution methods. For example, relative scores could be 
very similar but the absolute scores very different due to a higher amount of total 
infiltration (Supplementary Figure 3a). Individuals GTEX-14LLW and GTEX-17F96 had 
high proportions of neutrophil content in lung tissue according to CIBERSORT-Relative. 
However, a ~50% larger scaling factor for GTEX-17F96 resulted in different 
CIBERSORT-Absolute scores. xCell had even larger differences between the two 
individuals, with over twice as high estimated neutrophil content in GTEX-17F96. 
Similarly, xCell and CIBERSORT may also compute contrasting results for a single 
sample (Supplementary Figure 3b). But despite these case differences, we found that 
clustering of tissues by median scores were relatively consistent across each 
deconvolution method (Figure 2a, Supplementary Figure 4). In our hierarchical 
clustering across the three cell type scoring methods, many brain tissues cluster 
together, as well as the tissue pairings of sun exposed and unexposed skin tissue and 
the tissue pairings of coronary and aorta arteries. For many other tissues, the nearest-
neighbor pairing was not exact across the 3 deconvolution methods but demonstrated 
concordance through consistent clustering along the same branches, such as vagina 
and uterus tissues from the female urogenital tract or the heart tissues. In contrast, 
there were several tissues without consistent pairings in nearest-neighbor or overall 
branch, such as lung and liver, which reflect differences between the cell type 
estimation methods. We noticed different clustering among sigmoid and transverse 
colon tissue. Transverse colon had a much greater immune presence compared to 
sigmoid colon samples (scaling factor from CIBERSORT - Absolute: 1.96 in transverse, 
1.08 in sigmoid colon samples), with greater detection of CD8+ T cell content (and 
insignificant correlation of CD8+ T cells between sigmoid and transverse tissue samples 
from the same individual).  

Furthermore, we examined the conservation of relationships between 
deconvoluted immune cell abundances across methods. First, we calculated pairwise 
correlation between all 189 infiltration phenotypes (see Methods) and found that 
pairwise correlations were well-correlated with pairwise correlations from another 
deconvolution method (Supplementary Figure 5). This suggests that observed 
relationships between tissue immune content abundances are generally consistent 
regardless of deconvolution method choice. Additionally, infiltration driven by the 
absolute amount of immune content is better captured in absolute outputs, as seen by 
more positive correlations across infiltration phenotypes in absolute scores compared to 
relative scores (Supplementary Figure 5). The mean value of pairwise correlation 
coefficients is r = 0.0026 for CIBERSORT-Relative scores, compared to r = 0.064 and r 
= 0.044 for CIBERSORT-Absolute scores and xCell scores. From our comparative 
analysis of deconvolution methods in GTEx, we were encouraged to try and use all 
three methods given the differences but general similarities.  



 
 
Supplementary Note 5: Analysis of inter-tissue differences across GTEx tissues 

We observed the highest neutrophil scores in whole blood, spleen, and lung 
tissues across each deconvolution method (Supplementary Figure 8). While neutrophils 
dominate whole blood content, and therefore are expected in high frequencies within 
spleen tissue, neutrophils are frequently observed in lung tissue inflammation1. We also 
find the small intestine samples from the terminal ileum to have high CD8+ T cell 
content (Supplementary Figure 6), which makes sense given the tissue’s key role in 
digestion and encountering foreign microorganisms and possible infection. This also 
matches a gradient of increasing CD8+ T cell content from the rectum to further down 
the gastrointestinal tract (transverse and sigmoid colon), which corroborates previous 
clinical observations2 and our own findings (Supplementary Figure 6).  
 
 
Supplementary Note 6: Differential expression between inflamed and non-
inflamed 

Overall, we identified DEGs passing our statistical thresholds for 123 of the 130 
tested infiltration phenotypes (log FC >= 2.0, FDR < 0.01) (see Methods and Figure 
3b). Across phenotypes, we expected and found that the most common DEGs 
consisted of well-known markers of the corresponding immune cell types 
(Supplementary Data 5). For example, the most consistent DEGs across macrophage-
hot clusters are macrophage markers utilized by the xCell and CIBERSORT algorithms 
for estimating macrophage content: C1QB (18/21 tissues), VSIG4 (17/21), MARCO 
(17/21), and CD163 (16/21). Interestingly, the most common DEGs not present in the 
deconvolution reference gene sets includes C1QC (16/21) and FCGR3A (16/21), which 
correspond to complement component and immunoglobulin Fc receptor, and have well-
characterized roles in opsonization22,23. We then used the DEGs and Ingenuity Pathway 
Analysis (IPA) to identify dysregulated pathways, discover key upstream regulators, and 
find central disease and function ontologies (Supplementary Data 6-8). In our 
macrophage phenotypes, the most commonly dysregulated pathways were TREM1 
signaling, which is an amplifier of macrophages inflammation24, cAMP-mediated 
signaling, and neuroinflammation and cardiac hypertrophy signaling (Supplementary 
Data 6). The most frequent upstream regulator predicted to be activated by IPA in the 
macrophage-hot clusters was TGM2, while TFRC (transferrin receptor) was the most 
commonly inhibited as predicted by IPA (Supplementary Data 7). The latter finding may 
be linked to the role of macrophages in sequestering iron during inflammatory states25. 
Disease and function ontologies indicated that the most commonly activated pathways 
in macrophage-hot samples were associated with leukocyte and lymphocyte migration 
(Supplementary Data 8). IPA on filtered gene sets implicated dysregulation of the 
LXR/RXR metabolic pathway in hot samples, with IL1 and IL6 as predicted activated 
upstream regulators, and ontologies related to cellular movement and phagocytosis. 

Of the 10 CD8+ T-cell infiltration phenotypes, the most common DEGs in hot 
clusters are the CD8 lymphocyte marker genes CD8A, CD8B, and CD3D, the 



chemokine CCL5, immune receptor KLRK1, cytolytic marker GZMK, and 
immunomodulatory cell surface marker SLAMF7 (all 10/10). With the exception of 
SLAMF7, each of these genes is used in the deconvolution algorithms’ reference gene 
sets. The other most common DEGs not present in the reference sets include THEMIS, 
TIGIT, and TRBC2 (all 9/10, Supplementary Data 5), which are T cell-specific proteins. 
THEMIS is known to play a critical role in CD4+ CD8+ thymocyte development, TIGIT is 
a T-cell specific co-inhibitory molecule, and the latter consists of the constant region of 
the T cell receptor beta chain [24]. IPA further corroborated differential lymphocyte 
infiltration and activity, with the most frequent dysregulated pathways in hot clusters 
pertaining to leukocyte extravasation signaling and phospholipase-related signaling 
(Supplementary Data 6), with the most commonly activated upstream regulators as IFN-
alpha, NF-kB, CD3, and TNF (Supplementary Data 7). The gene ontology of most 
commonly activated pathways again pertained to leukocyte and lymphocyte chemotaxis 
(Supplementary Data 8). Dysregulated pathways, activated upstream regulators, and 
gene ontology predicted by IPA on the filtered gene sets were unchanged from the 
unfiltered set. 

For the 9 CD4+ memory T-cell infiltration phenotypes, the DEGs most commonly 
expressed were the T-cell receptor-CD3 complex transcript UBASH3A, cell adhesion 
and co-stimulatory CD2, and immunoglobulin gene IGLV2-8 (all 8/9). With the exception 
of IGLV2-8, the genes are defined in the deconvolution algorithm reference sets for 
immune content estimation. The most frequently dysregulated pathways for CD4+ 
memory T cell was Th2 signaling (Supplementary Data 6), with TNF as the most 
commonly predicted activated upstream regulator (Supplementary Data 7). For CD4+ 
memory T cells, the diseases and functions ontology of activated pathways was 
associated with chemotaxis, cell migration, and cell homing (Supplementary Data 8). 
IPA on filtered gene sets implicated dysregulation of the phospholipase C signaling, 
integrin signaling, and several immune signaling pathways in hot samples, with TNF 
again predicted as the activated upstream regulator, and ontologies related to cellular 
movement and epithelial cell differentiation.   

For the 7 B-cell infiltration phenotypes, the most commonly expressed DEGs 
were B-cell receptor complex protein CD79A, IgG-receptor FCRL5, and IG heavy chain 
genes IGHD, IGHM, IGHG1, IGHG2, IGHG3, IGHG4, and IGHGP (all 7/7). The IGHD, 
IGHM, and CD79A transcripts are present in the reference gene sets. The most 
frequently dysregulated pathways for B-cell infiltration entailed opioid signaling, B cell 
receptor signaling, Th17 pathway activation, and NFAT in immune response regulation 
(Supplementary Data 6). The most common upstream regulator predicted to be 
activated was IL1B (Supplementary Data 7). For B cells, the diseases and functions 
ontology of activated pathways was associated with antigen presenting cell migration, 
and cell homing and movement (Supplementary Data 8). IPA on filtered gene sets 
implicated dysregulation of the phospholipase C signaling and dendritic cell maturation 
pathways in hot samples, with RELA predicted as the activated upstream regulator, and 
ontologies related to cellular movement. 

Of the 3 composite Helper T-cell phenotypes analyzed, 60 transcripts were 
identified as the most commonly differentially expressed, with 36 in the reference sets. 



Of the remaining 24 transcripts, 6 have identified immunomodulatory activity (TIGIT, 
TLR10, MIR146A, IL4I1, TIFAB, KLHDC7B), 6 encode immunglobulin proteins (IGLC7, 
IGHA1, IGHGP, IGLV3-9, IGLV3-21, IGLV9-49), and 3 encode immunoglobulin 
receptors (FCRL3, FCRLA, FCRL1). Others include proteasome-associated UBD, 
secretory protein FDCSP, MIAT, which is a lincRNA implicated in spliceosomal 
regulation, and 6 have uncharacterized function in the immune system (TBC1D27, 
RP11-861A13.4, RP11-693J15.5, GALNT15, OR2IP, ALPK2). The most frequently 
dysregulated pathway was Th2 signaling (Supplementary Data 6), with TNF, IL1B, 
IRF4, and CD28 as the most commonly predicted activated upstream regulators 
(Supplementary Data 7). For Helper T-cells, the diseases and functions ontology of 
activated pathways was associated with cell migration, movement, and homing 
(Supplementary Data 8). IPA on filtered gene sets implicated dysregulation of the 
neuroinflammation signaling pathway and B cell signaling pathway in lupus in hot 
samples, with IL1B, TNF, NF-kappaB, and IFN-gamma predicted as the activated 
upstream regulators, and ontologies related to cellular movement and inflammatory 
response. 

Of the 2 NK cell phenotypes analyzed, 58 DEGs were identified as the most 
commonly differentially expressed, with 28 in the reference sets. Of the other 30 
transcripts, 2 were NK cell specific (KLRC2, FGFBP2), 10 involved in immune signaling 
(IL8, CCL3, CCL4L2, XCL2, DGKK, SH2D1B, FCRL6, TRGV9, TRGV10, SERPINA3), 5 
with immunomodulatory activity (LGALS9B, EOMES, GPR174, GPR114, MYOM2), 3 
transcriptional regulators (MYBL1, ZNF683, ZNF80), 1 inhibitor of enzymatic 
degradation (TIMP4), and 9 with uncharacterized function in the immune system 
(LINC00299, RP11-1094M14.4, AC069363.1, RP11-1094M14.5, SOD1P3, SAMD3, 
UTS2, DRAXIN, AP3B2). The most commonly dysregulated pathways were those 
corresponding to acute phase response signaling and apoptosis signaling 
(Supplementary Data 6), with STAT1, TLR9, CD28, and IL18 as the most commonly 
predicted activated upstream regulators (Supplementary Data 7). The diseases and 
functions ontology of activated pathways was again associated with cell migration, 
movement, and homing (Supplementary Data 8). IPA on filtered gene sets implicated 
dysregulation of the neuroinflammation signaling and LXR/RXR metabolic pathways in 
hot samples, with CSF3 predicted as the activated upstream regulator, and ontologies 
related to cellular movement and activation of various immune cell types. 

In the 15 mast cell tissue-cell pairs, the most common DEGs in hot clusters were 
mast cell chymase CMA1 (15/15), and IgE-receptor MS4A2, mast cell secretory 
enzymes CTSG and CPA3, and HDC, which is necessary for histamine synthesis (all 
14/15). All of which are transcripts used in the deconvolution algorithms to estimate 
mast cell content. The most frequently dysregulated pathways for mast cells 
corresponded to THOP1 signaling pathway (Supplementary Data 6), with the most 
common upstream regulators IL1B and TNF (Supplementary Data 7). The gene 
ontology of most commonly activated pathways corresponded to chemotaxis and cell 
migration (Supplementary Data 8). IPA on filtered gene sets implicated dysregulation of 
the phospholipase C signaling, dendritic cell maturation, THOP1 in Alzheimer’s, and 
Wnt/Beta-catenin pathways in hot samples, with lipopolysaccharide predicted as the 



activated upstream regulator, and ontologies related to cellular movement and myeloid 
cell response. 

For the 10 monocyte phenotypes, S100A12 and S100A8 were consistently 
identified as upregulated (both 10/10), with the former present in the gene reference set. 
Both transcripts encode molecules known to induce monocyte activation and cytokine 
production. The most frequently dysregulated pathway for monocytes was TREM1 
signaling (Supplementary Data 6), with TNF, IL1A, and TGM2 as the most commonly 
predicted activated upstream regulators (Supplementary Data 7). Disease and function 
ontologies indicated that the most commonly activated pathways in monocyte-hot 
samples were associated with chemotaxis, transmigration, and leukocyte and 
lymphocyte migration (Supplementary Data 8). IPA on filtered gene sets implicated 
dysregulation of the LXR/RXR metabolic pathway in hot samples, with IL1A, IL1B, IL6, 
TNF, and OSM predicted as the activated upstream regulators, and ontologies related 
to cellular movement, inflammatory response, and angiogenesis. 

Of the 27 most common DEGs across the 3 neutrophil-tissue pairs, 13 were 
present in the reference gene sets. The remaining 14 transcripts, 3 have been identified 
with myeloid cell transmembrane receptors (IL1R2, CLEC4D, CACNA1E), 2 
transcriptional regulators (ZDHHC1, NFE4), 2 with documented but unclear function in 
innate immunity (GLT1D1, KRT23), 1 immunomodulatory molecule (NLRP12), and 6 
non-coding RNAs without characterized function in immunity (RP11-44F14.1, RP11-
76E17.4, RP11-1220K2.2, RP11-76E17.3, LINC00211, LINC00694). The most 
commonly dysregulated pathway was Th2 pathway (Supplementary Data 6), with 
activated upstream regulator being CSF2 (Supplementary Data 7), and gene ontology 
associated with chemotaxis and cell movement of granulocytes and neutrophils 
(Supplementary Data 8). IPA on filtered gene sets implicated dysregulation of the nitric 
oxide production, hepatic fibrosis signaling, and LXR/RXR metabolic pathways in hot 
samples, with OSM predicted as the activated upstream regulator, and ontologies 
related to cellular movement. 

Of the 2 dendritic cell phenotypes, 25 DEGs were found to be commonly 
expressed between hot and cold clusters, of which 8 transcripts were not in signature 
gene sets. One transcript (CLEC4G) corresponded to gene product participates in 
antigen uptake and internalization, 3 transcripts with immunomodulatory function 
(S100A7A, IL4I1, CRB2), 3 immunoglobulin genes (IGHA2, IGLV1-40, IGLV3-1), and 1 
secretory protein (COL6A5). The most frequently dysregulated pathway corresponded 
to dendritic cell maturation (Supplementary Data 6), with the most common upstream 
regulators identified as CSF2 and IL13 (Supplementary Data 7). The gene ontology of 
most commonly activated pathways again pertained to chemotaxis and cell migration 
(Supplementary Data 8). IPA on filtered gene sets implicated dysregulation of the GP6 
signaling and dendritic cell maturation pathways in hot samples, with IL1A, IL1B, 
IL17C/R, IL22, OSM, TNF, and IFN-gamma predicted as the activated upstream 
regulators, and ontologies related to cellular chemotaxis and immune response. 

The most commonly expressed DEGs among the 23 aggregate myeloid 
infiltration phenotypes were MARCO (20/23) and CD209 (19/23), which is a cell-surface 
protein on both macrophage and dendritic cells. Both are transcripts in the reference 



gene sets used to define content of macrophage subtypes and dendritic cell subtypes. 
The most frequently dysregulated pathway for myeloid infiltration was the dendritic cell 
maturation pathway (Supplementary Data 6), with TGM2 as the most commonly 
predicted activated upstream regulator (Supplementary Data 7). Disease and function 
ontologies again indicated that the most commonly activated pathways in myeloid-hot 
samples were associated with chemotaxis, transmigration, and leukocyte and 
lymphocyte migration (Supplementary Data 8). IPA on filtered gene sets implicated 
dysregulation of the dendritic cell maturation pathway in hot samples, with IL6 and TNF 
predicted as the activated upstream regulators, and ontologies related to cellular 
migration. 

Of the 18 aggregate lymphoid infiltration phenotypes, the most common DEG in 
hot clusters were immunoglobulin proteins IGLV2-14 (16/18), and IGHG3, IGHM, and 
IGKV3-11 (all 15/18). Of these, only IGHM is a marker gene in the reference sets. The 
most frequently dysregulated pathway for lymphoid infiltration was Phospholipase C 
signaling (Supplementary Data 6), with TNF as the most commonly predicted activated 
upstream regulator (Supplementary Data 7). The gene ontology of most commonly 
activated pathways again pertained to leukocyte and lymphocyte chemotaxis 
(Supplementary Data 8). IPA on filtered gene sets implicated dysregulation of the 
dendritic cell maturation pathway in hot samples, with IL4 predicted as the activated 
upstream regulator, and ontologies related to cellular migration and chemotaxis. 
 
 
Supplementary Note 7: Phenotype dropout during differential expression analysis  

We observed that drop out is largely driven by our stringent requirement that an 
infiltration phenotype have at least 6 samples assigned to hot/cold clusters across the 3 
deconvolution algorithms. Our consensus hot/cold assignment algorithm yielded 
130/189 phenotypes with enough samples to proceed with DEG. Of these 130 that 
underwent different, 123 pass all cutoffs (at least 5 transcripts with log-fold change 
(logFC) >= 2 and false discovery rate significance values (FDR) < 0.01). The majority of 
drop outs occur during the consensus hot/cold assignment procedure. We speculate 
that using a larger data set would result in a much smaller fraction of phenotypes that 
are excluded from downstream analysis due to our sample number requirements. (Of 
note, 21 infiltration phenotypes featured 4 or 5 consensus hot samples and were 
therefore excluded from DEG). Furthermore, 7/130 phenotypes that drop out due to 
inability to reach DEG cutoffs have an average of 17 signature genes (reference genes 
in xCell and CIBERSORT) at 1.0 <= logFC <= 2.0 and FDR < 0.01. We also note that 
3/7 of these infiltration phenotypes feature the lowest variance in xCell/CIBERSORT 
Absolute scores (bottom 5 of 189) and thus their drop out due to lacking transcripts with 
logFC >=2 is not unexpected. Overall, this implies that our dropout during DEG is not 
driven by noise, but instead a byproduct of applying strict significance thresholds. 

 
Supplementary Note 8: Differential expression using quintiles. 

We show that similar results can also be derived by using alternative approaches 
for assigning samples to “immune-rich” and “immune-depleted” clusters. For each 



phenotype, we computed quintiles in each deconvolution output, and compared 
“consensus” top and bottom quintiles (sample consistently in top or bottom quintile 
across 3 deconvolutions for a given phenotype). The results of this differential 
expression analysis do not meaningfully change compared to the clustering approach. 
For example, in our macrophage phenotypes, the current revised analysis using 
consensus k-means clustering yields as top DEGs C1QB (18/21 tissues), VSIG4 
(17/21), MARCO (17/21), and C1QC and CD163 (16/21). The consensus quintiles 
approach yields CD163 (23/23), C1QC, C1QB, and VSIG4 (the latter 3 all 22/23). This 
effect is recapitulated in the case of our CD8 T-cell phenotype as well. Our k-means 
approach yielded as top DEGs CD8A, CD8B, and CD3D, CCL5, and KLRK1(all 10/10). 
Using the consensus quintile approach yielded CD8A, CD8B (14/15), CCL5 (13/15), 
CD3D (12/15), KLRK1 (11/15). We found similar results across the other 10 cell types, 
where the major DEGs recovered through the quintiles approach to assignment are 
largely identical to those obtained via consensus clustering.  

In this approach, 162/189 phenotypes featured at least 6 samples consistently 
identified in the top/bottom quintiles of each deconvolution. These samples were then 
considered for DEG analysis. However, only 136/162 phenotypes (84%) passed our 
DEG cutoffs. This is much lower percentage compared to our analysis using the 
consensus k-means approach, where 123/130 phenotypes (94.6%) passed our DEG 
cutoffs (dropout due to DEG failing to yield “significant outcome”). This implies that our 
k-means procedure is more capable of finding stable groupings that feature substantial 
transcriptomic differences at the outset relative to alternative methods. In so doing, the 
method also effectively filters noise for downstream analysis. For example, the choice of 
arbitrary, pre-determined cutoffs such as quintiles ignores patterns in the data 
distribution that can be observed by an automated clustering algorithm. If the 
distribution of macrophages in lung tissue were a mixture of Gaussians (with separate 
Gaussian parameter values for cold, intermediate, and hot), then a consensus 
clustering approach would discover the groupings best. 

Overall, our method was complementary and perhaps an improved approach to 
another procedure for identifying “extreme” samples. It generally recovered the same 
transcriptomic differences as a quintile-based approach, without substantial loss of 
information after clustering relative to alternative approaches. Increased sample size 
would only improve the clustering algorithm because the differential expression analysis 
would not be impacted as much by the original sample drop out. 
 
 
Supplementary Note 9: Overlap of hot clusters across clustering approaches 

Overall, there are 9 whole blood samples that are labeled “hot” in both the k-
means clustering analysis and the quintiles analysis for CD8 T cells. We show this 
graphically in Supplementary Figure 12. Supplementary Figure 12 displays a heatmap 
of “hot” cases for whole blood samples across the three approaches (k-means 
clustering, top quintile, top two quintiles), without clustering and aligned by sample 
(each column represents the same sample). All “hot” samples identified by the k-means 
approach are “hot” samples in the top quintile approach, but not vice versa.   



 
 
Supplementary Note 10: Stability of clustering algorithm to down-sampling 
We demonstrated that the hot/cold assignments are robust to subsampling by 
proceeding as follows. We randomly selected 6 infiltration phenotypes (Adrenal Gland – 
Macrophages Colon – Sigmoid – Macrophages, Colon Transverse – CD4 memory, 
Esophagus – Mucosa – Mast cells, Lung – Myeloid cells, and Small Intestine – B cells), 
and we downsampled to 50% of the total number of samples. After performing the 
consensus clustering procedure across the 3 deconvolution algorithms on each of the 
downsampled phenotypes, we found that every sample that was labeled “hot” in the 
subsampling was also labelled “hot” in the original assignments (with the full sample 
sizes). This was the same for “cold” clusters. Therefore, subsampling did not introduce 
any new samples into the “hot” or “cold” clusters in our simulations. This effectively 
demonstrates the stability of the procedure in producing consistent assignments as hot 
and cold. 
 
 
Supplementary Note 11: Sex associations with breast tissue 
Temporal dependent changes (for example, the transition from lactating states to non-
lactating states and menopause status) have been associated with an altered T cell 
response3, and T cells have been associated with lobule localization (with higher 
densities of CD8+ T cells compared to CD4+ T cells)4. Furthermore, female breast may 
harbor a higher population of antigen-presenting cells to protect against potential 
infections compared to male breasts, which are less exposed to infection (e.g. mastitis). 
To further assess the differences in the immune content of breast samples between 
males and females, we applied t-distributed stochastic neighbor embedding (t-SNE)5 to 
the 22 immune cell scores from CIBERSORT-Absolute. The two t-SNE components 
displayed visual differences in clustering between males and females (Supplementary 
Figure 16). 
 
 
Supplementary Note 12: Findings in aged blood support previous research 
Compositional differences have been previously observed in aged blood, including 
myeloid-biased differentiation6, a decline in the ratio of CD4 to CD8 T cells7, and a rise 
in NK cells8,9. While our original analysis also identified an increase in NK cells (P = 
0.028; not significant after FDR correction), we additionally calculated CD4:CD8 T cell 
and Myeloid:Lymphoid cell ratios in whole blood samples using CIBERSORT and xCell 
deconvolution estimates. We performed a rank-inverse normal transformation on these 
ratios to minimize outlier influence and analyzed these ratios using a similar regression 
model. Our model identified decreased CD4:CD8 T cell ratio and myeloid-skewing in 
aged blood (Age-CD4:CD8 T cells ratio association: Empirical Brown’s P = 0.035; Age-
Myeloid:Lymphoid cell ratio association: Empirical Brown’s P = 0.024) (Supplementary 
Figure 17). 
 



Supplementary Note 13: EBM P-values when including relative and absolute 
measures 
The combined Empirical Brown’s method P-values leverage signals in the compositional 
“immune cell” space and absolute “tissue” space for improved power. For example, in 
the genetic analysis, performing Empirical Brown’s method on just the absolute results 
(not including the CIBERSORT-relative analysis) returns 21 significant phenotypes. This 
is less significant findings than additionally including the CIBERSORT-Relative analysis 
(31). Yet, we note that this is still more than each of the separate analyses (15, 16, 16). 
 
 
Supplementary Note 14: Evaluating potential EBM P-value inflation 

To test whether Empirical Brown’s method (EBM) could inflate P-values in our 
study, we performed shuffled data experiments using our original finding of rs648299 
and its association with the helper T cell phenotype in thyroid tissue. In the original 
study using real data, this SNP has an EBM P-value = 7.5 x 10-10, derived from P-
values = 5.7 x 10-7, 3.3 x 10-9, and 9.8 x 10-4 in CIBERSORT-Rel, CIBERSORT-Abs, 
and xCell separate analyses. 

In our experiment, we used the covariate-adjusted phenotype values. Each 
individual’s phenotype values are assigned to a new individual, such that individual i 
who is assigned the CIBERSORT-Rel value from individual j will also be assigned the 
CIBERSORT-Abs and xCell values from individual j. Sampling was performed without 
replacement. In this way, the covariance matrix between CIBERSORT-Rel, 
CIBERSORT-Abs, and xCell scores is preserved and identical to the original data 
(which is used in the Empirical Brown’s method). We next analyzed the association 
between the original rs648299 and the new, shuffled phenotype for CIBERSORT-Rel, 
CIBERSORT-Abs, and xCell using a simple linear model. The P-values from the three 
linear models were combined using EBM. This process was repeated for 10,000 
simulations, and P-value inflation was assessed by analyzing false positive rate. False 
positive rate was calculated by identifying the percentage of simulations where P < 0.05. 

Our results found a false positive rate of 0.0529, 0.0504, and 0.0483 for 
CIBERSORT-Rel, CIBERSORT-Abs, and xCell separate analyses. Using the combined 
EBM framework, the false positive rate was lower, 0.0388. We also note that there was 
a single simulation where CIBERSORT-Absolute analysis returned a P-value of 1.9 x 
10-6, which is lower than a Bonferroni-corrected P-value threshold of P < 0.05/10000 = 
5.0 x 10-6. In this particular case with the strong CIBERSORT-Absolute association, 
analysis in CIBERSORT-Relative returned P = 7.3 x 10-3 and analysis in xCell returned 
P = 4.4 x 10-2. The combined EBM P-value was 3.6 x 10-5, which is greater than the P < 
5.0 x 10-6 Bonferroni cut-off. Thus, the combined P-value framework helped decrease 
the significance of this P-value such that it would not be rejected under a Bonferroni 
correction by leveraging the lower strength of association within the other deconvolution 
method analyses.  

Overall, in this shuffled data experiment, there did not appear to be P-value 
inflation.  
 



 
Supplementary Note 15: Using an aggregate expression analysis versus 
deconvolution 

It can be argued that the significant findings would be discovered with a more 
standard analysis, without the need for deconvolution. We analyzed the association 
between rs6482199 and the Helper T cell phenotype in thyroid tissue as a 
representative example (and a positive result). We extracted the signature genes for the 
helper T cells used by CIBERSORT, calculated the median expression of these genes 
in the thyroid samples, and tested for the association between rs6482199 and the 
aggregate value. Here, we found that rs6482199 was associated with the aggregated 
median expression level of the helper T cell phenotype at a less significant P-value (P = 
0.0058). We repeated this type of analysis using our second most significant 
association, rs56234965 with lymphocytes in sigmoid colon tissue. We identified all 
signature genes from all cell types in the lymphocyte phenotype, and found that the 
variant also correlated with the new aggregate phenotype, although less significantly so 
(P = 0.00059). These results suggest that greater resolution is obtained through 
deconvolution compared to a more ad hoc or simpler procedure for cell type inference, 
although similar results can be derived using either method. 

We repeated this analysis in context of the hot vs cold differential expression 
analysis. For a particular cell type category, we identified the signature genes used for 
deconvolution of that cell type. Then, for each sample, we aggregated the expression 
levels of the gene set by calculating the median value. This aggregated median 
expression level was used as a surrogate for the amount of the immune cell type in the 
sample. We next correlated each gene in the transcriptome against the aggregate 
measure. We compared the significantly correlated genes from this analysis from those 
that were discovered by performing a differential expression analysis of clustered “hot” 
and “cold” samples of the respective deconvolution scores. 

By performing this analysis for macrophages within 10 different tissues, we found 
that the majority of highly significant, highly correlated genes corresponded to DEGs 
discovered in our differentially expression analysis (genes with 0.8 < correlation < 0.95 
and 10-80 < P-values < 10-35 often corresponded to DEGs with logFC >= 2 and FDR < 
10-20). Furthermore, this approach yields our most common DEGs discussed in the 
manuscript as highly significant, highly correlated genes as well (e.g. MARCO, CD163, 
VSIG4, C1QB featured 0.6 < correlation < 0.95 in many tissues, with P-values < 10-5).  

Overall, we believe that defining simpler metrics, such as aggregate signature 
gene expression levels, is a more straightforward, alternative approach to quantifying 
immune content in bulk samples. Previous literature has used similar methods for 
estimating immune content in bulk tumor sequencing10. However, deconvolution is 
preferable to the use of gene clusters or metagenes by weighting different genes 
separately and combining them non-linearly. As such, we chose to use both 
CIBERSORT and xCell to most accurately estimate the amounts of immune cells. The 
two methods are reliant on vastly different core algorithms and references for immune 
content estimation. Therefore, each algorithm has its own implicit biases but its own 
distinct strengths. In particular, CIBERSORT performs well with respect to 



measurement error and amount of unknown sample content (which describe parts of 
the mixture, such as tumor content, not accounted for in the signature matrix)11. 
Additionally, CIBERSORT has shown accurate estimation of closely related cell types 
by accounting for multicollinearity12 and returns P-values that test whether any of the 
reference cell types were present in the input sample. On the other hand, xCell is 
particularly robust to any batch effects by using a ssGSEA framework12,13. This is 
especially important in our dataset given the multi-institutional scale of the GTEx project 
and potential risk of technical artifacts. In addition, xCell has the highest true negative 
rate relative to other algorithms in simulations12 (e.g. % of time that the deconvolution 
algorithm will create a score of 0 or a null score for a cell type not actually present in the 
sample). Therefore, leveraging both xCell and CIBERSORT was optimal to identify 
statistical signals. 

In summary, we elected to use more sophisticated methods because of their 
desirable modelling properties that have shown superior performance in previous 
studies. We show that both the deconvolution approaches and the aggregate 
expression level converge on similar results. Additionally, using deconvolution can lead 
to more accurate and more precise results, especially in conjunction with our 
requirement of agreement in the results across each method.  
 
 
Supplementary Note 16: Two-sided iQTL/eQTL enrichment test 

While a one-sided test focuses on the enrichment of iQTL/eQTL overlap, it may 
not be fair to rule out depletion of this overlap in some phenotypes. We also performed 
a two-sided test, and found that some phenotypes do have an under-representation of 
iQTL/eQTL overlap compared to random segregation. However, the eQTL-enrichment 
of results was more significant than eQTL-underrepresentation: the grouped -log10 P-
values of eQTL-enriched phenotypes versus eQTL-depleted were significantly different 
(Mann-Whitney U test, P = 2.77 x 10-9).  
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