iScience, Volume 23

Supplemental Information

Tuning the Binding Affinity

of Heme-Responsive Biosensor for Precise

and Dynamic Pathway Regulation

Jian Zhang, Zhiguo Wang, Tianyuan Su, Huanhuan Sun, Yuan Zhu, Qingsheng Qi, and Qian Wang

1	Supplementary Files
2	Tuning the binding affinity of heme-responsive biosensor for precise
3	and dynamic pathway regulation
4	
5	Jian Zhang ¹ , Zhiguo Wang ² , Tianyuan Su ¹ , Huanhuan Sun ¹ , Yuan Zhu ¹ , Qingsheng Qi ^{1,3*} ,
6	Qian Wang ^{1*}
7	
8	1. State Key Laboratory of Microbial Technology, National Glycoengineering Research Center,
9	Shandong University, Qingdao 266237, P. R. China
10	2. Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou,
11	311121, P. R. China
12	3. CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology,
13	Chinese Academy of Sciences, Qingdao 266101, P. R. China
14	
15	
16	*Corresponding authors:
17	Qingsheng Qi
18	Tel: 0532-58632580, E-mail: qiqingsheng@sdu.edu.cn;
19	Qian Wang
20	Tel: 0532-58631580, E-mail: qiqi20011983@gmail.com, lead contact author
21	
22	
าว	
23 74	
25	
25	
20	

27 TRANSPARENT METHOD

28 General procedure

All the strains used in this study were summarized in Supplementary Table S3.
Molecular cloning and manipulation of plasmids were done with *E. coli* DH5α. All the
plasmids and oligonucleotides used in this work were listed in Supplementary Table S4 and
Table S5.

33 Construction of heme biosensor

34 To construct a related plasmid that characterizes HrtR function, the *hrtR* and *gfp* genes 35 were generated by PCR with primers hrtR-F/hrtR-R, gfp-F/gfp-R, respectively. 36 Chloramphenicol resistance gene and p15A ori were cloned with primers p15A-F/p15A-R 37 using plasmid pACYC184 as the template. Then the three fragments were assembled together 38 using the Gibson method(Gibson et al., 2009) to obtain the plasmid P1. To construct plasmids 39 P0, P2, P3 and P4, the resulting fragments were transformed into E. coli DH5a after the 40 treatment by T4 PNK and T4 ligase, which generated by primers p0-F/p0-R, p2-F/p2-R, p3-41 F/p3-R, p4-F/p3-R were performed, respectively.

42 Construction and characterization of HrtR saturation mutant library

All HrtR mutants were obtained by using plasmid P1 as template, the primers used for the mutation are listed in Supplementary Table S5. Phanta Max Super-Fidelity DNA Polymerase P505 (Vazyme Biotech Co.,Ltd) was used in all PCR reactions. Resulting fragment was assembled using the Gibson method. The obtained plasmids were transferred into DH5 α , respectively, and the obtained strain was cultured in a 24-well plate. After 24 hours of culture, the green fluorescence intensity was detected by a microplate reader. (GFP: exciting light: 485nm, emission light: 528nm).

50 Construction and optimization of the regulatory system

The strain that regulation *mkate2* contains plasmids PDMGn (n=1, 2, 3, 4, 5) and PSX (X=A,B,O). For pDMG1 construction, chloramphenicol resistance gene and p15A ori were amplified with primers ori-F/ori-R-1. Promoter BBa-J23113 of dcas9 was included in the primer ori-R-1. *dcas9* and *mkate2* gene were cloned with primers dcas9-F/dcas9-R and

55 mkate-F/mkate-R, degradation tags AAV (AANDENYAAAV) and LAA (AANDENYALAA) 56 are added to the corresponding primers, respectively. Fragments containing different 57 promoters were fused by overlap PCR with primer mkate-F2 and ori-R-1. Resulting fragment 58 was assembled using the Gibson method. Similarly, promoters BBa-J23117, Ba-J23114, Ba-59 J23110 and Ba-J23100 were contained in primers ori-R-2, ori-R-3, ori-R-4 and ori-R-5, 60 respectively. The construction method of pDMG2, pDMG3, pDMG4 and pDMG5 were the 61 same as above. The construction method of pDMG0 is the same as that of P0, using pDMG4 62 as a template and primers pair pdmg0-F/pdmg0-R. PDMG4 was cloned as a template using 63 primers M1-F and M1-R, M2-F and M2-R, M2-F and M3-R, resulting fragment were 64 transformed into E. coli DH5a after the treatment by T4 PNK and T4 ligase to obtain the 65 plasmid pDMG4-1, pDMG4-2 and pDMG4-3.

For pSA and pSB construction, sgRNA-A and sgRNA-B were cloned with primer pairs
sgrna-a-F/sgrna-R, sgrna-b-F/sgrna-R, respectively. *hrtR* was amplified using primer sensor-F
and sensor-R. then *hrtR* and Different sgRNAs were assembled using the Gibson method with
the plasmid puc19 digested with *Bam*HI. The construction method of pSO is the same as that
of PO, using pSIB as a template and psio-F/psio-R as primers.

71 Plasmids PBHn (n=1, 2, 3) was constructed by adding sgRNA targeting *hemB* to PSB. 72 Different sgRNAs targeting hemB were amplified using primers sg-1-F/sg-1-R, sg-2-F/sg-2-R, 73 sg-3-F/sg-3-R, respectively. pSB cloned with primers site-F/site-R was used as the backbone. 74 SgRNA-1, sgRNA-2 and sgRNA-3 were assembled using the Gibson method with the 75 backbone, respectively. At the same time, we replaced the backbone with pSO based on 76 pBH2 to obtain the plasmid pOH2. Remove the *hrtO* from the primer sg-2-F and use it to 77 amplify with sg-1-R, resulting fragment was assembled using the Gibson method with the 78 backbone pSB to obtain the plasmid pOBH2.

79 The obtained plasmids were transferred into DH5α, respectively, the specific conditions 80 of the plasmid contained in the strain refer to Supplementary Table S3, And the obtained 81 strain was cultured in a 24-well plate and the red fluorescence intensity was detected in real 82 time using a microplate reader (mKATE: exciting light: 590nm, emission light: 645nm).

83 Construction of ALA, PBG and Porphyrin biosynthesis system

84 The gene hemA from Salmonella Arizona and hemL from E. coli was cloned with 85 primers AL-F/AL-R using pDAL as a template. The plasmid pSB, pSBH2 and pOSBH2 were 86 amplified using primers 10B-gj-F/10B-gj-R, respectively. After digestion with XhoI and NotI, 87 hemA-hemL were cloned into the above linearized plasmids cut with XhoI and NotI to obtain 88 the plasmid pSBAL, pBH2AL and pOBH2AL. For pBH2ALT construction, gltW was cloned 89 with primers tRNA-F/tRNA-R, the backbone was amplified with primers tRNA-gj-F/tRNA-90 gj-R using pBH2AL as a template. The two fragments were assembled using the Gibson 91 method. The gdhA gene in E. coli was cloned and integrated into the PCLA plasmid by 92 Gibson method to construct the PCLAG plasmid.

93 The pCAL and PHAL were cloned with primers CAL-F/CAL-R and HAL-F/HAL-R 94 using pSBAL and as a template, resulting fragment were transformed into E. coli DH5a after 95 the treatment by T4 PNK and T4 ligase. pOCAL and POHAL were obtained using the same 96 method, using pCAL and pHAL as a template and CO-F/CO-R and HO-F/ HO-R as primers. 97 The obtained plasmids were transferred into DH5 α , respectively, the specific conditions of the 98 plasmid contained in the strain refer to Supplementary Table S3. The medium composition 99 and culture conditions used in the fermentation process were the same as the previous report. 100 ALA and PBG concentration were analyzed using modified Ehrlich's reagent(Kang et al., 101 2011). Porphyrin compounds were detected by HPLC.

102

Quantitative real-time PCR (RT-PCR)

103 The primers studied in this work were listed in Supplementary Table S5. The message 104 RNA (mRNA) level was measured by RT-PCR. The Sample for extracting mRNA were 105 harvested and frozen immediately at -80 ℃. mRNA of hemB and dcas9 was extracted using 106 the RNeasy Mini Kit (Tiangen). The cDNA was obtained from reverse transcription and RT-107 PCR was carried out in a 96-well plate with a total reaction volume of 20 µL per well in 108 QuantStudioTM3 (Thermo Fisher) using an SYBR® Premix Ex TaqTM II (Perfect Real Time), 109 according to manufacturer's specifications (TaKaRa).

110 Analysis of heme

111 The cells were cultured in LB medium, and 1 ml was sampled every 6 hours. The 112 obtained sample was disrupted by Automatic sample grinder (Jingxin, Shanghai), and the 113 supernatant was taken after centrifugation. Intracellular heme concentration was determined 114 using Heme Colorimetric Assay Kit (BioVision, USA).

115 Dose response curve

116 Mutants were cultured in LB medium supplemented with 0.05µM, 0.1µM, 0.25µM,

117 0.5μ M, 1μ M, 2.5μ M, 5μ M, 10μ M and 20μ M heme respectively. Cells were cultured in a 96-

118 well plate and the fluorescence intensity was measured at 8h. GraphPad was used to draw the

119 dose response curve and calculate various parameters.

120 Heme titration

121 Purification of HrtR and heme titration experiments referred to the methods of Sawai et122 al (Sawai et al., 2012).

123 Molecular dynamics

124 The molecular dynamics(Mazumder and Case) simulations were performed on the heme 125 bound HrtR/mutant dimers (PDB ID: 3VP5)(Sawai et al., 2012) by using the AMBER 12 126 software(Case et al., 2005). The FF14SB force field(Maier et al., 2015) was applied for the HrtR proteins. The point charges of heme were calculated with antechamber⁴ based on the 127 128 restricted electrostatic potential (RESP) procedure(Bayly et al., 1993). Bonded terms at the Fe 129 center were calculated according to Seminario's method based on 130 second - derivatives(Seminario, 1996; Villarino et al., 2018), the GAFF force field(Wang et 131 al., 2004) was adopted for the remaining atoms of heme. The binding complexes were 132 individually immersed into the center of a truncated octahedron box of TIP3P water molecules with a margin distance of 10.0 Å, Na⁺ counterions were added with the AMBER 133 134 XLEAP module to keep system in electric neutrality(Case et al., 2005). Each system was 135 firstly energy minimized using the steepest descent method for 5000 steps with the binding complex restricted by a harmonic constraint of 100 kcal mol⁻¹Å⁻². A further conjugate 136 137 gradient minimization of 5000 steps was performed with no constraint. Then the system was gradually heated from 0 K to 300 K under the NVT ensemble over a period of 1 ns, during 138

139 which the Langevin thermostat with a coupling coefficient of 1.0 ps and a weak constraint of 10 kcal mol⁻¹Å⁻² on the binding complex was applied. Each model was subjected to an 140 141 equilibrium simulation for 1 ns with no constraint and then a 20 ns production MD simulation 142 under NPT ensemble. Periodic boundary conditions were applied. System temperature was 143 kept 300 K using the Berendsen thermostat with a time constant of 1 ps. Isotropic constant 144 pressure was maintained using Berendsen pressure coupling algorithm with a time constant of 145 1 ps. Hydrogens involved in covalent bonds were constrained by the SHAKE 146 algorithm(Ryckaert J P 1976). The long-range electrostatic interactions were treated by the 147 Particle Mesh Ewald (PME) method(Essmann et al., 1995). The cutoffs for long-range 148 electrostatic and Van der Waals interactions were both set to 10.0 Å. The time step was set to 149 2 fs, the coordinates were saved every 1 ps to record the MD trajectory.

150 Binding free energy

151 By neglecting the coordinate bonding interactions between HrtR and heme, their 152 intermolecular binding free energy (ΔG_{bind}) was calculated using the molecular mechanics 153 combined with generalized Born and surface area solvation (MM/GBSA) approach(Kollman 154 et al., 2000):

155
$$\Delta G_{\text{bind}} = G_{\text{complex}} - (G_{\text{G4}} + G_{\text{APC}})$$
(1)

156
$$\Delta G_{\text{bind}} = \Delta H - T\Delta S \approx \Delta E_{\text{MM}} + \Delta G_{\text{solv}} - T\Delta S$$
(2)

(3)

(4)

157
$$\Delta E_{MM} = \Delta E_{int} + \Delta E_{vdW} + \Delta E_{ele}$$

$$\Delta G_{solv} = \Delta G_{GB} + \Delta G_{SA}$$

159 Where E_{MM} is the gas phase interaction energy comprising internal strain energy (E_{int}), 160 van der Waals energy (E_{vdW}) and electrostatic energy (E_{ele}) . G_{solv} is the solvation free energy 161 comprising contributions form a polar part (G_{GB}) and a nonpolar part (Taverna et al.). ΔE_{int} 162 can be neglected in the current system. ΔG_{GB} was estimated using the generalized Born model 163 with the interior and exterior dielectric constants set to 4 and 80, respectively. ΔG_{SA} was estimated using the LCPO algorithm(Weiser et al., 1999): $\Delta G_{SA} = \gamma \Delta SASA + \beta$, where γ and 164 165 β were set to 0.0072 and 0, respectively. By performing the normal mode analysis (NMA), 166 $T\Delta S$ that represents the entropy contribution was estimated using the NMODE module. 167 Snapshots were extracted from the last 5 ns trajectories with an interval of 25 ps for the 168 calculations of ΔE_{vdW} , ΔE_{ele} , ΔG_{GB} and ΔG_{SA} . While for the calculation of entropy, only 50 169 snapshots was evenly extracted from the last 5 ns trajectories due to the expensive 170 computational cost of NMA(Liu et al., 2018).

171 Supplementary Figures

173 Figure S1: sgRNA-A acts at the 5' end 24bp-44bp of *mkate2*; sgRNA-B acts at the middle of

174 promoter and RBS of *mkate2*; sgRNA-C does not contain a spacer site. Related to Figure 5

191 Figure S2: The schematic diagram of plasmids pBHn (n=1,2,3), pOSB, pOBH2, pODMG4.

- 192 Related to Figure 6

- ---

Figure S3,. The root-mean-square deviations (RMSDs) of the HrtR dimer during molecular
dynamics. The RMSDs are colored in black and purple for the HrtR proteins in chain A and
chain B, respectively. The RMSDs of the heme molecules that bind to the chain A and chain
B are colored in navy blue and magenta, respectively. Related to Figure 3

Figure S4. The distances between the heme Fe atom and the HrtR residues. The distance curves between heme Fe atom and NE2 atoms of H72 from chain A and chain B are colored in black and purple, respectively. The distance curves between heme Fe atom and NE2/OD1/OG atoms of H149/D149/S149 from chain A and chain B are colored in navy blue and magenta, respectively. Related to Figure 3

229

Figure S5. Accumulation of porphyrins and PBG in different mutant during ALA production;

233 Error bars represent ± 1 SD from the mean of three replicate cultures. Related to Figure 7

Figure S6. a: Accumulation of ALA in different mutants during PBG production; b: Intracellular free heme concentration curve of the strain target *hemC*; c: Accumulation of ALA in different mutants during porphyrins production; b: Intracellular free heme concentration curve of the strain target *hemH*. Error bars represent ± 1 SD from the mean of three replicate cultures. Related to Figure 8

250 Supplementary Tables

251 Table S1. Fluorescence intensity of GFP under the control of different mutants. Related to

252 Figure 2

	Ν	К	Т	S	R	Ι	М	Н	Q	Р
Thr68	27719	32044	13628	27379	27528	12095	22640	30604	24327	38225
Val131	4518	5690	6159	7516	7545	5576	6671	7692	7153	7427
His149	5081	5930	6374	30161	6607	6347	7628	13628	5281	30290
	L	D	Ε	Α	G	V	Y	С	W	F
Thr68	6937	36889	35757	25694	22389	19316	27781	12065	35333	10994
Val131	14183	5788	5395	9991	5741	13628	9273	6463	10936	11663
His149	6209	4442	4413	6345	6021	7540	7130	7028	7685	6582

D450	Energy components ^b						
P430	ΔE_{ele}	ΔE_{vdW}	ΔG_{GB}	ΔG_{SA}	ΔH	-TΔS	ΔG_{bind}
WT	190.59	1.69	-155.66	-9.12	27.49	30.09	57.58
T68L	177.64	14.27	-147.91	-8.81	35.19	30.66	65.85
V131I	223.01	6.14	-188.54	-8.89	31.72	34.88	66.60
V131L	138.60	12.36	-111.28	-9.08	30.60	29.25	59.85
H149D	297.42	18.55	-262.79	-8.79	44.39	35.10	79.49
H149S	135.06	-49.53	-118.95	-9.37	-42.78	32.90	-9.88

268 Table S2. Binding free energies between HrtR and heme^a. Related to Figure 3

^a The binding free energies were calculated by neglecting the coordinate bonding interactions between HrtR and heme since the molecular dynamics method is unproper to compute the intermolecular binding affinity with covalent bond involved. Therefore, the values of ΔG_{bind} presented here represent

the binding susceptibility of heme to the HrtR variants instead of absolute binding free energies.

273 ^b Energies are in kcal·mol⁻¹.

Strains	Relevant properties	Source
DH5a		lab stock
S1	MG1655 integrates a copies of <i>hemA/hemL</i> on the genome	lab stock
S20	MG1655 integrates 20 copies of <i>hemA/hemL</i> on the genome	lab stock
S35	MG1655 integrates 35 copies of <i>hemA/hemL</i> on the genome	lab stock
S65	MG1655 integrates 65 copies of <i>hemA/hemL</i> on the genome	lab stock
S100	MG1655 integrates 100 copies of <i>hemA/hemL</i> on the genome	lab stock
S1P1	S1 harboring P1	this study
S20P1	S20 harboring P1	this study
S35P1	S35 harboring P1	this study
S65P1	S65 harboring P1	this study
S100P1	S100 harboring P1	this study
SP0	DH5a harboring P0	this study
SP1	DH5a harboring P2	this study
SP2	DH5a harboring P3	this study
SP3	DH5α harboring P4	this study
SP4	DH5a harboring P5	this study
SP1-T68L	DH5a harboring P1-T68L	this study
SP1-V131L	DH5a harboring P1-V131L	this study
SP1-V131I	DH5a harboring P1-V131I	this study
SP1-H149D	DH5a harboring P1-H149D	this study
SP1-H149S	DH5a harboring P1-H149S	this study
SO1	DH5a harboring PSO+PDMG1	this study
SO2	DH5a harboring PSO+PDMG2	this study
SO3	DH5a harboring PSO+PDMG3	this study
SO4	DH5a harboring PSO+PDMG4	this study
SO5	DH5a harboring PSO+PDMG5	this study
SA1	DH5a harboring PSA+PDMG1	this study
SA2	DH5a harboring PSA+PDMG2	this study
SA3	DH5a harboring PSA+PDMG3	this study
SA4	DH5a harboring PSA+PDMG4	this study
SA5	DH5a harboring PSA+PDMG5	this study
SB1	DH5a harboring PSB+PDMG1	this study
SB2	DH5a harboring PSB+PDMG2	this study
SB3	DH5a harboring PSB+PDMG3	this study
SB4	DH5a harboring PSB+PDMG4	this study
SB5	DH5a harboring PSB+PDMG5	this study
SH0	DH5a harboring PDMG4+POSB	this study
SH1	DH5a harboring PDMG4+PBH1	this study
SH2	DH5a harboring PDMG4+PBH2	this study
SH3	DH5α harboring PDMG4+PBH3	this study
SOH	DH5α harboring PODMG4+POBH2	this study
SH2-AL-1	DH5α harboring PBH2-AL+PDMG4-1	this study
SH2-AL-2	DH5α harboring PBH2-AL+PDMG4-2	this study
SH2-AL-3	DH5α harboring PBH2-AL+PDMG4-3	this study
SOH-AL	DH5α harboring PODMG4+POBH2-AL	this study
SB4-AL	DH5a harboring PSB-AL+PDMG4	this study

Table S3. Bacterial strains used in this study. Related to Figure 1,2,3,5,6,7 and 8.

	SH2-AL	DH5a harboring PDMG4+PBH2-AL	this study
	SH2-ALT	DH5α harboring PDMG4+PBH2ALT	this study
	SH2-ALTG	DH5α harboring PDMG4+PBH2ALTG	this study
	ST-T68L	DH5α harboring PDMG4+PBH2ALTG-T68L	this study
	ST-V131L	DH5α harboring PDMG4+PBH2ALTG-V131L	this study
	ST-V131I	DH5α harboring PDMG4+PBH2ALTG-V131I	this study
	ST-H149D	DH5α harboring PDMG4+PBH2ALTG-H149D	this study
	SI-H1498	DH5a harboring PDMG4+PBH2AL1G-H1498	this study
	SAL-C	DH5a harboring PDMG4+PCAL	this study
	SAL-CU SAL-C-H149D	DH5a harboring PDMC4+PCAL -H140D	this study
	SAL-C-H149D	DH5a harboring PDMG4+PCAL-H149S	this study
	SAL-C-T68L	DH5a harboring PDMG4+PCAL-T68L	this study
	SAL-H	DH5a harboring PDMG4+PHAL	this study
	SAL-HO	DH5α harboring PODMG4+POHAL	this study
	SAL-H-H149D	DH5α harboring PDMG4+PHAL-H149D	this study
	SAL-H-H149S	DH5α harboring PDMG4+PHAL-H149S	this study
	SAL-H-T68L	DH5α harboring PDMG4+PHAL-T68L	this study
293			
294			
295			
296			
297			
298			
299			
300			
301			
302			
303			
304			
305			
306			
307			
308			
309			
310			

Plasmids	Charecteristics	Source
P0	pACYC184 contains gfp and HrtR	this study
P1	pACYC184 contains HrtO, gfp and HrtR	this study
P1-T68L	pACYC184 contains gfp and HrtR-T68L	this study
P1-V131L	pACYC184 contains gfp and HrtR-V131L	this study
P1-V131I	pACYC184 contains gfp and HrtR-V131I	this study
P1-H149D	pACYC184 contains gfp and HrtR-H149D	this study
P1-H149S	pACYC184 contains gfp and HrtR-H149S	this study
PSO	pUC19 contains HrtR and HrtO-ineffective sgRNA	this study
PSA	pUC19 contains HrtR and HrtO-sgRNA-A	this study
PSB	pUC19 contains HrtR and HrtO-sgRNA-B	this study
POSB	pUC19 contains HrtR and sgRNA-B	this study
PDMG1	pACYC184 contains mkate2 and dcas9 (promoter: _{J23113})	this study
PDMG2	pACYC184 contains mkate2 and dcas9 (promoter: J23117)	this study
PDMG3	pACYC184 contains mkate2 and dcas9 (promoter: J23114)	this study
PDMG4	pACYC184 contains mkate2 and dcas9 (promoter: J23110)	this study
PDMG5	pACYC184 contains mkate2 and dcas9 (promoter: J23100)	this study
PODMG4	PDMG4 deletes HrtO	this study
PBH1	pSIB contains sgRNA-1	this study
PBH2	pSIB contains sgRNA-2	this study
РВНЗ	pSIB contains sgRNA-3	this study
POBH2	pSIBH2 with the deletion of HrtO	this study
PDMG4-1	The promoter of mkate2 in PDMG4 was replaced with	this study
	J23110	
PDMG4-2	The promoter of mkate2 in PDMG4 was replaced with	this study
	J23101	
PDMG4-3	The promoter of mkate2 in PDMG4 was replaced with	this study
	J23106	
POBH2-AL	POBH2 added hemA/hemL	this study
PSB-AL	PSB added hemA/hemL	this study
PBH2-AL	PBH2 added hemA/hemL	this study
PBH2ALT	PBH2AL added tRNA-GLU	this study
PBH2ALTG	PBH2ALT added <i>rhtA</i> and <i>gdhA</i>	this study
PBH2ALTG-T68L	PBH2ALTG with HrtR-T68L	this study
PBH2ALTG-V131L	PBH2ALTG with HrtR-V131L	this study
PBH2ALTG-V131I	PBH2ALTG with HrtR-V1311	this study
PBH2ALTG-H149D	PBH2ALTG with HrtR-H149D	this study
PBH2ALTG-H149S	PBH2ALTG with HrtR-H149S	this study
PCAL	replace with sgRNA targeting <i>hemC</i> on the basis of	this study
	PBH2ALT	
POCAL	PCAL with the deletion of HrtO	this study
PCAL-H149D	PCAL with HrtR-H149D	this study
PCAL-H149S	PCAL with HrtR-H149S	this study
PCAL-T68L	PCAL with HrtR-T68L	this study
PHAL	replace with sgRNA targeting <i>hemH</i> on the basis of	this study
	PBH2ALT	
POHAL	PHAL with the deletion of HrtO	this study

Table S4. Plasmids used in this study. Related to Figure 1,2,3,5,6,7 and 8.

	PHAL-H149D	PHAL with HrtR-H149D	this study
	PHAL-H149S	PHAL with HrtR-H1498	this study
	PHAL-T68L	PHAL with HrtR-T68L	this study
	PCHUA	pcolAduet1 contains chuA	this study
	p15b-WT	p15b contains HrtR-WT	this study
	p15b-H149D	p15b contains HrtR-H149D	this study
	p15b-H149S	p15b contains HrtR-H149S	this study
	p15b-168L	p15b contains HrtR-168L	this study
	p150-v151L n15h-V131I	n15h contains HrtR-V131L	this study
312		prob contains mark v 1511	tins study
512			
313			
314			
511			
315			
216			
510			
317			
210			
510			
319			
220			
320			
321			
322			
323			
324			
325			
326			
327			
527			
328			
320			
525			
330			
221			
101			
332			
აკვ			

- 334 References
- 335
- Bayly, C.I., Cieplak, P., Cornell, W.D., and Kollman, P.A. (1993). A Well-Behaved
- 337 Electrostatic Potential Based Method Using Charge Restraints for Deriving Atomic
- Charges the Resp Model. J Phys Chem-Us *97*, 10269-10280.
- 339 Case, D.A., Cheatham, T.E., Darden, T., Gohlke, H., Luo, R., Merz, K.M., Onufriev, A.,
- 340 Simmerling, C., Wang, B., and Woods, R.J. (2005). The Amber biomolecular
- simulation programs. J Comput Chem *26*, 1668-1688.
- 342 Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., and Pedersen, L.G.
- 343 (1995). A Smooth Particle Mesh Ewald Method. J Chem Phys *103*, 8577-8593.
- Gibson, D.G., Young, L., Chuang, R.Y., Venter, J.C., Hutchison, C.A., and Smith, H.O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat
- 346 Methods *6*, 343-U341.
- 347 Kang, Z., Wang, Y., Gu, P.F., Wang, Q., and Qi, Q.S. (2011). Engineering Escherichia
- 348 coli for efficient production of 5-aminolevulinic acid from glucose. Metab Eng *13*,
 349 492-498.
- 350 Kollman, P.A., Massova, I., Reyes, C., Kuhn, B., Huo, S.H., Chong, L., Lee, M., Lee,
- T., Duan, Y., Wang, W., et al. (2000). Calculating structures and free energies of
- 352 complex molecules: Combining molecular mechanics and continuum models.
- Accounts of chemical research *33*, 889-897.
- 354 Liu, N., Zhou, W.F., Guo, Y., Wang, J.M., Fu, W.T., Sun, H.Y., Liu, D., Duan, M.J.,
- and Hou, T.J. (2018). Molecular Dynamics Simulations Revealed the Regulation of
- Ligands to the Interactions between Androgen Receptor and Its Coactivator. J Chem Inf Model *58*, 1652-1661.
- 358 Maier, J.A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K.E., and
- Simmerling, C. (2015). ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. Journal of chemical theory and computation *11*,
- 361 3696-3713.
- Mazumder, D., and Case, D.A. (2007). AMBER Score in DOCK6: Application of
 molecular dynamics simulations and implicit solvent model (GB/SA) in protein-ligand
 docking. Abstr Pap Am Chem S *233*, 20-20.
- Ryckaert J P , C.G., Berendsen H J C . (1976). Numerical integration of the cartesian
 equations of motion of a system with constraints: molecular dynamics of n-alkanes[J].
 Journal of Computational Physics, 327-341.
- 368 Sawai, H., Yamanaka, M., Sugimoto, H., Shiro, Y., and Aono, S. (2012). Structural
- Basis for the Transcriptional Regulation of Heme Homeostasis in Lactococcus lactis. J Biol Chem *287*, 30755-30768.
- 371 Seminario, J.M. (1996). Calculation of intramolecular force fields from second-
- derivative tensors. Int J Quantum Chem *60*, 1271-1277.
- 373 Taverna, P., Rendahl, K., Jekic-McMullen, D., Shao, Y., Aardalen, K., Salangsang, F.,
- 374 Doyle, L., Moler, E., and Hibner, B. (2007). Tezacitabine enhances the DNA-directed
- effects of fluoropyrimidines in human colon cancer cells and tumor xenografts.
- Biochem Pharmacol *73*, 44-55.
- 377 Villarino, L., Splan, K.E., Reddem, E., Alonso-Cotchico, L., de Souza, C.G., Lledos, A.,
- 378 Marechal, J.D., Thunnissen, A.M.W.H., and Roelfes, G. (2018). An Artificial Heme
- 379 Enzyme for Cyclopropanation Reactions. Angew Chem Int Edit *57*, 7785-7789.
- Wang, J.M., Wolf, R.M., Caldwell, J.W., Kollman, P.A., and Case, D.A. (2004).
- 381 Development and testing of a general amber force field. J Comput Chem 25, 1157-
- 382 1174.

- Weiser, J., Shenkin, P.S., and Still, W.C. (1999). Approximate solvent-accessible surface areas from tetrahedrally directed neighbor densities. Biopolymers *50*, 373-
- 380.