
Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

In this manuscript, Marderstein and colleagues analyze immune composition in 53 healthy human 
tissue types (GTEx) and characterize how tissue-specific immune content varies as a function of age, 
sex, and genetic polymorphisms. To do this, the authors first establish a computational pipeline for 
deconvolving bulk tissue RNA-seq data using two commonly applied tools, CIBERSORT (relative and 
absolute modes) and xCell. They then (1) analyze global immune abundance patterns in GTEx, (2) 
identify and explore differentially expressed genes (DEGs) between tissues with inflamed and non-
inflamed transcriptional states, and (3) determine and characterize correlations between 73 immune 
infiltration phenotypes and age, sex, and quantitative trait loci (QTL). The authors uncover a number 
of novel associations between estimates of infiltrating immune cell levels in specific tissue types and 
the presence of genetic polymorphisms, including QTLs previously associated with gene expression by 
the GTEx consortium. 

As the authors emphasize, new insights into tissue-specific immune cells could advance our 
understanding of immunity in human disease, including cancer. Unfortunately, the current manuscript 
falls short of achieving this goal on several levels. For example, the authors miss an opportunity to 
link their findings to human disease - do any of the identified iQTL or ieQTL associations hold in cancer, 
auto-immune disorders, or other pathologies? Do patterns of normal tissue-specific immune content, 
including inflamed and non-inflamed dichotomies, correlate with frequencies of tumor-specific immune 
content in cancer? These questions should be addressable using existing datasets. Additionally, key 
methodological details are poorly described. Collectively, these issues significantly dampen enthusiasm 
for the current work. 

Major comments: 
1. As alluded to above, the authors motivate their study by linking it to human disease. In particular,
they emphasize the need to better delineate the biological underpinnings of hot vs. cold tumors as a
means of improving response to immunotherapy. Yet no direct evidence is provided to link the
findings in this paper to immune infiltration patterns in human tumors. The authors should attempt to
address this issue (e.g., in TCGA), as otherwise the manuscript is completely descriptive and its
potential relevance to human disease is unclear.
2. The authors explore differences between relative and absolute measures of deconvolved immune
content. While strong arguments can be made in favor of both measures, they each quantify immune
composition in fundamentally different ways (e.g., Supp. Figs 6, 7, and 9). This raises the question of
whether the authors’ decision to consider relative and absolute measures in a combined model (by
Empirical Brown’s method) is sensible and whether different conclusions might be obtained by
evaluating each measure separately.
3. Although grouping immune cell types into major lineages is understandable, the authors omit
several key tissue-associated immune cell types from their correlative analysis without explanation (B
cells, NK cells, dendritic cells, mast cells). This unexpected omission needs to be addressed as the
current work is incomplete without them.
4. Age-related changes in the immune system have been previously described, particularly in the bone
marrow and blood. For example, hematopoietic stem cells become myeloid-based with age (PMID
22123971). As a control, did the authors find evidence for myeloid-lymphoid skewing in aged blood by
their deconvolution pipeline (e.g., as seen here in Fig 2 in PMID 26808160)?
5. Given substantial differences in mammary tissue biology between males and females, the
identification of sex-specific differences in immune content in breast tissue is not surprising. A tissue
type with less obvious differences in fundamental biology would be preferred.
6. In the analysis of DEGs between “hot” and “cold” tissues, the authors identify a preponderance of
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immune-related genes, as expected. An analysis that controls for immune cell composition via a linear 
model would better capture expression differences that are not a surrogate for total immune cell 
content. 
7. The infiltration phenotypes used extensively throughout this work are very unclear and their 
derivation is poorly described. This makes it difficult to assess the analyses and conclusions that rely 
on these signatures. 
8. Similarly, the approach used to delineate inflamed and non-inflamed tissues is not clearly described 
or graphically depicted, and the panel in figure 1d is difficult to understand. How was the infiltration z-
score calculated? 
 
Minor comments: 
1. The authors conflate tissue-resident and tissue-infiltrating immune subsets. Macrophages are often 
tissue-resident as are resident memory T cells, mast cells, etc. While this is primarily a semantic issue 
in the current work, the authors should address this issue with more nuanced language. 
2. An analysis of the p-values obtained by all three deconvolution techniques would be helpful to 
understand their concordance and how the covariance structure is being exploited by Empirical 
Brown’s method to produce meta-p-values. 
 
 
 
Reviewer #2 (Remarks to the Author): 
 
In this manuscript, Marderstein and colleagues present a retrospective study of the GTEx collection, 
aiming to infer determinants (genetic or otherwise) of immune infiltration. While the gene expression 
is provided on a tissue level, the authors utilize deconvolution tools to estimate the cellular 
composition that underlies the (observed) tissue average. With these estimations in hand, the authors 
quantify the extent of immune infiltration to various tissues and then turn to explore the relation 
between these estimated phenotypes and covariates of interest, and identify for instance, a significant 
association between the strength of neutrophil abundance in the lung and genetic variant that reside 
near a key transcriptional regulator. Overall, this is an important contribution, which builds on, and to 
some extent helps realize the potential of community efforts such as GTEx. Having said that, there are 
a number of caveats in the methods and in the interpretation of the results, which we describe in 
more detail below. 
 
1. Stratification and analysis of “hot” vs. “cold” samples: 
a. The procedure for labeling samples as “hot” or “cold” is not clearly described; please revise the 
respective methods section and provide a clearer (yet short) explanation in the main text. It is my 
understanding is that for a given deconvolution algorithm the procedure labels *all* samples as either 
hot or cold. It therefore runs the risk of making arbitrary decisions when the signal is not conclusive 
either way (notably, this effect my be mitigated by the need to have consistent assignment across the 
three algorithms). How stable is this procedure? (e.g., to sub- sampling). How will it change the 
results (e.g., comment 1b below or on the lack of consistency in inflammation patterns across tissues) 
if it focuses on the “extreme phenotype” samples and excludes all others? 
 
b. It is a bit unexpected that for ~40% (30 out of 73) of the phenotypes the differential expression 
analysis does not yield significant outcome, at least out of the very same sets of genes used to stratify 
the samples. Please provide more detail for why this test (which can be thought of as a sanity check) 
fails in some cases, as it might mean that the deconvolution and the resulting stratification might be 
overwhelmed by noise. How correlated are the genes in each of those 30 phenotypes? Are these 
phenotypes discussed later on in the paper? (e.g., for association with age) and if so, would that lack 
of DE genes question their validity? 



 
c. “Therefore, we reflected that infiltration patterns are likely tissue-specific, rather than widespread. 
“ This statement may seem to be somewhat contradictory to the results in Figure 1B. Please elaborate. 
 
d. It is not clear from the outset why deconvolution is needed here. Would the DE genes and pathways 
that came up in this analysis (or other genes and pathways that make sense) be detected in a simpler 
correlation analysis? (i.e., correlate each gene in the transcriptome with the aggregate expression 
level of the genes in the same sets used for deconvolution) 
 
e. Since the mode of number of “hot” tissues per individual x cell type was one, it is concluded that 
“we reflected that infiltration patterns are likely tissue-specific, rather than widespread. ” This is quite 
a strong statement that would benefit from more context and references. 
 
f. While the mode in the latter test is at 1 there is still a non-negligible amount of cases with more 
than one hot tissue. To support the validity of the results in this part of the paper (i.e., point 1e above 
as well as the DE analysis [point 1b]) it would be helpful to repeat the deconvolutions with random 
sets of signature genes per cell type (ideally, matched by mean or median expression) and compare to 
the resulting numbers of DE genes, numbers of hot tissues per individual, and co-clustering of similar 
tissues (as in Figure 1b) . 
 
 
 
2. Association studies 
a. Can the two significant associations be discovered with a more standard analysis, without the need 
for deconvolution? (namely, associate each variant with the aggregate expression level of the genes in 
the same sets used for deconvolution). 
 
b. An intriguing question regarding CUX1 is whether its potential effect may be intrinsic to neutrophils 
or whether it relates to other cellular subsets that are in turn associated with neutrophil abundance. 
While this is difficult to answer, an additional discussion would be interesting. For instance, how is this 
gene expressed across the primary cell types in the lung? How does the chromatin look like (in terms 
of histone modifications, DNA methylation, accessibility in the respective loci) in the respective locus 
in those cells? While the ideal data needed to address this is unavailable, databases of gene 
expression and chromatin features per- cell types (such as Immgen) can be interesting to look at. This 
can further strengthen the support from refs 31 and 32. The same point holds for the second finding 
(rs116827016) 
 
c. It is not clear whether or not the reported cases of both i- and e- QTL were discovered in the same 
tissue (e.g., was the eQTL for rs11883564 computed with only sun exposed skin tissues?). If this is 
not the case, this analysis should is somewhat at odds with the observation that “infiltration patterns 
are likely tissue-specific, rather than widespread. “ 
 
d. To provide further support for the validity of these associations, it would helpful to repeat the 
analysis using random sets of signature genes per cell type, as in comment 1f above. 
 
 
 
Minor comments 
1. Glastonbury et al: this paper has been published. Please update the reference. 
2. “Therefore, these results indicate that each method provides interesting information to be exploited 
in downstream analysis.” Not clear how this conclusion is derived. 



3. The meaning of “CIBERSORT-Absolute” vs. “CIBERSORT-Relative” as described in the beginning of 
the main text is unclear and requires further reading and deciphering. Please state explicitly what 
these actually mean. 
4. Figure 3 – data is colored by whether eQTLs are over- represented (red) or under-represented (blue) 
in the iQTLs. The terminology is a bit misleading. Over/ under- represented implies that there is 
statistical significance, which means that it can be (and probably often) the case that neither holds. 



We thank the reviewers for reading our manuscript and providing their feedback. Both reviewers 
raised interesting questions and offered intriguing suggestions that we have incorporated into our 
research. In response, we have made substantial revisions to our manuscript and responded to 
each of their points. To summarize, we have expanded our analysis from 73 infiltration 
phenotypes to 189 infiltration phenotypes, which include additional immune cell types such as 
monocytes, NK cells, and B cells and broader phenotypes for lymphocytes and myeloid-based 
cells. We have revised our results sections to describe the expanded analysis that has led to new 
results. Some of the key additional findings include new significant SNP associations, linking 
these new findings to related disease phenotypes, and an enrichment of MHC activity in gene 
network analysis during a functional follow-up. We have also answered questions regarding our 
methods, which has included a modified methods section and all our source code now on 
GitHub. Please share our GitHub repository containing the source code ( 
https://github.com/drewmard/GTEx_infil ) with the reviewers. In our manuscript, red text 
indicates our changes. Below, purple text indicates our direct responses to reviewer questions. 
 
 
 
 
Reviewers' comments: 
 
Reviewer #1 (Remarks to the Author): 
 
In this manuscript, Marderstein and colleagues analyze immune composition in 53 healthy 
human tissue types (GTEx) and characterize how tissue-specific immune content varies as a 
function of age, sex, and genetic polymorphisms. To do this, the authors first establish a 
computational pipeline for deconvolving bulk tissue RNA-seq data using two commonly applied 
tools, CIBERSORT (relative and absolute modes) and xCell. They then (1) analyze global 
immune abundance patterns in GTEx, (2) identify and explore differentially expressed genes 
(DEGs) between tissues with inflamed and non-inflamed transcriptional states, and (3) determine 
and characterize correlations between 73 immune infiltration phenotypes and age, sex, and 
quantitative trait loci (QTL). The authors uncover a number of novel associations between 
estimates of infiltrating immune cell levels in specific tissue types and the presence of genetic 
polymorphisms, including QTLs previously associated with gene expression by the 
GTEx consortium.  
 
As the authors emphasize, new insights into tissue-specific immune cells could advance our 
understanding of immunity in human disease, including cancer. Unfortunately, the current 
manuscript falls short of achieving this goal on several levels. For example, the authors miss an 
opportunity to link their findings to human disease - do any of the identified iQTL or ieQTL 
associations hold in cancer, auto-immune disorders, or other pathologies? Do patterns of normal 
tissue-specific immune content, including inflamed and non-inflamed dichotomies, correlate 
with frequencies of tumor-specific immune content in cancer? These questions should be 
addressable using existing datasets. Additionally, key methodological details are poorly 
described. Collectively, these issues significantly dampen enthusiasm for the current work.  
 
Major comments: 



1. As alluded to above, the authors motivate their study by linking it to human disease. In 
particular, they emphasize the need to better delineate the biological underpinnings of hot vs. 
cold tumors as a means of improving response to immunotherapy. Yet no direct evidence is 
provided to link the findings in this paper to immune infiltration patterns in human tumors. The 
authors should attempt to address this issue (e.g., in TCGA), as otherwise the manuscript is 
completely descriptive and its potential relevance to human disease is unclear. 
 

As Reviewer #1 mentions, our original manuscript did not link our findings in healthy tissues to 
potential disease states. Below, we describe two additional analyses we performed to address this 
issue. First, in our manuscript, we used our most significant associations between a SNP and 
infiltration phenotype (iQTLs) to identify whether there are any previous phenotype associations 
for any of the top iQTLs using separate cohorts. Second, in our reviewer response, we show a 
direct comparison of immune content between healthy GTEx tissues and TCGA cancer tissues. 

(1)  

First, we used phenoscanner to identify whether the top iQTLs from each of the 31 phenotypes 
with a genome-wide significant association (P < 5e-8) have been identified in a previous GWAS 
(P < 5e-8). Using any previous GWAS phenotype, we found that 19.4% of the top 31 iQTLs (P 
< 5e-8) have been associated with another GWAS phenotype in a separate study (P < 5e-8). We 
compared this to random SNPs in the genome, where 5.4% we found were associated with a 
GWAS phenotype. We used a one-sided binomial test with q = 0.054 to test whether the GWAS 
enrichment in the observed iQTLs were significant, resulting in a p-value = 5.6e-3. 

Next, we linked our two most significant iQTL associations to related phenotypes by analyzing 
results from already-performed genome-wide association studies in separate, larger cohorts. 
Below, we summarize our results. A full description can be found in the “Association of genetic 
variants with infiltrating immune cells” of the revised manuscript. 

First, we show that the most significant iQTL, rs6482199, which we found associated with the 
helper T cell phenotype in thyroid samples, is also associated with thyroiditis in the Michigan 
Genomics Initiative data and in the UK Biobank data.  Furthermore, this variant is associated 
with COMMD3 and DNAJC1 expression in the eQTLGen analysis and overlaps regulatory 
marks in Roadmap Epigenomics Consortium data. We go on to query six different enhancer and 
promoter regions that are predicted to be linked to both COMMD3 and DNAJC1 and discover 
another genetic variant in these regions that is significantly associated with thyroiditis in UK 
Biobank. 

We also discuss the 2nd most significant iQTL, the DRICH1/C22ORF43 intronic variant 
rs56234965, which was associated with lymphocytes in sigmoid colon samples. We describe 
how variants located within the start and end positions of DRICH1 have associated with several 
intestinal and lymphocytic cancer-related death causes in UK Biobank. 

Lastly, we discussed rs9989443 and its association with both CCDC40 expression and the mast 
cell phenotype in esophagus (muscularis) tissue. We found that variants located within the start 



and end positions of the CCDC40 gene have been associated with both myeloid leukaemia death 
and self-reported esophagus disorders in UK Biobank. 

All together, this extension to UK Biobank and other data sets allows us to link our genetic 
findings of the healthy human state to a range of related human diseases. These results suggest 
that changes in baseline infiltration may alter disease etiology and affect disease risk. 

(2) 

We downloaded TCGA data and performed CIBERSORT deconvolution of the tumor samples. 
We found that the scaling factor from CIBERSORT-Absolute was incomparable between GTEx 
and TCGA (TCGA scaling factor < 1, while GTEx scaling factor is often > 1; this could be due 
to differences in sample collection and pipeline protocols). As a result, we resort to comparing 
the two data sets on a purely relative scale (CIBERSORT-Relative). Separately for GTEx and 
TCGA, we calculated the median CIBERSORT-Relative scores for each of 14 immune cell types 
in each tissue. We correlated the median cell type scores of GTEx against TCGA.  

Overall, we find that there is variability between normal and tumor immune content, but there 
also exist general similarities (Response Figure 1). Specifically, we see an overall increase in 
macrophages in TCGA compared to GTEx, and an overall decrease in monocytes and mast cells 
in TCGA compared to GTEx. However, many T cell subsets have similar quantities in tumor and 
normal tissue. One clear exception is Tregs, which were rarely identified in GTEx samples but 
were more often detected in TCGA samples (Response Figure 2). This may be an 
immunosuppressive mechanism. Tregs can weaken the adaptive immune response and prevent 
immune recognition, enabling cancer cell growth and tumor progression.  

While interesting, we note that we have decided to leave the TCGA analysis out of the main 
manuscript as we felt that an analysis of tumor infiltration versus baseline healthy infiltration 
was out of scope from the remainder of the manuscript. 

 

 

Response Figure 1: Within each of 13 cancers from TCGA and for each of the 14 studied 
immune cell type phenotypes, the median CIBERSORT-Relative immune cell scores were 
calculated. The median scores were also calculated in the most similar healthy tissue using GTEx 
data. The median scores for GTEx and TCGA were plot against each other, where each point 
represents the median score for one cell type in the TCGA cancer tissue and GTEx healthy 
tissue. Red line has slope 1, intercept 0. Study abbreviations found here: 
https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations 



 

 
 

Response Figure 2: Similar to Response Figure 1, except each point now reflects a different 
cancer/tissue type for Treg median scores. 

 
 
 
2. The authors explore differences between relative and absolute measures of deconvolved 
immune content. While strong arguments can be made in favor of both measures, they each 
quantify immune composition in fundamentally different ways (e.g., Supp. Figs 6, 7, and 9). This 
raises the question of whether the authors’ decision to consider relative and absolute measures in 
a combined model (by Empirical Brown’s method) is sensible and whether different conclusions 
might be obtained by evaluating each measure separately. 
 
We appreciate the concerns by the reviewer on whether to consider relative and absolute 
measurements simultaneously. As described in our manuscript, relative and absolute measures of 
deconvoluted immune content quantify immune composition in fundamentally different ways. 
The reviewer correctly states that strong arguments could be made in favor of both measures. We 
present this in the first section of the paper. However, by using Empirical Brown’s method, we 
simultaneously perform a data-driven analysis of both perspectives of immune content in solid 
tissue. We describe these advantages below. 

In our manuscript, we show how this combined analysis has increased power over a separate 
analysis. For example, in our genetic analysis, we describe how the combined Empirical Brown’s 
method p-values result in a greater number of significant findings (n=31) compared to 
considering each deconvolution measure (CIBERSORT-Rel, CIBERSORT-Abs, and xCell) 
separately (n=15, 16, and 16 respectively). We have included this point in the main manuscript. 

Furthermore, the combined p-values leverage signals in the compositional “immune cell” space 
and absolute “tissue” space for improved power. For example, in the genetic analysis, 
performing Empirical Brown’s method on just the absolute results (not including the 
CIBERSORT-relative analysis) returns 21 significant phenotypes. This is fewer significant 



findings than additionally including the CIBERSORT-Relative analysis (31). (But still more than 
each of the separate analyses (15, 16, 16).) We include this point in the supplement. 

Lastly, we use Venn diagrams (Figures 4a, 5a-b) to demonstrate how the Empirical Brown’s 
method leverages statistical signals across analyses. Importantly, Figures 4a and 5a show how 
the significant combined results are often the overlap between separate analyses. Figure 5b 
shows the importance of Empirical Brown’s method, since variants rarely reach genome-wide 
significance in multiple separate analyses (P < 5e-8). Instead, as shown by Figure 5a, most 
variants with Empirical Brown’s method P < 5e-8 are identified because they are variants 
associated in multiple separate analyses at P < 1e-5. Figure 5b shows that there are several 
associations identified in only one separate analysis and were not identified as significant by 
Empirical Brown’s method, likely due to inconsistent associations across the separate analyses. 
We include our venn diagram-based analysis within the main manuscript, and in Figures 4a, 5a, 
and 5b. 

 
 
3. Although grouping immune cell types into major lineages is understandable, the authors omit 
several key tissue-associated immune cell types from their correlative analysis without 
explanation (B cells, NK cells, dendritic cells, mast cells). This unexpected omission needs to be 
addressed as the current work is incomplete without them. 
 

We have now expanded our analysis to 14 distinct immune cell types (CD8+ T cells, 
CD4+ naive T cells, CD4+ memory T cells, helper T cells, regulatory T cells, gamma delta T 
cells, B cells, NK cells, neutrophils, macrophages, dendritic cells, mast cells, monocytes, and 
eosinophils) and 2 broader immune cell types (lymphocytes and myeloid cells). This has led to 
substantial changes to our entire results section, as the analysis has now nearly tripled in size. We 
have identified new top iQTLs and our functional follow-up of eQTLs and network analysis 
result in new enrichments. The majority of the changes involve the changing of numbers (eg. # 
significant associations) within the manuscript and discussion of genetic associations within the 
“Association of genetic variants with infiltrating immune cells” section. 
 
 
 
4. Age-related changes in the immune system have been previously described, particularly in the 
bone marrow and blood. For example, hematopoietic stem cells become myeloid-based with age 
(PMID 22123971). As a control, did the authors find evidence for myeloid-lymphoid skewing in 
aged blood by their deconvolution pipeline (e.g., as seen here in Fig 2 in PMID 26808160)? 
 
We thank the reviewer for this important comment. As a result, we performed an in-depth 
analysis of whole blood to replicate previous findings with age. We discuss the results of this 
new analysis in a Supplementary Note. To recap, our results do indeed show evidence of 
myeloid-biased skewing in whole blood. We also identified an increase in NK cells and increase 
in CD4:CD8 T cell ratio with age, corroborating previous findings.  



Specifically, the new text we have added to the main manuscript is located at the conclusion of 
the “Association of age and sex with immune infiltration”: 

 
“Lastly, while we identify many new sex- and age-associated changes in tissue immunity, 

an analysis of aged blood samples support previous findings from other studies, including 
myeloid-biased differentiation1, a rise in NK cells2,3, and a decline in the ratio of CD4 to CD8 T 
cells4 (see Supplementary Note).” 
 
Within the supplementary text, we have added the following new text under the section title 
“Findings in aged blood support previous research”: 
 
“Compositional differences have been previously observed in aged blood, including myeloid-
biased differentiation1, a decline in the ratio of CD4 to CD8 T cells4, and a rise in NK cells2,3. 
While our original analysis also identified an increase in NK cells (P = 0.028; not significant 
after FDR correction), we additionally calculated CD4:CD8 T cell and Myeloid:Lymphoid cell 
ratios in whole blood samples using CIBERSORT and xCell deconvolution estimates. We 
performed a rank-inverse normal transformation on these ratios to minimize outlier influence and 
analyzed these ratios using a similar regression model. Our model identified decreased CD4:CD8 
T cell ratio and myeloid-skewing in aged blood (Age-CD4:CD8 T cells ratio association: 
Empirical Brown’s P = 0.035; Age-Myeloid:Lymphoid cell ratio association: Empirical Brown’s 
P = 0.024).” 
 
 
 
5. Given substantial differences in mammary tissue biology between males and females, the 
identification of sex-specific differences in immune content in breast tissue is not surprising. A 
tissue type with less obvious differences in fundamental biology would be preferred. 
 
We agree that the identification of sex-specific differences in immune content in breast tissue is 
not surprising, although to the best of our knowledge, it had never been reported. In addition to 
noting the very significant increase in lymphocytes in female breast tissue, we found significant 
lymphocyte differences in female thyroid tissue compared to male. We note that many thyroid 
diseases (autoimmune, cancer) are much more prevalent in females compared to males within the 
main text and include Figure 4b-c visualizing the relationship between thyroid lymphocytes and 
sex. 

 
 
6. In the analysis of DEGs between “hot” and “cold” tissues, the authors identify a 
preponderance of immune-related genes, as expected. An analysis that controls for immune cell 
composition via a linear model would better capture expression differences that are not a 
surrogate for total immune cell content. 
 



We note that our initial “hot” vs “cold” analysis including removing all genes used by our 
deconvolution methods to identify “hot” samples. However, as per Reviewer #1’s suggestion, we 
re-performed the analysis of DEGs using the xCell enrichment score as a covariate in the limma 
linear model. In our results from 10 CD8+ T cell infiltration phenotypes, we identified DEGs in 
different 7 phenotypes (after filtering for significance cutoffs and removal of signature genes in 
xCell and CIBERSORT, as described in our methods). 4 of these 7 phenotypes yielded nearly 
identical results in the linear model analysis: > 90% of DEGs were the same between the original 
results and the new xCell-covariate results. For the three other phenotypes, the top DEGs 
involved many immunoglobulin genes or other immune-related genes not present in the 
reference set from xCell and Cibersort. These results were similar for other cell types. Due to a 
lack of clear differences in results, we decided not to include the results in the revised version of 
the manuscript. 

 
 
7. The infiltration phenotypes used extensively throughout this work are very unclear and their 
derivation is poorly described. This makes it difficult to assess the analyses and conclusions that 
rely on these signatures. 
 
To improve clarity, we have made several changes:  

(1) We have revised our description of what these infiltration phenotypes are and how they are 
derived within the main text and within the methods section.  

At the conclusion of the second to last paragraph of the “Evaluating infiltration across human 
tissues by using deconvolution” section within the main text, we write: 

“We focus on searching for these factors in a limited set of 189 filtered infiltration phenotypes, 
which represent the amount of a particular immune cell type in a specific tissue on a continuous 
scale.” 

Within the beginning of the manuscript methods section “Merging cell subtype estimates into 
single scores, we write: 
 
“From the default deconvolution scoring by CIBERSORT-Relative, CIBERSORT-Absolute, and 
xCell, we defined 14 specific immune cell type phenotypes (CD8+ T cells, CD4+ naive T cells, 
CD4+ memory T cells, helper T cells, regulatory T cells, gamma delta T cells, B cells, NK cells, 
neutrophils, macrophages, dendritic cells, mast cells, monocytes, and eosinophils) and 2 
additional broader immune cell type phenotypes (lymphoid-based and myeloid-based cells), for a 
total of 16 cell types.” 
 
And in the opening sentences of the manuscript methods section “Defining infiltration 
phenotypes and filtering for analysis”, we write: 
 
“Infiltration phenotypes are a tissue-by-immune cell type pair; they are defined by the estimated 
amount of a particular immune cell type measured in a specific tissue on a continuous scale. As 
described previously, each infiltration phenotype included three separate measurements (by 



CIBERSORT-Relative, CIBERSORT-Absolute, and xCell). By measuring 16 cell types in 46 
GTEx tissues, which represent the 14 specific immune cell types and the 2 broader immune cell 
types described previously, we generated 736 original infiltration phenotypes. We then reduced 
to 189 more-informative phenotypes by using the filtering criteria described below:” 
 

(2) We have also included a “terms” table for potentially unfamiliar terms used extensively in the 
manuscript. Infiltration phenotypes is included as a term in this table. 

 

(3) We have included a Supplementary Table 18 that lists all the infiltration phenotypes derived 
for downstream analysis. In column 1 is tissue, and in column 2 is cell type.  

 

 
 
8. Similarly, the approach used to delineate inflamed and non-inflamed tissues is not clearly 
described or graphically depicted, and the panel in figure 1d is difficult to understand. How was 
the infiltration z-score calculated? 
 
Thank you for the questions regarding Figure 1D. We understand that the initial interpretation of 
this figure is unclear, and have revised our manuscript in response. 
 
First, we have updated our figures to now include a graphical methods figure depicting the 
identification of consensus “hot” and “cold” samples after our consensus clustering procedure 
(Supplementary Figure 17).  

Second, we have revised our methods section to more clearly describe this procedure under: 
Differential expression analysis of extreme infiltration patterns. 

 
Lastly, the “infiltration z-score” was calculated for each phenotype by scaling the Cibersort 
absolute scores of each sample within the phenotype such that the set had a mean of zero and 
standard deviation of 1. This was done for visual purposes; specifically, such that hot/cold 
assignments for each phenotype could be depicted on the same scale. Otherwise, it would be 
difficult for readers to differentiate hot/cold clusters in phenotypes that feature very low amounts 
of infiltration relative to those with high means and high variances. The newest version of this 
plot is now in the Supplement section as Supplementary Figure 17. 

 
 
Minor comments: 
1. The authors conflate tissue-resident and tissue-infiltrating immune subsets. Macrophages are 
often tissue-resident as are resident memory T cells, mast cells, etc. While this is primarily a 



semantic issue in the current work, the authors should address this issue with more nuanced 
language. 
 
The reviewer is correct that we do not know for sure whether detected immune content is tissue-
resident, tissue-infiltrating, or even sample (blood) contamination. To reflect this, we have 
altered language in the manuscript to describe infiltration as simply “immune content”. However, 
we continue to refer to our phenotypes as “infiltration phenotypes” for simplicity purposes.  

 
 
2. An analysis of the p-values obtained by all three deconvolution techniques would be helpful to 
understand their concordance and how the covariance structure is being exploited by Empirical 
Brown’s method to produce meta-p-values. 
 

As described in Reviewer #1’s Major Comment 2, we use Venn diagrams (Figures 4a, 5a-b) to 
demonstrate how the Empirical Brown’s method leverages statistical signals across analyses. 
Importantly, Figures 4a and 5a show how the significant combined results are often the overlap 
between separate analyses. Figure 5b shows the importance of Empirical Brown’s method, since 
variants rarely reach genome-wide significance in multiple separate analyses (P < 5e-8). Instead, 
as shown by Figure 5a, most variants with Empirical Brown’s method P < 5e-8 are identified 
because they are variants associated in multiple separate analyses at P < 1e-5. Figure 5b shows 
that there are several associations identified in only one separate analysis and were not identified 
as significant by Empirical Brown’s method, likely due to inconsistent associations across the 
separate analyses. We include our venn diagram-based analysis within the main manuscript, and 
in Figures 4a, 5a, and 5b. 

 
 
 
Reviewer #2 (Remarks to the Author): 
 
In this manuscript, Marderstein and colleagues present a retrospective study of the GTEx 
collection, aiming to infer determinants (genetic or otherwise) of immune infiltration. While the 
gene expression is provided on a tissue level, the authors utilize deconvolution tools to estimate 
the cellular composition that underlies the (observed) tissue average. With these estimations in 
hand, the authors quantify the extent of immune infiltration to various tissues and then turn to 
explore the relation between these estimated phenotypes and covariates of interest, and identify 
for instance, a significant association between the strength of neutrophil abundance in the lung 
and genetic variant that reside near a key transcriptional regulator. Overall, this is an important 
contribution, which builds on, and to some extent helps realize the potential of community 
efforts such as GTEx. Having said that, there are a number of caveats in the methods and in the 
interpretation of the results, 
which we describe in more detail below. 
 
1. Stratification and analysis of “hot” vs. “cold” samples: 
a. The procedure for labeling samples as “hot” or “cold” is not clearly described; please revise 



the respective methods section and provide a clearer (yet short) explanation in the main text. It is 
my understanding is that for a given deconvolution algorithm the procedure labels *all* samples 
as either hot or cold. It therefore runs the risk of making arbitrary decisions when the signal is 
not conclusive either way (notably, this effect my be mitigated by the need to have consistent 
assignment across the three algorithms). How stable is this procedure? (e.g., to sub- sampling). 
How will it change the results (e.g., comment 1b below or on the lack of consistency in 
inflammation patterns across tissues) if it focuses on the “extreme phenotype” samples and 
excludes all others? 
 

We apologize for any ambiguity in the description of our method. We have updated our methods 
section to more clearly describe the procedure for assigning samples as “hot” and “cold” within 
each tissue infiltration phenotype. The improved description can be found in our revised methods 
section in the Differential expression analysis of extreme infiltration patterns under Methods. 

Additionally, we have included a graphical depiction of the procedure in Figure 3a.  

As implemented, the procedure does not label *all* samples within a tissue as either hot or cold 
for a given deconvolution algorithm and cell type (eg. xCell in Lung - Macrophages). However, 
all samples will be labeled as “hot” or “cold”  if the consensus clustering algorithm determines 
only 2 stable sub-clusters. In our expanded analysis of 189 infiltration phenotypes, this procedure 
was implemented 567 times (189 phenotypes x 3 deconvolution methods). Of those 567 runs, 
271 yielded 2 stable sub-clusters; 282 yielded 3 subclusters, and 14 yielded 4 subclusters. After 
calculating mean cell type scores within each tissue, only samples within the highest and lowest 
clusters are labeled “hot” and “cold” respectively. In the instances with 3 or 4 stable sub-clusters, 
the samples within the intermediate clusters are labelled “intermediate” and were not used in 
downstream analysis. In the instances with 2 stable sub-clusters, not all individuals were used in 
differential expression analysis due to our requirement of consistency across all three 
deconvolution outputs. For example, samples that were labelled “Hot” by CIBERSORT-
Absolute but “Cold” by xCell would not be included in the consensus “hot” or consensus “cold” 
sets that were used in differential expression analysis. As a result, an extreme consensus “hot” 
set may include only a fraction of total samples which were consistent across all three 
deconvolution outputs, despite an original xCell “hot” set that may have included 50% of 
samples (with 2 stable sub-clusters). 

Nonetheless, Reviewer #2’s statement that the procedure “runs the risk of making arbitrary 
decisions when the signal is not conclusive” is accurate. However, as the reviewer also notes, our 
requirement of consistent agreement across the 3 deconvolution algorithms’ hot/cold 
assignments mitigates this. As per Reviewer #2’s suggestion, we demonstrated that the hot/cold 
assignments are robust to subsampling, by proceeding as follows. We randomly selected 6 
infiltration phenotypes (Adrenal Gland – Macrophages Colon – Sigmoid – Macrophages, Colon 
Transverse – CD4 memory, Esophagus – Mucosa – Mast cells, Lung – Myeloid cells, and Small 
Intestine – B cells), and we downsampled to 50% of the total number of samples. After 
performing the consensus clustering procedure across the 3 deconvolution algorithms on each of 
the downsampled phenotypes, we found that every sample that was labeled “hot” in the 
subsampling was also labelled “hot” in the original assignments (with the full sample sizes). This 
was the same for “cold” clusters. Therefore, subsampling did not introduce any new samples into 



the “hot” or “cold” clusters in our simulations. This effectively demonstrates the stability of the 
procedure in producing consistent assignments as hot and cold. 

Furthermore, we show that similar results can also be derived by using alternative approaches for 
assigning samples to “immune-rich” and “immune-depleted” clusters. For each phenotype, we 
computed quintiles in each deconvolution output, and compared “consensus” top and bottom 
quintiles (sample consistently in top or bottom quintile across 3 deconvolutions for a given 
phenotype). The results of this differential expression analysis do not meaningfully change 
compared to the clustering approach. For example, in our macrophage phenotypes, the current 
revised analysis using consensus k-means clustering yields as top DEGs C1QB (18/21 tissues), 
VSIG4 (17/21), MARCO (17/21), and C1QC and CD163 (16/21). The consensus quintiles 
approach yields CD163 (23/23), C1QC, C1QB, and VSIG4 (the latter 3 all 22/23). This effect is 
recapitulated in the case of our CD8 T-cell phenotype as well. Our k-means approach yielded as 
top DEGs CD8A, CD8B, and CD3D, CCL5, and KLRK1(all 10/10). Using the consensus 
quintile approach yielded CD8A, CD8B (14/15), CCL5 (13/15), CD3D (12/15), KLRK1 (11/15).  

Thirdly, we comment that our consensus k-means approach is more robust to noise intrinsic to 
deconvolution relative to choosing quintiles. As described by the reviewer in comment 1a, we 
explored a simpler approach using “consensus quintiles” to identify “extreme” samples of each 
phenotype. In this approach, 162/189 phenotypes featured at least 6 samples consistently 
identified in the top/bottom quintiles of each deconvolution. These samples were then considered 
for DEG analysis. However, only 136/162 phenotypes (84%) passed our DEG cutoffs. This is 
much lower percentage compared to our analysis using the consensus k-means approach, where 
123/130 phenotypes (94.6%) passed our DEG cutoffs (dropout due to DEG failing to yield 
“significant outcome”). This implies that our k-means procedure is more capable of finding 
stable groupings that feature substantial transcriptomic differences at the outset relative to 
alternative methods. In so doing, the method also effectively filters noise for downstream 
analysis. For example, the choice of arbitrary, pre-determined cutoffs such as quintiles ignores 
patterns in the data distribution that can be observed by an automated clustering algorithm. If the 
distribution of macrophages in lung tissue were a mixture of Gaussians (with separate Gaussian 
parameter values for cold, intermediate, and hot), then a consensus clustering approach would 
discover the groupings best. 

Overall, our method is complementary and perhaps an improved approach to another procedure 
for identifying “extreme” samples. It generally recovered the same transcriptomic differences as 
a quintile-based approach, without substantial loss of information after clustering relative to 
alternative approaches. Increased sample size would only improve the clustering algorithm 
because the differential expression analysis would not be impacted as much by the original 
sample drop out.  

We have included this information within the supplement. 

 
b. It is a bit unexpected that for ~40% (30 out of 73) of the phenotypes the differential expression 
analysis does not yield significant outcome, at least out of the very same sets of genes used to 
stratify the samples. Please provide more detail for why this test (which can be thought of as a 
sanity check) fails in some cases, as it might mean that the deconvolution and the resulting 



stratification might be overwhelmed by noise. How correlated are the genes in each of those 30 
phenotypes? Are these phenotypes discussed later on in the paper? (e.g., for association with 
age) and if so, would that lack of DE genes question their validity? 
 

In the original analysis of 73 phenotypes, 23/30 of the excluded phenotypes were excluded 
because of insufficient number of samples to proceed with differential expression analysis. 
Namely, in those 23 infiltration phenotypes, there were an insufficient number of identified “hot” 
samples (<6 samples), which we used as our cutoff to proceed with differential expression. They 
were not considered for DEG, as opposed to the DEG not producing significant outcome. We 
apologize for the lack of clarity in the manuscript, and have revised the draft accordingly.  

The revised manuscript now discusses more fully the nature of the drop out and noise in the 
hot/cold stratification in our expanded analysis: 

Firstly, we fully agree with Reviewer #2’s concern regarding noise introduced through 
deconvolution (note: we provide justification for the use of deconvolution in response to 
comment 1d). The potential for bias and inaccuracy introduced by deconvolution methods has 
been characterized previously (eg. Vallania et al. 2018). Nonetheless, we effectively control for 
such noise through our 3 algorithms (which use two separate reference gene sets), require 
agreement across each, and then enforce strict cutoffs in order for results to be considered 
possible signal.  

Secondly, we observe the same overall pattern of phenotype drop out in our expanded analysis as 
in the initial analysis. Our consensus hot/cold assignment algorithm yielded 130/189 phenotypes 
with enough samples to proceed with DEG. Of these 130 that underwent DEG, 123 pass all 
cutoffs (at least 5 transcripts with logFC >= 2 and FDR < 0.01). As with the initial analysis of 73 
phenotypes, the majority of drop outs again occurs during the consensus hot/cold assignment 
procedure. We conclude that drop out is largely driven by our stringent requirement that an 
infiltration phenotype have at least 6 samples assigned to hot/cold clusters across the 3 
deconvolution algorithms. We speculate that using a larger data set (eg. GTEx version 8) would 
result in a much smaller fraction of phenotypes that are excluded from downstream analysis due 
to our sample number requirements. (Of note, 21 infiltration phenotypes featured 4 or 5 
consensus hot samples and were therefore excluded from DEG). 

Thirdly, our consensus k-means approach is more robust to noise intrinsic to deconvolution 
relative to alternative methods. As described in comment 1a, we explored a simpler approach 
using “consensus quintiles” to identify “extreme” samples of each phenotype. In this approach, 
162/189 phenotypes featured at least 6 samples consistently identified in the top/bottom quintiles 
of each deconvolution. These samples were then considered for DEG. However, only 136/162 
phenotypes passed our DEG cutoffs. Compared to hot/cold assignments identified with 
consensus k-means, the quintiles approach results in far more phenotypes that dropout due to 
DEG failing to yield “significant outcome.” This implies that our k-means procedure is more 
capable of finding stable groupings that feature substantial transcriptomic differences at the 
outset relative to alternative methods. And in doing so, the method also filters noise from 
overwhelming downstream analysis. 



Fourth, we identified the 66/189 phenotypes where we did not discover any differentially 
expressed genes and looked to see if we identified any age or sex associations. Out of these 66 
phenotypes, 20 were associated with age or sex. Out of the 20, DEGs were not recovered in 
18/20 simply because of insufficient sample size to proceed with differential expression. The last 
2/20 failed because of strict filtering thresholds, where both phenotypes did not have at least 5 
transcripts at logFC >= 2.0 and adjusted P < 0.01. Both have 4 DEGs with logFC >=2.0, with 43 
and 70 that are >= 1.5. The 18 other phenotypes are a by-product of our assignment procedure 
for “immune-rich” and immune-depleted” clusters. The age and sex analysis was done separately 
and on continuous phenotypes (rather than “hot”/”cold”), such that the lack of clustering does 
not undermine the age/sex results.  
 
Lastly, we comment on the nature of sample dropout during DEG. Of the 7/130 samples that 
drop out due to inability to reach DEG cutoffs, we note that these 7 infiltration phenotypes 
express an average of 17 signature genes (reference genes in xCell and Cibersort) at 1.0 <= 
logFC <= 2.0 and FDR < 0.01. We also note that 3/7 of these infiltration phenotypes feature the 
lowest variance in xCell/Cibersort Absolute scores (bottom 5 of 189) and thus their drop out due 
to lacking transcripts with logFC >=2 is not unexpected. Overall, this implies that our dropout 
during DEG is not driven is by noise, but is instead a byproduct of applying strict significance 
thresholds for our final results. 

In summary, drop out is largely driven by phenotypes featuring insufficient number of samples 
to be included in DEG analysis, and not due to DEG being overwhelmed by noise intrinsic to 
deconvolution. For these reasons, we did not comment on them further in the manuscript. 
However, we have included this information within the supplementary, in the section titled 
“Phenotype dropout during differential expression analysis of clustered immune-rich and 
immune-depleted samples”. 

 

 
c. “Therefore, we reflected that infiltration patterns are likely tissue-specific, rather than 
widespread. “ This statement may seem to be somewhat contradictory to the results in Figure 1B. 
Please elaborate. 
 

In previous Figure 1B (currently Figure 2a), we focus on analyzing the between-tissue variability 
of immune content. We cannot assess tissue-specificity because in order to be tissue-specific, a 
certain tissue immune score must be compared to other tissues within the same individual. In 
Figure 2a, information about within-individual variability is lost by clumping into between-
individual median scores. Old Figure 1b/current figure 2a is part of the “Evaluating infiltration 
across human tissues by using deconvolution” section. Our hypothesis regarding the tissue-
specificity and sharing of the observed infiltration patterns is in a separate section of the 
manuscript (“Identification and characterization of extreme infiltrating immune cell patterns”). 
We expand on this in reviewer response comment 1E, and our hypothesis was generated based 
on results distinct and unrelated to old Fig 1b/curr Fig 2a, which does not inform us about tissue-
specificity. 



 

 
d. It is not clear from the outset why deconvolution is needed here. Would the DE genes and 
pathways that came up in this analysis (or other genes and pathways that make sense) be detected 
in a simpler correlation analysis? (i.e., correlate each gene in the transcriptome with the 
aggregate expression level of the genes in the same sets used for deconvolution) 
 

As per Reviewer #2’s suggestion, for a particular cell type category, we identified the signature 
genes used for deconvolution of that cell type. Then, for each sample, we aggregated the 
expression levels of the gene set by calculating the median value. This aggregated median 
expression level was used as a surrogate for the amount of the immune cell type in the sample. 
We next correlated each gene in the transcriptome against the aggregate measure. We compared 
the significantly correlated genes from this analysis from those that were discovered by 
performing a differential expression analysis of clustered “hot” and “cold” samples of the 
respective deconvolution scores. 
 
By performing this analysis for macrophages within 10 different tissues, we found that the 
majority of highly significant, highly correlated genes corresponded to DEGs discovered in our 
differentially expression analysis (genes with 0.8 < correlation < 0.95 and  10-80 < pval <10-35  
often corresponded to DEGs with logFC >= 2 and FDR < 10-20). Furthermore, this approach 
yields our most common DEGs discussed in the manuscript as highly significant, highly 
correlated genes as well (eg. MARCO, CD163, VSIG4, C1QB featured 0.6 < cor < 0.95 in many 
tissues, with pval < 10-5).  
 
Overall, we very much agree with Reviewer #2 that defining simpler metrics, such as aggregate 
signature gene expression levels, is a more straightforward, alternative approach to quantifying 
immune content in bulk samples. Previous literature has used similar methods for estimating 
immune content in bulk tumor sequencing5. However, deconvolution is preferable to the use of 
gene clusters/metagenes by weighting different genes separately and combining them non-
linearly. As such, we chose to use both Cibersort and xCell to most accurately estimate the 
amounts of immune cells. The two methods are reliant on vastly different core algorithms and 
references for immune content estimation. Therefore, each algorithm has its own implicit biases 
but its own distinct strengths. In particular, Cibersort performs well with respect to measurement 
error and amount of unknown sample content (ie. parts of the mixture, such as tumor content, not 
accounted for in signature matrix)6. Additionally, Cibersort has shown accurate estimation of 
closely related cell types by accounting for multicollinearity7 and returns p-values that test 
whether any of the reference cell types were present in the input sample. On the other hand, 
xCell is particularly robust to any batch effects by using a ssGSEA framework7,8. This is 
especially important in our dataset given the multi-institutional scale of the GTEx project and 
potential risk of technical artifacts. In addition, xCell has the highest true negative rate relative to 
other algorithms in simulations7 (eg. % of time that the deconvolution algorithm will create a 
score of 0 or a null score for a cell type not actually present in the sample). Therefore, leveraging 
both xCell and CIBERSORT was optimal to identify statistical signals. 
 
 



In summary, we elected to use more sophisticated methods because of their desirable modelling 
properties that have shown superior performance in previous studies. We show that both the 
deconvolution approaches and the aggregate expression level converge on similar results. 
Additionally, using deconvolution can lead to more accurate and more precise results, especially 
in conjunction with our requirement of agreement in the results across each method. As well, we 
note that this aggregate expression analysis was not included in the manuscript.  
 
 
e. Since the mode of number of “hot” tissues per individual x cell type was one, it is concluded 
that “we reflected that infiltration patterns are likely tissue-specific, rather than widespread. ” 
This is quite a strong statement that would benefit from more context and references.  

We thank the reviewer for this comment. In response, we have expanded on this analysis 
concerning phenotypic evidence of tissue-specificity in our revised manuscript to demonstrate 
greater evidence of tissue-specificity. We have included the following text to the last paragraph 
of “Identification and characterization of extreme infiltrating immune cell patterns”. 

“ 

Finally, we used our immune-hot clusters (eg. macrophage-hot) to examine whether 
individuals with inflammation in one tissue type may also exhibit similar inflammation in their 
other tissue types. We analyzed individuals with at least 8 tissue samples and discovered that 
individuals were labeled “hot” in an average of 11-15% tissue samples per cell type, with a mode 
of 1 “hot” tissue per individual for a single cell type (Supplementary Figure 9). In addition, 
across individuals, there were no common “hot” inflammation patterns representing multiple 
tissues (Figure 2c; Supplementary Figure 10). Therefore, we reflected that infiltration patterns 
may be phenotypically tissue-specific, rather than widespread (eg. “hot”-sharing between 
tissues). 

” 

 
 
f. While the mode in the latter test is at 1 there is still a non-negligible amount of cases with 
more than one hot tissue. To support the validity of the results in this part of the paper (i.e., point 
1e above as well as the DE analysis [point 1b]) it would be helpful to repeat the deconvolutions 
with random sets of signature genes per cell type (ideally, matched by mean or median 
expression) and compare to the resulting numbers of DE genes, numbers of hot tissues per 
individual, and co-clustering of similar tissues (as in Figure 1b) . 
 

When performing CIBERSORT deconvolution, we relied on an author-provided reference 
matrix (LM22). This matrix consists of specific sets of signature genes that differentiate the 
immune cell types. As a result, we could not swap the signature genes with non-signature genes 
within the CIBERSORT LM22 reference profile.  



Instead, we shuffled the genes within the GTEx gene expression profiles. For each signature 
gene (in the reference profile), we matched to another gene (via pan-tissue GTEx median gene 
expression values). We then replaced the gene expression values of the signature gene within the 
GTEx samples with the matched gene’s expression values. We then performed deconvolution 
using the original CIBERSORT reference profile (LM22). 

Overall, the “shuffled” deconvolutions results had low variability and poor detection of immune 
cell types. CIBERSORT computes a p-value which tests the null hypothesis that no cell types 
from the reference profile (22 different immune cell types) are in the sample. In the actual 
(original) GTEx expression profiles, 2866 of 11141 samples had CIBERSORT p-values < 0.05. 
In contrast, only 4 of the 11141 shuffled GTEx expression profiles had CIBERSORT p-values < 
0.05. This first observation describes how CIBERSORT did not identify conclusive immune cell 
concentrations in nearly all shuffled GTEx expression profiles, in stark contrast to the original 
GTEx data. Second, heatmaps of median CIBERSORT-Absolute scores across tissues (similar to 
Figure 2a) in shuffled GTEx expression profiles show low variability and low values across 
tissue types (Review Figure 3). (The high amounts of some cell types in GTEx testis tissue can 
be explained by vastly different expression of some genes in GTEx testis tissue compared to 
other tissues, which might now be used as the “signature genes” for deconvolution.) Lastly, none 
of the inferred immune cell types will pass our infiltration phenotype filtering procedure 
described in the procedure. Therefore, the shuffled GTEx profiles result in 0 infiltration 
phenotypes. These observations suggest that the actual gene expression profiles result in 
infiltration results that are distinct from the shuffled expression profiles, and thus the shuffled 
expression profiles should be discarded from further analysis. 

 
Response Figure 3: Median CIBERSORT-Absolute scores for the 14 immune cell types were 
calculated within each tissue. Median values were visualized in a heatmap (sorted by tissues 
alphabetically). Nearly all scores were close to 0 with little variability between tissues and cell 
types. 
 
 
 
2. Association studies 
a. Can the two significant associations be discovered with a more standard analysis, without the 
need for deconvolution? (namely, associate each variant with the aggregate expression level of 
the genes in the same sets used for deconvolution). 



To address this question, we analyzed the association between rs6482199 and the Helper T cell 
phenotype in thyroid tissue as a representative example (and a positive result). We extracted the 
signature genes for the helper T cells used by CIBERSORT, calculated the median expression of 
these genes in the thyroid samples, and tested for the association between rs6482199 and the 
aggregate value. Here, we found that rs6482199 was associated with the aggregated median 
expression level of the helper T cell phenotype at a less significant p-value (P = 0.0058). We 
repeated this type of analysis using our second most significant association, rs56234965 with 
lymphocytes in sigmoid colon tissue. We identified all signature genes from all cell types in the 
lymphocyte phenotype, and found that the variant also correlated with the new aggregate 
phenotype, although less significantly so (P = 0.00059). These results suggest that greater 
resolution is obtained through deconvolution compared to a more ad hoc or simpler procedure 
for cell type inference, although similar results can be derived using either method. 

 
 
b. An intriguing question regarding CUX1 is whether its potential effect may be intrinsic to 
neutrophils or whether it relates to other cellular subsets that are in turn associated with 
neutrophil abundance. While this is difficult to answer, an additional discussion would be 
interesting. For instance, how is this gene expressed across the primary cell types in the lung? 
How does the chromatin look like (in terms of histone modifications, DNA methylation, 
accessibility in the respective loci) in the respective locus in those cells? While the ideal data 
needed to address this is unavailable, databases of gene expression and chromatin features per- 
cell types (such as Immgen) can be interesting to look at. This can further strengthen the support 
from refs 31 and 32. The same point holds for the second finding (rs116827016) 

With the data we used for our analysis, it would be extremely interesting to infer the cell-type 
specific effects of genetic variation. The genetic effects could be intrinsic to the discovered cell 
type, more broad to other related immune cell types, more related to altering specific cell types in 
the primary tissue type, or have extremely broad changes to many tissue and immune cell types 
that alter the interaction between tissue and immune cells. However, the necessary granular cell-
type expression data is available to answer this type of question is not yet available to the best of 
our knowledge. 

First, when we analyze the gene expression for many of these genes in GTEx, Immgen, or other 
databases, they are rarely cell-type or even tissue-specific. But, in an analysis of DNAJC1, a gene 
identified through our top iQTL in the expanded analysis, we had a few interesting observations. 
First, we used GTEx to examine the DNAJC1 gene expression across tissues (this gene was 
identified through an iQTL associated with the helper T cell phenotype in thyroid tissue) 
(Response Figure 3). We found that thyroid expression of the DNAJC1 gene was high compared 
to most cell types, although bladder and lung tissues showed similar levels of expression. In 
contrast, whole blood expression was among the lowest. A search for DNAJC1 in the Immgen 
browser did not reveal any concluding differences regarding gene expression levels between 
helper T cells and other cell types. Next, we searched in the protein atlas for gene expression 
differences and found high expression in thyroid tissue (Response Figure 4). But again, this was 
lower than a few other tissues, such as liver, pancreas, and prostate. DNAJC1 thyroid expression 
levels was also similar to the highest blood cell types’ DNAJC1 gene expression levels. These 
cell types were T cells and dendritic cells. Dendritic cells are essential for antigen presentation to 



helper T cells, which can then activate the adaptive immune response and stimulate B cell 
proliferation. Thus, this was interesting that T cells and dendritic cells had the highest expression 
out of the immune cells in Immgen, but the normalized expression levels were only marginally 
higher than the other immune cell types. Lastly, we used the protein atlas to look at DNAJC1 
protein expression across tissues (Response Figure 5). We found that expression level was rated 
as “high” in thyroid. 

Searching rs6482199 in HaploReg found that the SNP was in strong LD with several enhancer 
histone marks across many cell types, including those in helper T cells, and DNAse sites across 
many more cell types. However, there was no cell type specificity of the epigenetic marks and it 
is not clear how rs6482199 differences may change the epigenetic features across this region. 

Overall, this type of analysis was interesting, however the results are inconclusive. The cell type 
expression patterns on the protein and gene level were broad with low tissue specificity. Human-
derived epigenetic databases often lack the different cell types such as those in thyroid. In order 
to dissect the nuances of the genotypic effects across different cell types, single cell data will be 
necessary at scale: different individuals with different genotypes at the rs6482199 variant, along 
with single cell transcriptomes and single cell epigenetic (eg. ATAC-seq) information. That way, 
we can understand how the variant may change the molecular features within different cell types 
and alter the cellular interactions. Therefore, assessing cell-type specificity of SNP effects will 
require an expansion in single-cell -omics data that allows inference of the different cell types in 
the sample and their respective regulation and expression patterns.  

Response Figure 3: TPM gene expression for DNAJC1 across tissues in GTEx. 

[Redacted]



Response Figure 4: Normalized gene expression for DNAJC1 across tissues in the protein atlas. 

Response Figure 5: Protein expression for DNAJC1 across tissues in the protein atlas, classified 
as “not detected”, “low”, “medium”, or “high”. 

c. It is not clear whether or not the reported cases of both i- and e- QTL were discovered in the
same tissue (e.g., was the eQTL for rs11883564 computed with only sun exposed skin tissues?).
If this is not the case, this analysis should is somewhat at odds with the observation that
“infiltration patterns are likely tissue-specific, rather than widespread. “

[Redacted]

[Redacted]



We have clarified that the iQTLs and eQTLs were discovered in the same tissue within the 
revised manuscript. The two main ways we clarified this were to write: 

(1) “Thus, we were next interested in identifying whether there were expression quantitative trait 
loci (eQTLs) from the GTEx consortium analysis that were also iQTLs within the same tissue 
(ieQTLs).” 

(2) And also in the Terms table, where we define ieQTL as “A genetic variant that is both an 
eQTL and iQTL in the same tissue”. 

 

 
d. To provide further support for the validity of these associations, it would helpful to repeat the 
analysis using random sets of signature genes per cell type, as in comment 1f above. 

Please see comment 1f. 

 
 
 
 
Minor comments 
1. Glastonbury et al: this paper has been published. Please update the reference.  

Thank you for making us aware. The reference has been updated. 

 
2. “Therefore, these results indicate that each method provides interesting information to be 
exploited in downstream analysis.” Not clear how this conclusion is derived. 

We have revised and expanded on this sentence at the conclusion of the “Robust estimation of 
immune cell types in bulk RNA-seq profiles” section. 

“Thus, relative scores better captured compositional differences in immune content while 
absolute scores better captured the true cell type amount to the overall sample. Furthermore, 
xCell and CIBERSORT are imprecise in measuring immune content, and it could be favorable to 
consider where the deconvolution estimates are consistent between methods. Together, these 
observations indicate that the optimal analysis strategy will jointly consider CIBERSORT-
Relative, CIBERSORT-Absolute, and xCell scores, equally but independently, to best capture 
the full range of complex patterns in deconvoluted immune content.” 
 

 
3. The meaning of “CIBERSORT-Absolute” vs. “CIBERSORT-Relative” as described in the 
beginning of the main text is unclear and requires further reading and deciphering. Please state 
explicitly what these actually mean. 



We have revised the text in our manuscript under the section “Robust estimation of immune cell 
types in bulk RNA-seq profiles” to read. 

 “CIBERSORT employs a linear support vector regression model to estimate cell type “relative” 
proportions of 22 immune cell types. Additionally, CIBERSORT calculates a scaling factor to 
measure the amount of total immune content in the sample, computing “absolute” scores (which 
are the product of the scaling factor and cellular proportions). We refer to the relative proportions 
from CIBERSORT as “CIBERSORT-Relative” and the product of the relative proportions with 
the scaling factor as “CIBERSORT-Absolute”.” 

 
4. Figure 3 – data is colored by whether eQTLs are over- represented (red) or under-represented 
(blue) in the iQTLs. The terminology is a bit misleading. Over/ under- represented implies that 
there is statistical significance, which means that it can be (and probably often) the case that 
neither holds.  

Since our analysis is focused entirely on over-representation of eQTLs in the iQTL results, we 
have modified our primary test of iQTL/eQTL overlap to be a one-sided statistical test (Figure 
5i). This should also be more clear to the reader. In the supplementary, we show the results of the 
original two-sided test (Supplementary Figure 15). It is correct that only phenotypes above the 
red line indicate phenotypes with a significant over- or under-representation of ieQTL overlap, 
so we have modified the coloring as such. Lastly, with the expansion to 189 phenotypes, we have 
removed phenotype names from the plot. We did not think it was crucial to the main message of 
the figure, plus it did not look clear with the expansion from 73 to 189 infiltration phenotypes. 
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Reviewers' comments: 
 
Reviewer #1 (Remarks to the Author): 
 
Overall, the authors have done a satisfactory job addressing the majority of concerns from the prior 
round of review. As a result, the manuscript has improved. Nevertheless, there are still several issues 
that the authors should address. 
 
Major comments: 
1. The infiltration phenotypes remain very poorly described in the main text and are challenging to 
comprehend without a concrete definition. At a minimum, please expand the description in the main 
text to mirror the description in the first paragraph of “Defining infiltration phenotypes and filtering for 
analysis” in Methods. This is such an important part of the paper that the authors’ decision to largely 
relegate it to Methods is perplexing. 
2. The analysis of DEGs in the “extreme infiltrating immune cell patterns” section (entire 2nd 
paragraph) is technically flawed and overstated. Clearly, immune-hot tumors will be enriched in 
markers and pathways expressed by the immune cell types considered by the authors. The signatures 
used by cibersort and xcell are not a comprehensive compendium of leukocyte marker genes – thus, 
finding additional markers not present in those signatures (e.g., C1QC, FCGR3A) is expected. If the 
authors feel this analysis is critical, they need to more convincingly show that (i) hot samples exert 
context-dependent changes in leukocyte expression profiles and/or (ii) hot samples express additional 
genes that are not expressed by the respective immune cell types but are linked to their presence. 
3. The authors have performed a new analysis showing that their deconvolution pipeline can identify 
age-related changes in circulating leukocytes (Supplementary Note). Please provide an accompanying 
figure. 
4. Although the manuscript is interesting, we are disappointed with the authors’ presentation. It reads 
as if different authors wrote different sections without making an effort to tie the material into a 
cohesive whole, particularly in relation to style and narrative. In addition, many of the figures are 
poorly constructed (e.g., Fig. 1b, Fig. 3b) and different fonts are used throughout. 
 
Minor comments: 
1. The helper T cell definition employed by the authors is confusing. Technically, Th cells are 
collectively defined as CD4 T cells, and this might be a clearer label to use. 
2. The authors state that “xCell and CIBERSORT are imprecise in measuring immune content.” Based 
on what reference? 
3. Figure 4f,g: the direction of the effect (‘+’, ‘-‘) is challenging to interpret without a reference. I 
assume ‘+’ refers to female in panel f but this is not explicitly stated. Does ‘+’ imply that the effect is 
associated with higher age in g? Given the ordering of panels, wouldn’t it make more sense to title the 
figure: “Significant associations with sex and age?” 
 
 
 
 
Reviewer #2 (Remarks to the Author): 
 
The authors have significantly improved the presentation of the methods and results and expanded 
the analysis in response to the previous reviews. There are a few questions that remain, mostly 
following the new exposition of methods and intermediary results: 
 
1. Hot vs. cold analysis: 
1a. The procedure for assignment of samples to hot and cold is now defined clearly. The clearer 



definition raises questions though – Why do we “clone” the 1D vector to three identical columns? Also 
- I can see that the authors explored the idea of using quntiles instead, but I as far as I could see it is 
not mentioned in the main text. Please make sure to report this and to better rationalize and justify 
this nonstandard design choice. 
1b. “we reflected that infiltration patterns are likely tissue-specific, rather than widespread. ” – this is 
quite a strong statement. Can it be the case that this extreme conclusion be somewhat mitigated 
when we consider “nearly significant” cases? For instance – while the mode of #hot tissues for an 
individual is 1, can it be the case that other tissues reach “near significance” levels in those cases (i.e., 
individuals with a clear evidence for infiltration)? 
2. In the new suppl figure 12 (QTL analysis), the deviation from the null distribution towards higher 
significance seems to be only achieved by CyberSort-Abs. It is therefore somewhat confusing to see 
that combining all three methods yielded more significant calls than either one in isolation. Please 
explain this point. 
3. Related to that -- can it be that the procedure for combination of P- values in the iQTL analysis 
somehow creates an inflation, and may thus require a more stringent null? (this can be tested by 
shuffling the data). 
4. A p value cutoff of 5.0 x 10-8 is used to define “genome wide significance”. The meaning of this 
cutoff is not very clear. How does is translate to false discovery rate? 
5. The top hits in the iQTL seem to have changed between this and the original submission. I am 
assuming that this is because the authors expanded the set of infiltration phenotypes. Can the authors 
please confirm that the previous results (e.g., the top three hits) have been reproduced in their 
reanalysis and that they are not featured in the manuscript since there are other, new and more 
significant, hits? 
6. The “shuffled deconvolution” analysis is important to support the results. Please include it in the 
manuscript (methods/ supplementary with a mentioning in the main text). 
7. Following the previous review, the authors have demonstrated that a simple approach (with no 
deconvolution) works similarly to the deconvolution- scheme in the case of hot vs. cold analysis, as 
well as the iQTL analysis (albeit with less power). While the authors provide some rationalization for 
not pursuing this simpler approach in the response letter, the explanation is somewhat lacking since it 
is not accompanied by any empirical evidence from this study. 
While such empirical evidence would have been ideal, I think that the current analysis is sufficient. 
However, in order to be completely transparent with the readers -- please include this simple analysis 
(hot vs. cold and iQTL) as a supplementary section and acknowledge the fact that it can recover 
similar trends. 
 
 
 
Minor comments: 
 
8. The differences between the three methods are now clearly explained. It would be nice however 
(but not critical), to make a better case as for why taking the consensus is a good approach. 
Specifically: “these observations indicate that the optimal analysis strategy will jointly consider 
CIBERSORT- Relative, CIBERSORT-Absolute, and xCell scores” can the authors demonstrate this point 
based on their pseudo- simulated analysis? (described under section “Robust estimation of immune 
cell types in bulk RNA-seq profiles.”) 
9. Enrichment analysis of DEG genes in hot vs. cold: the authors note that while some genes are 
indeed members of the signature used to stratify the samples, some are new. However, this point is 
ignored in the enrichment analysis (IPA). Ideally the authors should repeat this analysis, while 
excluding the signature genes. This should be reflected in both the foreground and background gene 
sets used for the enrichment tests. 
10. “Interestingly, recent immunological evidence suggests a clear genetic influence over tissue 



infiltration [7]” Reference seems wrong 
11. On the first results section and Figure 1: please explicitly describe the relationship between the 22 
cell type panel (CSORT) and the 64 panel (xCell). 
12. “Many tissues featured a majority of samples with **trace** immune enrichment,” Typo? 
13. Supplementary Table 3: please specify how much variance is captures by each PC in each of the 
tissues. 
14. “Furthermore, we found that the top 31 iQTLs from these 31 phenotypes were significantly 
enriched for being a previous GWAS” please specify the fold enrichment (i.e., observe vs. expected 
percent of GWAS amongst the iQTLs) and P- value. 
15. Y axis label in Fig 5e: I am assuming the authors are referring to the T helper cells infiltration 
phenotype. However, “Tfh” usually stands for T follicular helper cells (a specific subtype of CD4+ T 
cells). 



We thank the reviewers for reading our manuscript and providing additional feedback. They each raised thought-
provoking questions about the manuscript, and we believe that our new analyses have significantly improved the 
manuscript. In response, we have made several revisions to the manuscript. These broadly include the addition of 
new simulations to support our previous methods (Empirical Brown’s method’s false positive rates), new statistical 
analyses to support previous conclusions (“hot” tissue-specificity), and major structural changes to the narrative for 
improving manuscript readability. Our full response to the recent reviewer comments are described below. In the 
Supplement and Main Text, new changes are made in red. 
 
 
 
Reviewers' comments: 
 
Reviewer #1 (Remarks to the Author): 
 
Overall, the authors have done a satisfactory job addressing the majority of concerns from the prior round of review. 
As a result, the manuscript has improved. Nevertheless, there are still several issues that the authors should address. 
 
Major comments: 
1. The infiltration phenotypes remain very poorly described in the main text and are challenging to comprehend 
without a concrete definition. At a minimum, please expand the description in the main text to mirror the description in 
the first paragraph of “Defining infiltration phenotypes and filtering for analysis” in Methods. This is such an important 
part of the paper that the authors’ decision to largely relegate it to Methods is perplexing. 
 
We thank the reviewer for highlighting the importance of clearly defining “infiltration phenotype” in the manuscript. We 
have included an expanded description in the Results section entitled “Evaluating infiltration across human tissues by 
using deconvolution.” The description has been added when the term “infiltration phenotype” is first introduced, and 
now closely mirrors the definition as presented in the Methods section. 
 

“We focused on searching for these factors in a limited set of 189 filtered infiltration phenotypes, which 
represent the amount of a particular immune cell type in a specific tissue on a continuous scale. This set was derived 
from an unfiltered list of 736 infiltration phenotypes, which encompass 14 specific immune cell types (described 
above) and 2 broader cell types (lymphoid & myeloid) in the 46 GTEx tissues, as estimated across three separate 
measurements (by CIBERSORT-Relative, CIBERSORT-Absolute, and xCell). The set was filtered down to 189 
phenotypes, which was performed using several criteria that considered sufficient immune content and correlated 
estimations between xCell and CIBERSORT (see Methods).” 
 
 
2. The analysis of DEGs in the “extreme infiltrating immune cell patterns” section (entire 2nd paragraph) is technically 
flawed and overstated. Clearly, immune-hot tumors will be enriched in markers and pathways expressed by the 
immune cell types considered by the authors. The signatures used by cibersort and xcell are not a comprehensive 
compendium of leukocyte marker genes – thus, finding additional markers not present in those signatures (e.g., 
C1QC, FCGR3A) is expected. If the authors feel this analysis is critical, they need to more convincingly show that (i) 
hot samples exert context-dependent changes in leukocyte expression profiles and/or (ii) hot samples express 
additional genes that are not expressed by the respective immune cell types but are linked to their presence. 
 
We agree with the reviewer that the reference gene sets in xCell and Cibersort are not comprehensive, and the 
presence of additional markers is to be expected in the differential expression analysis. We also agree with the 
reviewer that the hot/cold DGE results feature a paucity of evidence of 1) context-specific differences in leukocyte 
expression profiles, and 2) definitive determination of additional gene expression differences between hot/cold 
samples in tissue parenchyma. We were unable to unambiguously detect such tissue-specific transcriptomic drivers 
of immune expression or immune cell-type specific changes in gene expression.  
 
Overall, we hoped to acknowledge these shortcomings in the previous version of the manuscript. However, based on 
the reviewer’s comments, we have decided to overhaul major features of this section in the Results, by moving many 
results from the main text to the Supplement. We have retained in the main manuscript the content discussing the 
consensus k-means method, and the implications of our findings regarding whether individuals were identified as 
“hot” across multiple tissues. We have also added additional discussion of motivation for this analysis. Regarding the 
results of the differential expression, we have more explicitly commented that our analysis was unrevealing of major 
pathways or transcripts that can be considered tissue-specific determinants of baseline immune infiltration. 



 
In addition, we have introduced in the main text an alternative analysis to the consensus k-means clustering 
approach, consisting of exploring “consensus” quintiles for each infiltration phenotype (this analysis was previously 
described in the Supplement but not mentioned in the main text). For each infiltration phenotype, we computed 
quintiles in each deconvolution output, and compared “consensus” top and bottom quintiles (sample consistently in 
top or bottom quintile across 3 deconvolutions for a given phenotype). The results of this differential expression 
analysis do not meaningfully change compared to our clustering approach. We comment extensively in the 
Supplement on why we believe the k-means procedure is more capable of finding stable groupings that feature 
substantial transcriptomic differences at the outset, and therefore more effectively filters noise for downstream 
analysis. We believe that this demonstrates the efficacy of this method, by producing nearly identical results to 
alternative methods and does not suffer from the introduction of arbitrary cutoffs. 
 
 
3. The authors have performed a new analysis showing that their deconvolution pipeline can identify age-related 
changes in circulating leukocytes (Supplementary Note). Please provide an accompanying figure. 
 
Our analysis identified a statistically significant age-related increase in the ratio of Myeloid:Lymphoid cells (P = 
0.024). In the newest version of the manuscript, we have included a figure panel to accompany this analysis 
(Supplementary Figure 18). In this figure, we first show how the CIBERSORT and xCell-based estimates for 
Myeloid:Lymphoid Ratio are correlated (r = 0.54). Next, we show the relationship between Age and Myeloid:Lymphoid 
Ratio for xCell. This analysis has been added to the methods section and the accompanying computer code is 
included on our GitHub page. 
 

 
 
Supplementary Figure 18: Myeloid:Lymphoid ratios were calculated in whole blood and adjusted for linear model 
covariates, minus age (see Methods). Left, the myeloid:lymphoid phenotype from xCell is plot against the phenotype 
derived from CIBERSORT. Right, the relationship between age and myeloid:lymphoid ratio in xCell. BETA represents 
the effect size β from the linear model between age (numerical; discrete, binned into 10-year categories) and 
myeloid:lymphoid ratio. Myeloid:lymphoid values are covariate-adjusted. 

 
 
4. Although the manuscript is interesting, we are disappointed with the authors’ presentation. It reads as if different 
authors wrote different sections without making an effort to tie the material into a cohesive whole, particularly in 
relation to style and narrative. In addition, many of the figures are poorly constructed (e.g., Fig. 1b, Fig. 3b) and 
different fonts are used throughout.  
 
We appreciate the reviewer’s concerns regarding the flow and cohesion of the prose within the manuscript. In the 
current version of the text, we made several revisions to improve presentation of our results.  
 
(1) We have posted the primary goals of performing an analysis in the beginning of paragraphs to improve the 
understanding of our motivation. 
(2) We split up the genetic analysis results section into three smaller sections. 



(3) We have tried to improve the flow from one section into another, such as introducing the hot/cold analysis as our 
approach to more precisely explore the transcriptomic differences among samples after our prior finding of significant 
variation in bulk expression being driven by immune content 
(4) We have also worked to improve the writing, and hope this better accomplishes a more cohesive narrative and 
improved clarity throughout the manuscript. 
 
We also thank the reviewer for calling our attention to the inconsistency in figure construction. We have amended the 
problematic figures by altering the font to Helvetica. 
 
 
Minor comments: 
1. The helper T cell definition employed by the authors is confusing. Technically, Th cells are collectively defined as 
CD4 T cells, and this might be a clearer label to use. 
 
We thank the reviewer for identifying a potential source of confusion. Our distinction of the T helper cell phenotype is 
meant to isolate and study infiltration of fully differentiated Th1/Th2 and CD4+ follicular helper cells. We recognize the 
value of more explicitly emphasizing this distinction within the manuscript. To clarify this, within the main text, we 
have written: “The most significant iQTL we identified was an association between rs6482199 and helper T cells (in 
particular, Th1, Th2, and T follicular helper cell content inferred by the deconvolution algorithms) in thyroid samples 
(P = 7.5 x 10-10) (Figure 5c-d).” This is located in the second paragraph of the section “Association of genetic variants 
with infiltrating immune cells.” We reserved the explicit label “CD4+ T cell” for our analysis of CD4:CD8 ratio, and in 
this setting, the “CD4+ T cell” label corresponds to all CD4-bearing cells (including helper T cells, Tregs, and memory 
CD4+ T cells). We have made this distinction in the section “Association of age and sex with immune infiltration”: 
“Lastly, while we identify many new sex- and age-associated changes in tissue immunity, an analysis of aged blood 
samples support previous findings from other studies, including myeloid-biased differentiation1 (Supplementary 
Figure 18), a rise in NK cells2,3, and a decline in the ratio of CD4 to CD8 T cells4 (defined as all CD4 and CD8 bearing 
T cells; see Methods and Supplementary Note for results).” 
 
 
2. The authors state that “xCell and CIBERSORT are imprecise in measuring immune content.” Based on what 
reference? 
 
This comment is a conclusion from the results in our simulations, as described in the “Robust estimation of immune 
cell types in bulk RNA-seq profiles” section. In the previous simulations, we showed that xCell and CIBERSORT 
scores both correlate strongly with the true immune cell type amounts, and correlate with each other, but there are 
differences (correlation coefficient r is not equal to 1, and see new supplementary figure 19 for a case example of 
CIBERSORT vs xCell differences on two samples with same true immune cell counts).   
 
In addition, recent literature has explored the strengths and limitations of various deconvolution methods5-7. In review, 
CIBERSORT performs well with respect to measurement error and amount of unknown sample content (which 
describe parts of the mixture, such as tumor content, not accounted for in the signature matrix)5. And further, 
benchmarks have shown it is capable of accurate estimation of closely related cell types by accounting for 
multicollinearity6. However, other studies have demonstrated that deconvolution methods like CIBERSORT are 
critically dependent on the choice of reference expression matrix. CIBERSORT, in particular, has been demonstrated 
as introducing biological and technical biases in its deconvolution due to the fact that its default reference matrix 
LM22 (which was used in our study) was created using only healthy samples from a single microarray platform7.  A 
major advantage of xCell is that it is particularly robust to any batch effects by using a ssGSEA framework6. However, 
like CIBERSORT, its accuracy is dependent on its reference gene matrix. Furthermore, when first testing these 
methods, we found that the output of xCell is dependent on all samples that are analyzed in a single run. Because 
xCell uses the variability among the samples for a linear transformation of the output score, a given sample can have 
different scores when submitted together with other samples6. With this in mind, in addition to our own simulation 
analyses, we concluded that the most accurate results from downstream analysis would entail immune content 
estimates from xCell and CIBERSORT jointly. We describe some of these observations from the previous literature in 
the supplementary note, “Results from using an aggregate expression analysis versus deconvolution”. 
 
Overall, we have revised the paragraph including this sentence to be more specific:  
 



“Thus, our analyses revealed that relative scores better captured compositional differences in immune 
content, while absolute scores better captured the true cell type amount to the overall sample. Furthermore, while 
xCell-based and CIBERSORT-based estimates correlate with true immune cell amounts and with each other, there is 
not perfect correlation (see Supplementary Figure 19 for a case example where xCell and CIBERSORT differ in 
simulated data). As a result, an effect or difference may be better captured and detected in one deconvolution 
method compared to another. These observations indicate that it could be favorable to leverage information across 
deconvolution estimates. Furthermore, they suggest that the optimal analysis strategy will jointly consider 
CIBERSORT-Relative, CIBERSORT-Absolute, and xCell scores, equally but independently, to best capture the full 
range of deconvoluted immune content (see Supplementary Note).” 
 
 
3. Figure 4f,g: the direction of the effect (‘+’, ‘-‘) is challenging to interpret without a reference. I assume ‘+’ refers to 
female in panel f but this is not explicitly stated. Does ‘+’ imply that the effect is associated with higher age in g? 
Given the ordering of panels, wouldn’t it make more sense to title the figure: “Significant associations with sex and 
age?” 
 
The interpretation of +/- was lost when transferring from table format (original submission) to figure format (current 
submission). We thank the reviewer for catching this and have updated the manuscript. 
 
Within figure caption: 
“(f-g) Summary of (f) sex and (g) age association results from all 189 infiltration phenotypes. +/- indicates effect 
direction from CIBERSORT-Absolute analysis (increase in females or higher age)” 
 
We have also updated the figure title to “Significant associations with sex and age” as suggested. 
 
 
 
 
Reviewer #2 (Remarks to the Author): 
 
The authors have significantly improved the presentation of the methods and results and expanded the analysis in 
response to the previous reviews. There are a few questions that remain, mostly following the new exposition of 
methods and intermediary results:  
 
1. Hot vs. cold analysis: 
1a. The procedure for assignment of samples to hot and cold is now defined clearly. The clearer definition raises 
questions though – Why do we “clone” the 1D vector to three identical columns? Also - I can see that the authors 
explored the idea of using quntiles instead, but I as far as I could see it is not mentioned in the main text. Please 
make sure to report this and to better rationalize and justify this nonstandard design choice. 
 
We thank the Reviewer for identifying the sentence in the Methods regarding the consensus clustering procedure. 
The single 1 x N vector was replicated into a 3 x N matrix (with 3 identical rows, not columns). This was done to 
format the data properly for the consensus clustering algorithm within R. We apologize for any confusion and have 
clarified this in the manuscript. In response to the reviewer’s comment, we have also more explicitly discussed the 
quintiles analysis and our reasoning behind using the consensus clustering approach. We have included an explicit 
reference to our Supplement for readers to consult the details of our comparison of the two methods, and our 
reasoning that the clustering approach is better powered to uncover stable groupings and more effectively filter noise 
from downstream analysis. We have also included the details of IPA on filtered genes, which we discuss on further in 
response to comment 9. 
 
As well, after discussions between the authors and feedback from Reviewer #1 and Reviewer #2, we have decided to 
move the details of the differential expressed gene analysis to the supplement. 
 
 
1b. “we reflected that infiltration patterns are likely tissue-specific, rather than widespread. ” – this is quite a strong 
statement. Can it be the case that this extreme conclusion be somewhat mitigated when we consider “nearly 
significant” cases? For instance – while the mode of #hot tissues for an individual is 1, can it be the case that other 
tissues reach “near significance” levels in those cases (i.e., individuals with a clear evidence for infiltration)? 
 



In the newest version of the manuscript, we introduce a statistical test to further assess tissue-specificity of infiltration 
patterns. 
 
From the methods: 
 
Tissue-specificity of infiltration patterns 
 

We explored whether individuals “hot” in one tissue type were more likely to be “hot” in other tissue types. 
For each cell type, all individuals with at least 8 tissue samples represented within the infiltration phenotypes (for that 
cell type) were identified. The median and mode number of “hot” tissues within these individuals were calculated. 
Hierarchical clustering was performed between tissues and individuals, where binary values represent “hot” or “not 
hot” in a particular tissue for each individual. 

To formally analyze whether “hot” patterns in one tissue are independent of “hot” patterns in other tissues, 
the immune-hot clusters from the infiltration phenotypes were assessed using a Fisher exact test. This was 
performed as follows. First, for a particular cell type, all tissues used within the 189 infiltration phenotypes were 
identified. Next, for each possible pair of these tissues, all individuals who contributed samples to both tissue types 
were identified. A two-by-two contingency table was then created for each tissue pair, where samples are classified 
as “hot” or “not hot” in each tissue. Finally, a Fisher exact test was used to assess the null hypothesis that the two 
tissues exhibited independent “hot” sharing patterns. Non-independent “hot” sharing patterns indicates that the 
probability of one tissue being inflamed is conditional on another tissue being inflamed. This process was repeated 
across tissue pairs for all cell types, and a Bonferroni correction was used to assess significance. The procedure was 
performed on “hot” clusters based on top 20% scores across all three deconvolution methods (quintiles), top 40% 
scores across all three deconvolution methods (top two quintiles), or consensus clustering (described above in 
greater detail). 
 
From the main text: 
 
 Finally, we used our immune-hot clusters (e.g. macrophage-hot) to examine whether individuals with 
inflammation in one tissue type may also exhibit similar inflammation in their other tissue types. For each cell type, we 
analyzed the distribution of “hot” tissues across individuals with at least 8 different tissue samples. Within the 
consensus clusters, we discovered that individuals were labeled “hot” in an average of 9.1-12.5% tissue samples per 
cell type, with a mode of 1 “hot” tissue per individual for a single cell type (Supplementary Figure 9) (within quintile 
clusters, individuals were labeled “hot” in an average of 16.6-25.0% tissue samples). In addition, across individuals, 
there were no clear, common “hot” inflammation patterns representing multiple tissues (Figure 3b; Supplementary 
Figure 10). We developed a statistical method to formally test the hypothesis of independent “hot” inflammation 
patterns between any two tissues (see Methods). This hypothesis could not be rejected in any tissue pair using the 
consensus clusters (P < 2.8 x 10-5); however, by using the quintile-based clusters, we found evidence (P < 2.8 x 10-5) 
for an association between “hot” lung and “hot” whole blood samples for CD8+ T cell content (P = 2.7 x 10-6; in the 
consensus clustering analysis, we found a P-value = 1.9 x 10-3; Supplementary Figure 21). We next relaxed the “hot” 
cluster requirements to now include individuals within the top two quintiles (40%) across all three deconvolution 
methods, which comprise individuals at above average but not necessarily extreme immune cell levels. Using these 
new clusters, we found 9 pairs of tissues with significant associations (P < 2.8 x 10-5) for particular immune cells (out 
of 1796 tissue pairs tested) (see Supplementary Table 20). Therefore, we note that extreme infiltration patterns 
appear to generally be phenotypically tissue-specific, rather than widespread (e.g. “hot”-sharing between tissues). 
However, when assumptions were relaxed to reflect above average rather than extreme immune content, there 
appeared to be evidence for particular pairs of tissues with some level of shared immunity.  
 
 
From the supplement: 
 
Supplementary Table 20: Significant results from assessing the sharing of “hot” patterns between two tissues. 
Clusters are based on the top two quintiles (40%) approach, and p-values are based on Fisher’s exact p-values.  
 
https://drive.google.com/drive/u/2/folders/1veU3GKZqvb1mI-aH6BGPCHGuMRmyiOLr 
See SuppTab19.txt. 
 
 
Supplementary Figure 21: Heatmaps display “hot” patterns across individuals with both lung and whole blood 
samples. If individuals do not have both whole blood and lung samples, individuals were removed from further 



analysis. “Hot” groupings were determined by (a) consensus k-means clustering, (b) quintiles, and (c) top two 
quintiles. Rows represent tissues and columns represent individuals. Red indicates the individual was labeled “hot” in 
that tissue type, while blue represents not “hot” (intermediate or cold). Columns (individuals) were clustered by 
Euclidean distance. 
 
a 
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2. In the new suppl figure 12 (QTL analysis), the deviation from the null distribution towards higher significance 
seems to be only achieved by CyberSort-Abs. It is therefore somewhat confusing to see that combining all three 
methods yielded more significant calls than either one in isolation. Please explain this point.  
 
In our paper, we describe how each of our deconvolution measurements (xCell, CIBERSORT-Relative, CIBERSORT-
Absolute) have different estimates of the immune cells within the samples, and that the ideal analysis should take into 
account each of the different deconvolution measurements. Our approach is to use Empirical Brown’s method to 
combine p-values from all three analyses in each of the deconvolution scores separately. In Figure 5a, we show that 
of the 31 infiltration phenotypes where we identified at least one iQTL with Empirical Brown’s P < 5 x 10-8, 23 had P < 
1.0 x 10-5 across xCell, CIBERSORT-Relative, and CIBERSORT-Absolute analyses. Furthermore, 12 of these 31 
phenotypes had P > 5e-8 in each of the separate analyses (as shown by Figure 5b). Our interpretation of this 
observation is that Empirical Brown’s method assigns “higher confidence” to where the results are consistent across 
the different deconvolution methods, reducing the bias from selecting a single method and improving power by 
valuing consistency. In these 12 phenotypes, the p-values under a single deconvolution analysis never reached 
genome-wide significance but, together, our method boosts the p-value less than 5e-8. We also show in Figure 5b, 
there are 9, 5, or 4 phenotypes where there was an iQTL associated at P < 5e-8 in a separate analysis in 
CIBERSORT-Relative, CIBERSORT-Absolute, or xCell respectively but not in any other phenotype, and not in the 
combined Empirical Brown’s p-value analysis. By choosing a “consensus” p-value, we can be more confident about 
the association and less worried about any estimation error induced by the choosing a particular deconvolution 
method. In the case of the specific iQTL in question (rs648299), the separate p-values of 5.7e-7, 3.29e-9, and 9.8e-4 
resulted in an Empirical Brown’s p-value = 7.5e-10. 
 
 
3. Related to that -- can it be that the procedure for combination of P- values in the iQTL analysis somehow creates 
an inflation, and may thus require a more stringent null? (this can be tested by shuffling the data). 
 
To test whether Empirical Brown’s method (EBM) could inflate P-values in our study, we performed shuffled data 
experiments using our original finding of rs648299 and its association with the helper T cell phenotype in thyroid 
tissue. In the original study using real data, this SNP has an EBM P-value = 7.5 x 10-10, derived from P-values = 5.7 x 
10-7, 3.3 x 10-9, and 9.8 x 10-4 in CIBERSORT-Rel, CIBERSORT-Abs, and xCell separate analyses. 
 
In our implemented shuffling procedure, we sampled the covariate-adjusted phenotypic values for the helper T cell 
phenotype, without replacement between individuals but identically across deconvolution methods and within 
individuals. To clarify, this means that each phenotypic value will be assigned to a new individual, and individual i who 
is assigned the CIBERSORT-Rel value from individual j will also be assigned the CIBERSORT-Abs and xCell values 
from individual j. In this way, the covariance matrix between CIBERSORT-Rel, CIBERSORT-Abs, and xCell score will 
be preserved and identical, which is used in Empirical Brown’s method. We next analyzed the association between 
the original rs648299 and the new, shuffled phenotype for CIBERSORT-Rel, CIBERSORT-Abs, and xCell using a 
simple linear model. The P-values from the three linear models were combined using EBM. This process was 
repeated for 10,000 simulations, and P-value inflation was assessed by analyzing false positive rate. False positive 
rate was calculated by identifying the percentage of simulations where P < 0.05. 



 
Our results found a false positive rate of 0.0529, 0.0504, and 0.0483 for CIBERSORT-Rel, CIBERSORT-Abs, and 
xCell separate analyses. Using the combined EBM framework, the false positive rate was lower, 0.0388. We also 
note that there was a single simulation where CIBERSORT-Absolute analysis returned a P-value of 1.9 x 10-6, which 
is lower than a Bonferroni-corrected P-value threshold of P < 0.05/10000 = 5.0 x 10-6. In this case, analysis in 
CIBERSORT-Relative returned P = 7.3 x 10-3 and analysis in xCell returned P = 4.4 x 10-2. The combined EBM P-
value was 3.6 x 10-5, which is greater than the P < 5.0 x 10-6 Bonferroni cut-off. Thus, the combined p-value 
framework helped decrease the significance of this P-value such that it would not be rejected under a Bonferroni 
correction by leveraging the lower strength of association within the other deconvolution method analyses.  
 
Overall, in this shuffled data experiment, there did not appear to be P-value inflation.  
 
 
We have added this analysis as a supplementary section in “Using empirical data to analyze potential inflation in 
Empirical Brown’s P-values.” In the main text, we mention: 
 
“The most significant iQTL we identified was an association between rs6482199 and helper T cells (in particular, Th1, 
Th2, and T follicular helper cell content inferred by the deconvolution algorithms) in thyroid samples (P = 7.5 x 10-10) 
(Figure 5c-d). We conducted simulations to examine the false positive rate between this SNP and the phenotype, but 
found no evidence for P-value inflation (see Supplementary Note).” 
 
 
4. A p value cutoff of 5.0 x 10-8 is used to define “genome wide significance”. The meaning of this cutoff is not very 
clear. How does is translate to false discovery rate?  
 
There are many methods used for multiple hypothesis testing corrections: Benjamini-Hochberg, q-values, Bonferroni, 
etc. One issue in their implementation within genetic analysis has been the high correlation between individual SNPs 
in the human genome due to linkage disequilibrium. This results in a much fewer number of distinct regions in the 
genome that are being tested compared to the number of different SNPs actually being tested (since each SNP is not 
independent from another). As a result, it has been “unofficially” adopted by much of the GWAS literature to use a 
genome-wide significance threshold of P < 5.0 x 10-8, which is roughly derived from a Bonferroni correction over 
approximately 1 million distinct regions in the genome (broken up by recombination)8. When preparing our 
manuscript, we carefully discussed a significance threshold to report. At that time, after reviewing some of the most 
recent literature in Nature Genetics9-14, we decided to report the P < 5.0 x 10-8 threshold within our final analysis. We 
believe that false discovery rate, Bonferroni correction, q-values, and other approaches are also appropriate, but that 
a p value cutoff of 5.0 x 10-8 is suitable and in line with multiple hypothesis corrections currently used within the 
majority of GWAS literature. 
 
5. The top hits in the iQTL seem to have changed between this and the original submission. I am assuming that this 
is because the authors expanded the set of infiltration phenotypes. Can the authors please confirm that the previous 
results (e.g., the top three hits) have been reproduced in their reanalysis and that they are not featured in the 
manuscript since there are other, new and more significant, hits? 
 
The top iQTLs hits are different between the two analyses as the new analysis has been expanded and produced 
new, more significant iQTLs. In our new analysis, the previous most significant iQTL, rs77155650, has P =  2.80 x 10-

6, and the previous 2nd most significant iQTL, rs116827016, has P = 2.83 x 10-3. The infiltration phenotype for the third 
most significant iQTL, CD4+ T cell in sun exposed skin tissue, was removed due to the split of the CD4 T cell 
category into CD4 T cell subtypes. 
 
 
6. The “shuffled deconvolution” analysis is important to support the results. Please include it in the manuscript 
(methods/ supplementary with a mentioning in the main text). 
 
We have added the following sentence to the first paragraph of the “Evaluating infiltration across human tissues by 
using deconvolution” section:  
 
“We note that deconvolution of the true GTEx gene expression profiles produced very distinct estimates compared to 
“control” samples where the gene expression profile was shuffled (see Supplementary Note and Supplementary 
Figure 20).” 



 
In the supplementary note, we have a section titled “Control: Influence of random genes on deconvolution estimates” 
that describes the previously discussed analysis in detail (from the previous review). 
 
 
7. Following the previous review, the authors have demonstrated that a simple approach (with no deconvolution) 
works similarly to the deconvolution- scheme in the case of hot vs. cold analysis, as well as the iQTL analysis (albeit 
with less power). While the authors provide some rationalization for not pursuing this simpler approach in the 
response letter, the explanation is somewhat lacking since it is not accompanied by any empirical evidence from this 
study. While such empirical evidence would have been ideal, I think that the current analysis is sufficient. However, in 
order to be completely transparent with the readers -- please include this simple analysis (hot vs. cold and iQTL) as a 
supplementary section and acknowledge the fact that it can recover similar trends. 
 
We have included a description of our previous analysis within the supplementary section titled “Results from using 
an aggregate expression analysis versus deconvolution”.  
 
 
Minor comments: 
 
8. The differences between the three methods are now clearly explained. It would be nice however (but not critical), 
to make a better case as for why taking the consensus is a good approach. Specifically: “these observations indicate 
that the optimal analysis strategy will jointly consider CIBERSORT- Relative, CIBERSORT-Absolute, and xCell 
scores” can the authors demonstrate this point based on their pseudo- simulated analysis? (described under section 
“Robust estimation of immune cell types in bulk RNA-seq profiles.”) 
 

We have added a new supplementary section titled “Analyzing the utilization of multiple deconvolution 
methods in simulations”, where we assess power and false positive rates using pure simulations and synthetic mix 
data. This section has been copied below. We link to it within the final paragraph of the “Robust estimation of 
immune cell types in bulk RNA-seq profiles” section by a referral to the supplementary note. 

 
In the main text, we describe how xCell and CIBERSORT calculate scores that correlate with the true 

amounts and correlate with each other, but do not perfectly correlate with each other. In Supplementary Figure 19, 
we show how even in simulated synthetic mixes where the true amounts are known to be equal, the immune cell 
estimates can differ. For example, in this particular scenario, CIBERSORT-Absolute correctly detects that CD4+ T 
cell content is equal between the two simulated samples. In contrast, xCell produces an estimate for Sample 2 that is 
roughly 60% of Sample 1. Therefore, the overall correlation results in our simulations have shown that these methods 
describe alternative yet reasonably accurate perspectives of immune cells in the test sample; but, there are clear 
cases where there exist differences. These differences can lead to effect size heterogeneity, where an effect may be 
better detected in one deconvolution method compared to another, such as xCell versus CIBERSORT (due to biases 
from different algorithms or reference matrices) or Relative versus Absolute (does the genetic effect alter the 
composition of immune cells in the sample or does the genetic effect alter the total amount of a particular immune cell 
in the sample?). To identify associations, we hypothesized that it makes sense to utilize this statistical heterogeneity 
within analyses by leveraging shared signals across deconvolutions rather than ignoring it by choosing a single 
deconvolution method. 

To test this hypothesis using our previously simulated N=80 synthetic samples, we consider a SNP analysis. 
We simulated a SNP genotype with MAF = 0.4 in N=80 individuals, coded as 0, 1, or 2 from a binomial distribution. In 
the causal scenario, we let the SNP randomly explain 0 – 8% variance in each of the three deconvolution phenotypes 
(CIBERSORT-Abs, CIBERSORT-Rel, and xCell) by (1) randomly selecting three values from a uniform distribution 
between 0 and 0.08 to allow effect size heterogeneity across the deconvolution outputs, and (2) rescaling the 
genotypic (binomial) and environmental (original deconvolution score) components. In the non-causal scenario, the 
SNP contributes 0% variance to each of the deconvolution phenotypes (thus, phenotypes used are the original 
deconvolution scores). We then tested the association between the SNP and phenotype for each deconvolution 
method using a linear model, merged these P-values using the combined Empirical Brown’s method, and rejected the 
null hypothesis of no association when P < 0.05. We repeated this 10,000 times in the causal scenario and 10,000 
times in the non-causal scenario. We found that the power in the causal scenarios was 0.5164 using the Empirical 
Brown’s method, but 0.4585, 0.4664, and 0.4662 in the xCell, CIBERSORT-Rel, and CIBERSORT-Abs separate 
analyses. Furthermore, we found that the false positive rate increase in the non-causal scenario was negligible: 
0.0555 using the Empirical Brown’s method, and 0.0517, 0.0509, and 0.0500 in the xCell, CIBERSORT-Rel, and 
CIBERSORT-Abs separate analyses. Finally, our analyses found zero non-causal SNPs with P < 5 x 10-8, but 5 of 



10,000 using the EBM P-values, compared to 3, 1, and 2 in the separate analyses from xCell, CIBERSORT-Rel, and 
CIBERSORT-Abs. Therefore, the combined approach using Empirical Brown’s method revealed superior power while 
maintaining low false positive rates as compared to the separate analyses. 

 

 
 
Supplementary Figure 19: Two synthetic samples with 10% CD4 T cell content. Sample 1 is in blue, sample 2 is in 
orange. CD4+ T cell content was estimated in both samples using xCell and CIBERSORT-Absolute. Along the y-axis, 
the relative difference in scores to sample 1 for each deconvolution method are shown: (Estimated CD4+ T cell score 
in Sample 1 / Estimated CD4+ T cell score in Sample K; therefore, sample 1 (blue) has a relative difference of 1).  
 
 
9. Enrichment analysis of DEG genes in hot vs. cold: the authors note that while some genes are indeed members of 
the signature used to stratify the samples, some are new. However, this point is ignored in the enrichment analysis 
(IPA). Ideally the authors should repeat this analysis, while excluding the signature genes. This should be reflected in 
both the foreground and background gene sets used for the enrichment tests. 
 
As per the reviewer’s comment, we have repeated pathway analysis on the DEGs after removal of all signature 
genes used by xCell and CIBERSORT. We found that the results do not change substantively, as the most commonly 
dysregulated pathways still pertain to immune signaling, immune maturation, and inflammation. This is driven in large 
part by the fact that the major DEGs post-filtering are still immune-related genes, some of which are immune cell-
specific markers that were not present in the xCell and CIBERSORT reference panels. Nonetheless, we now more 
clearly identify the presence of metabolic and signaling pathways commonly dysregulated, namely the LXR/RXR and 
phospholipase C signaling pathways. Of note, the LXR/RXR pathway is central to fatty acid metabolism, and has 
been shown drive inflammation in mouse models. However, we remark that it appears these pathways are predicted 
to be dysregulated largely due to the presence of the post-filtered immune DEGs that act in these pathways. We have 
reported the full results of this new analysis in the manuscript and accompanying materials. 
 
 
10. “Interestingly, recent immunological evidence suggests a clear genetic influence over tissue infiltration [7]” 
Reference seems wrong  
 
The previously cited research investigated the role of TGF-β during the earliest stages of T cell priming by generating 
mice lacking expression of integrin alpha-V in dendritic cells. In brief, without this gene expressed, the amount of 
CD8+ memory T cells in epidermis were significantly reduced and the long-term immune response could be 
significantly impaired. As well, previous research mentioned within that paper has shown the importance of canonical 
resident memory T cell markers, CD69 and alphaE-integrin, in tissue residency functions. However, to avoid 
confusion, we have removed this sentence and accompanying reference from the manuscript. 
  
 
11. On the first results section and Figure 1: please explicitly describe the relationship between the 22 cell type panel 
(CSORT) and the 64 panel (xCell). 



 
We have modified the first section of the results to more explicitly describe the commonalities and differences in cell 
types inferred by xCell and Cibersort: 
 
“ 

To describe immune content from bulk RNA-seq samples, we used two central algorithms: xCell15 and 
CIBERSORT16. Both algorithms include slightly different cell types and reference gene sets for estimation. xCell relies 
on a modification of single sample gene-set enrichment analysis to estimate cell type scores of 64 immune and 
stroma cell types, including various subtypes of CD8+ T cells, CD4+ T cells, B cells, dendritic cells, macrophage 
polarization states, and other innate immune cells. CIBERSORT employs a linear support vector regression model to 
estimate cell type “relative” proportions of 22 immune cell types. This includes many of the same broad cell types as 
xCell, but with fewer subtypes (see Methods for the list of cell types estimated by xCell and CIBERSORT that were 
used in this manuscript). Additionally, CIBERSORT calculates a “scaling factor” to measure the amount of total 
immune content in the sample, allowing the calculation of “absolute” scores (which are the product of the scaling 
factor and cellular proportions). We refer to the relative proportions from CIBERSORT as “CIBERSORT-Relative” and 
the product of the relative proportions with the scaling factor as “CIBERSORT-Absolute”. We estimate three scores 
for each cell type to describe the immune content from the gene expression data for each tissue in each individual: 
xCell, CIBERSORT-Relative, and CIBERSORT-Absolute scores. 
 “ 
 
Within Figure caption 1b, we included additional information: 
“ 
(b) A graphical overview of downstream statistical analysis. Immune content was estimated by using three different 
algorithms. xCell estimates various subtypes of CD8+ T cells, CD4+ T cells, B cells, dendritic cells, macrophage 
polarization states, innate immune cells, and non-immune cells. CIBERSORT, which only measures immune cells, 
estimates fewer subtypes and instead distinguishes between resting and activation states of major cell types. Both 
algorithms utilize different reference gene sets. 
“ 
 
12. “Many tissues featured a majority of samples with **trace** immune enrichment,” Typo? 
 
This sentence in the manuscript is in reference to Figure 2b, and Supplementary Figures 4-7. Across the 3 
deconvolution methods, the median estimated content of CD8 T cells, macrophages, B cells, and Neutrophils in most 
tissues is close to zero. As a result, we reflected that the majority of samples feature “trace” enrichment in reference 
to the small but nonzero immune content in most samples. However, we recognize the ambiguity of the sentence as 
phrased, and have revised it accordingly. The current version of the manuscript states, “Many tissues featured a 
majority of samples with a minimal amount of immune cells…” 
 
 
13. Supplementary Table 3: please specify how much variance is captures by each PC in each of the tissues. 
 
We have added this as an additional column in Supplementary Table 3 (see Google Drive file, SuppTab3.txt): 
https://drive.google.com/drive/u/1/folders/1veU3GKZqvb1mI-aH6BGPCHGuMRmyiOLr 
 
 
14. “Furthermore, we found that the top 31 iQTLs from these 31 phenotypes were significantly enriched for being a 
previous GWAS” please specify the fold enrichment (i.e., observe vs. expected percent of GWAS amongst the iQTLs) 
and P- value. 
 
The permutation-based p-value and the observed percent of GWAS hits amongst the iQTLs are included in the 
current version of the paper. We have included the expected percent of GWAS hits amongst the iQTLs within our 
paper, which is 5.4%. This is a 3.6-fold enrichment (19.4% observed versus 5.4% expected) in our 31 observed 
iQTLs (P = 5.5 x 10-3).  
 
15. Y axis label in Fig 5e: I am assuming the authors are referring to the T helper cells infiltration phenotype. 
However, “Tfh” usually stands for T follicular helper cells (a specific subtype of CD4+ T cells).  
 
Thank you for noticing this mix-up. We have corrected the figure to now display “CD4+ helper T cells”. 
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REVIEWERS' COMMENTS: 
 
Reviewer #1 (Remarks to the Author): 
 
The authors have done a nice job addressing my critiques from the prior round of review. I have just a 
few remaining comments (all minor) that the authors should consider addressing. 
 
1. In at least two instances, the authors refer to the deconvolution algorithms as “single-cell” (pages 3, 
13). Deconvolution methods cannot extract single-cell information from bulk tissue transcriptomes. 
Please clarify/correct. 
2. Discussion: “these methods do not allow differentiation between tissue-resident and tissue-
infiltrating cellular subsets.” This is a limitation of available reference profiles, not the deconvolution 
algorithms. For example, if the latest version of CIBERSORT was used instead (CIBERSORTx, PMID 
31061481), the authors could have separately defined reference profiles for tissue-resident and 
infiltrating subsets using scRNA-seq data. Please clarify this point. 
3. Discussion: “While single-cell sequencing can provide a more … accurate perspective”. Perhaps, 
although the authors should acknowledge the caveat that scRNA-seq requires tissue dissociation if 
solid tissues are analyzed. As this process can severely distort cell type proportions, it is quite possible 
that deconvolution methods are superior for enumerating cell fractions from solid tissue biopsies when 
optimized reference profiles are available. 
 
 
 
Reviewer #2 (Remarks to the Author): 
 
The authors revised the manuscript in an effort to address many of the concerns. There are still 
certain issues with some of the analysis, however I believe that the paper is capable of making a 
useful contribution to cancer genomics. 
 
1. Hot vs. cold analysis: the authors have improved the description of the different methods and 
revised the cross- tissue comparative analysis. However, I am concerned about the way hot and cold 
instances are being called. The source for this concern is that in the example provided by the authors 
(suppl figure 21) where we see that at least in one case (blood) there was *zero* overlap between 
cases called “hot” by the clustering method vs. the quintile method. It is not very intuitive to me how 
this can happen; Partial overlap is understandable; however, zero overlap casts doubt on any 
downstream analysis [e.g., cross tissue comparison]. 
 
2. The description of the empirical evaluation of p- value inflation is somewhat cryptic (“we sampled 
the covariate-adjusted phenotypic values for the helper T cell phenotype, without replacement 
between individuals but identically across deconvolution methods and within individuals ”) Please 
revise and clarify. 
 
3. Previous comment on acknowledging the simple approach (with no deconvolution) that in some 
instances works similarly to the deconvolution- scheme (in the case of hot vs. cold analysis, as well as 
the iQTL analysis, albeit with less power). In order to be completely transparent with the readers -- 
please include this simple analysis (hot vs. cold and iQTL) as a supplementary section and 
acknowledge the fact that it can recover similar trends. This comment was not addressed by the 
authors, yet, I believe it is important for keeping the readers informed. 



We thank the reviewers for reading our manuscript and once again providing feedback. 
We have made revisions to our manuscript and responded to the comments, as 
described below. Please see tracked changes under the main manuscript text.  
 

 

REVIEWERS' COMMENTS: 
 
Reviewer #1 (Remarks to the Author): 
 
The authors have done a nice job addressing my critiques from the prior round of 
review. I have just a few remaining comments (all minor) that the authors should 
consider addressing.  
 
1. In at least two instances, the authors refer to the deconvolution algorithms as “single-
cell” (pages 3, 13). Deconvolution methods cannot extract single-cell information from 
bulk tissue transcriptomes. Please clarify/correct. 

We have edited the main text accordingly. 

Page 3 

Previous: We first hypothesized that the relative and absolute scores from CIBERSORT 
encapsulated different aspects of the single-cell deconvolution 

Current: We first hypothesized that the relative and absolute scores from CIBERSORT 
encapsulated different aspects of the cell-type deconvolution 

Page 11 

Previous: (since differences in the sample’s single-cell composition will influence 
population-level measurements) 

Current: (since differences in the sample’s cell-type composition will influence 
population-level measurements) 

 
2. Discussion: “these methods do not allow differentiation between tissue-resident and 
tissue-infiltrating cellular subsets.” This is a limitation of available reference profiles, not 
the deconvolution algorithms. For example, if the latest version of CIBERSORT was 
used instead (CIBERSORTx, PMID 31061481), the authors could have separately 
defined reference profiles for tissue-resident and infiltrating subsets using scRNA-seq 
data. Please clarify this point. 

This is an excellent point. We have adopted the reviewer’s recommendations and made 
changes accordingly: 



“Furthermore, the available reference profiles do not allow differentiation between 
tissue-resident and tissue-infiltrating cellular subsets, which would require custom 
reference profiles based on single-cell RNA-seq (scRNA-seq) data57.” 

 
3. Discussion: “While single-cell sequencing can provide a more … accurate 
perspective”. Perhaps, although the authors should acknowledge the caveat that 
scRNA-seq requires tissue dissociation if solid tissues are analyzed. As this process 
can severely distort cell type proportions, it is quite possible that deconvolution methods 
are superior for enumerating cell fractions from solid tissue biopsies when optimized 
reference profiles are available. 
 

This is another excellent point that we now mention in the discussion of our manuscript. 

“While scRNA-seq information can provide a more intricate perspective of the infiltrating 
immune cells, the true cell-type proportions in the samples are distorted from tissue 
dissociation during the sample preparation process57. Therefore, single-cell sequencing 
may potentially be inferior to deconvolution for enumerating cell-type fractions from solid 
tissue biopsies.” 
 
 
Reviewer #2 (Remarks to the Author): 
 
The authors revised the manuscript in an effort to address many of the concerns. There 
are still certain issues with some of the analysis, however I believe that the paper is 
capable of making a useful contribution to cancer genomics. 
 
1. Hot vs. cold analysis: the authors have improved the description of the different 
methods and revised the cross- tissue comparative analysis. However, I am concerned 
about the way hot and cold instances are being called. The source for this concern is 
that in the example provided by the authors (suppl figure 21) where we see that at least 
in one case (blood) there was *zero* overlap between cases called “hot” by the 
clustering method vs. the quintile method. It is not very intuitive to me how this can 
happen; Partial overlap is understandable; however, zero overlap casts doubt on any 
downstream analysis [e.g., cross tissue comparison]. 
 

We thank the reviewer for the comment. However, we believe the reviewer has 
referenced the incorrect figure, as supplementary figure 21 corresponds to a GeneMania 
network. We believe the reviewer meant to reference the previous supplementary figure 14, 
which contains heatmaps of “hot” patterns across individuals with both lung and whole blood 
samples, as derived from the clustering, quintile, and top two quintile methods. In the previous 
Supplementary Figure 14, the 3 heatmaps are created separately and hierarchical clustering 
was performed on the individuals (columns) separately for each plot. Therefore, they do not 



contain the same ordering of samples across the horizontal axis. We believe that this is the 
source of confusion, and have modified the figure’s caption accordingly: 

 
“… Columns (individuals) were clustered by Euclidean distance. Therefore, due to 

differences in clustering, one column across the three plots represents three different 
individuals.” 

 
Overall, there are 9 whole blood samples that are labeled “hot” in both the k-means 

clustering analysis and the quintiles analysis for CD8 T cells. We show this graphically, with a 
new Supplementary Figure 12. Supplementary Figure 12 displays a heatmap of “hot” cases for 
whole blood samples across the three approaches (k-means clustering, top quintile, top two 
quintiles), without clustering and aligned by sample (each column represents the same sample). 
All “hot” samples identified by the k-means approach are “hot” samples in the top quintile 
approach, but not vice versa.  

We mention this in the Supplementary Note, “Overlap of hot clusters across clustering 
approaches”. 

 

  
 
Supplementary Figure 12: “Hot” CD8 T cell cases across the whole blood samples, labelled by 
the three different approaches: k-means consensus clustering, top quintile, and top two 
quintiles. Each column represents a different sample, while each row represents a different 
hot-labeling approach. Red cells indicate hot cases, while blue indicates not hot cases.  
 

Whole Blood 'Hot' Patterns
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Top 2 Quintiles



 

 
2. The description of the empirical evaluation of p- value inflation is somewhat cryptic 
(“we sampled the covariate-adjusted phenotypic values for the helper T cell phenotype, 
without replacement between individuals but identically across deconvolution methods 
and within individuals ”) Please revise and clarify. 

In the supplementary section titled “Evaluating potential EBM P-value inflation”, we 
have revised the above description. 

“In our experiment, we used the covariate-adjusted phenotype values. Each individual’s 
phenotype values are assigned to a new individual, such that individual i who is 
assigned the CIBERSORT-Rel value from individual j will also be assigned the 
CIBERSORT-Abs and xCell values from individual j. Sampling was performed without 
replacement. In this way, the covariance matrix between CIBERSORT-Rel, 
CIBERSORT-Abs, and xCell scores is preserved and identical to the original data 
(which is used in the Empirical Brown’s method).” 

 
3. Previous comment on acknowledging the simple approach (with no deconvolution) 
that in some instances works similarly to the deconvolution- scheme (in the case of hot 
vs. cold analysis, as well as the iQTL analysis, albeit with less power). In order to be 
completely transparent with the readers -- please include this simple analysis (hot vs. 
cold and iQTL) as a supplementary section and acknowledge the fact that it can recover 
similar trends. This comment was not addressed by the authors, yet, I believe it is 
important for keeping the readers informed. 

As stated in the previous reviewer response, we included this within the supplementary 
section titled “Using an aggregate expression analysis versus deconvolution”.  
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