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Fig. S1. (A) Temporal evolution of helicity (%) in folded (CHARMM?36/TIP3P and
CHARMMB36/TIP4P),  partially  folded @ (CHARMM?22*/TIP4P-D  and  Amber
ff03ws/TIP4P/2005, following unfolding and prior to complete disordering), and unfolded
(CHARMM22*/TIP4P-D and Amber ff03ws/TIP4P/2005, from completely unfolded to end of
simulation) states of APB42 and aS. The broken vertical lines represent the time for complete
unfolding for CHARMM22*/TIPAP-D (red) and Amber ffO3ws/TIP4P/2005 (orange).
Running averages over 40 data points are shown. (B) Time convergence of cumulative average
helical content (%) for the equilibrium MD (EMD) for all the states and one Hamiltonian
replica exchange with solute scaling (H-REST) for comparison. (C) Comparison of the helical
conformational subspaces sampled by EMD and H-REST (aS sampled with
CHARMM22*/TIP4P-D is only shown).
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Fig. S2. Time-averaged residue-wise secondary structure probabilities (%) for the last 200 ns
of (A) AB42, and (B) aS in their helically folded and partially folded helical states.
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Fig. S3. Structure factor S(g) as a function of the wave vector g for the helically folded, partially
folded helical and completely unfolded states of (A) AB42 and (B) aS on a log-log scale. The
inset subpanels in the bottom left corner in both panels A and B show the the variation of the
R, (with standard error in red) with the fold propensities from folded to unfolded. The estimates
of -1/y (from the slope along with the standard error) for the fully folded and the fully unfolded

states of AB42 and aS are annotated alongside their corresponding plots.
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Fig. S4. Inter-domain interaction maps of (A) AP42
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and (B) aS computed for their

corresponding helically folded, partially folded helical and unfolded states using CONAN! tool
for analysing tertiary structures. The interactions between domains within 5 A occupy the upper
left triangle, while interactions between domains within 4 A are in the lower right triangle.
Specific interactions in the maps are coloured: orange — hydrophobic, green — hydrogen bond,

and purple — salt bridge. The interaction maps were constructed from contacts with
probabilities >50%.
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Fig. SS. Dynamic cross-correlation network analyses of the helically folded (A-D) and
unfolded (E-H) states of AB42. (A) Path length distribution, (B) Node degeneracy showing
number distribution of paths (out of 500) for each of the source and sink pairs, (C) Consensus
networks corresponding to regions Helix 1 (source = S8 and sink = G25) and Helix 2 (source
= K28 and sink = G38) visualized in VMD with all possible paths, and (D) Betweenness
centrality distribution, showing the network hubs for the helically folded states. (E) Path length
distribution, (F) Node degeneracy, (G) Consensus networks of Helix 1 and Helix 2, and (H)
Node (betweenness) centrality for the unfolded states. The thickness of the paths indicates how
strongly the two residues are correlated. The network structures are overlaid on the most
representative folded state, and the corresponding optimal/shortest path of correlated motions
is shown below each network.
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Fig. S6. Dynamic cross-correlation network analyses of the helically folded and unfolded states
of aS. (A) Path length distribution, (B) Node degeneracy, (C) Consensus networks
corresponding to regions Helix 1 (source = V3 and sink = V37) and Helix 2 (source = K45 and
sink =T92), and (D) Node centrality for the helically folded states. (E) Path length distribution,
(F) Node degeneracy, (G) Consensus networks of Helix 1 and Helix 2, and (H) Node centrality
for the unfolded states.
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Fig. S7. Dynamic cross-correlation network analyses of the partially folded helical states of
AB42 and aS. (A) Path length distribution, (B) Node degeneracy, (C) Consensus networks of
Helix 1 and Helix 2 (same region as in Fig. S2), and (D) Betweenness centrality of AB42. (E)
Path length distribution, (F) Node degeneracy, (G) Consensus networks of Helix 1 and Helix
2 (same region as in Fig. S3), and (H) Node or betweenness centrality of aS. Broken lines
between two nodes represent coupling including all residues in between.
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Fig. S8. Number of retained water molecules within a 10 A hydration layer around the (A)
CHC of AB42 and (B) the hydrophobic core (G68 — A78) of NAC in aS. The last 200ns of
simulations are shown with averages taken over 20 data points.
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