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Supplementary Fig. 1, Information about the monkeys and the single-cell isolation
procedure. a, Characteristics of the monkeys used for these analyses. b, Ultrasound-based
imaging for visualization of cardiac health in young and old monkeys. Blue and red regions indicate
the bloodstream flowing in opposite directions. ¢, Ultrasound-based measurement of heart rate in
young and old monkeys. Green vertical line, a beating cycle. d, Oil red O staining of monkey vessel
tissue and human adipocyte tissue as a positive control. Scale bar, 100 um. e, Depaosition of calcium
in areas of the vessel wall that were darkly stained with von Kossa in young and old samples (left)
and the calculated percentage of the dark area (right). Scale bar, 100 um. f, Left, Sirius Red staining
shows aortic morphology; right, relative changes in fibrosis. Yellow areas, fragmented internal
elastic lamina; black dashed lines, thickened fiber cap. White squares correspond to the enlarged
areas shown in the lower images. Scale bar, 20 um. g, Left, representative section of large-scale
three-dimensional reconstruction of a vessel (positioned from the red line). Right, the representative
section before coloring with Imaris 9.2.1. Yellow rectangle, the enlarged area shown in the lower
right corner of Fig. 1¢c. n = 8 monkeys (c, e, f). Data are the mean + SEM; p-values were determined
by two-tailed Student’s t-test (c, e, f).
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Supplementary Fig. 2, scRNA-Seq analysis. a, Expression of ACTB in single cells across young
and old monkeys. b, Binning counts of the number of genes detected in each cell. ¢, Regional
surveys. The t-SNE of 7,989 CD31* and CD31 cells from the aortic arch (AA) and coronary artery
(CA) (n = 16 monkeys) is shown, colored by region and surface markers. d, t-SNE plots of cells in
the aortic arches (AAs) and coronary arteries (CAs). n = 16 monkeys. No obvious differences in
distribution were observed among the different batches from different monkeys. Each color
represents one monkey. e, Age effect surveys. The t-SNE of CD31* and CD31" cells from the AA
and CA (n = 16 monkeys) is shown, color-coded by age. f, Expression of known and newly
identified cell type-specific markers is shown using the same layout as in Fig. 1f (gray, no
expression; dark red, relatively higher expression).
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Supplementary Fig. 3, Zonation principles. a, Heatmap showing differentially expressed genes
between AA EC and CA EC1/2, AA SMC and CA SMC, and AA_AF and CA_AF; the

corresponding pathways identified by GSEA (nominal p-value < 0.05 and FDR < 25%) are labeled
on the right. See Fig. 1 for cell type abbreviations.
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Supplementary Fig. 4, Immunofluorescence staining of the aortic artery and coronary artery
for the indicated markers. a, Heatmap showing genes that are more highly expressed in aortic
ECs, SMCs and fibroblasts than in coronary ECs, SMCs, and fibroblasts. b, Immunofluorescence
staining shows that WIF1 and IL13RA2 (markers for AA_EC) are expressed in endothelial cells from
the aortic artery but not in endothelial cells from the coronary artery. See also Fig. 2c. c,
Immunofluorescence staining shows that PTGS1 (a marker for CA_EC1) is specifically expressed in
endothelial cells from the coronary artery (left) but is rarely expressed in endothelial cells from the
aortic artery (right). See also Fig. 2d. d, Immunofluorescence staining shows that the absence of
POSTN (a marker for AA_SMC) in SMCs from the coronary artery. See also Fig. 2e. White squares
correspond to enlarged areas shown in the lower images. Lu, lumen; Ex, extravascular space.
Scale bar, 50 um. e, Violin plots showing the expression of indicated genes in various cell types of
rat aorta. Fib, fibroblasts; SMC, smooth muscle cells; IC, immune cells; EC, endothelial cells; ALPC,
aortic-localized proliferative cells.
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Supplementary Fig. 5, Imnmunofluorescence staining of the aortic artery and the coronary
artery for the CA_SMC and AF markers. a, Immunofluorescence staining shows ACTC-1 (a
marker for CA_SMC) expressed in smooth muscle cells from the coronary artery but not in smooth
muscle cells from the aortic artery. b, Immunofluorescence staining shows Desmin (a marker for
CA_SMC) expressed in smooth muscle cells from the coronary artery but rarely expressed in
smooth muscle cells from the aortic artery. See also Fig. 2f. ¢, Immunofluorescence staining shows
SORBS2 (a marker for CA_SMC) expressed in smooth muscle cells from the coronary artery but
not in smooth muscle cells from the aortic artery. See also Fig. 2f. d, Immunofluorescence staining
shows COLI, PCOLCE, and PEBP4 (markers for AF) expressed in adventitial fibroblasts from the
aortic artery. White squares correspond to enlarged areas shown in the lower images. Lu, lumen;
EX, extravascular space. Scale bar, 50 um.
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Supplementary Fig. 6, Relative expression pattern of O/Y DEGs in each cell type. a, Heatmap
of the relative expression (red, high; blue, low) of O/Y DEGs (Bonferroni-corrected p-value < 0.05
and log: [fold change] = 0.5) that covaried as individual cell types transitioned from a young state to
an old state, as determined by a pseudotime analysis using Monocle2. Cells of each type were
ordered across the pseudotime scale shown above the heatmap; cells from young monkeys are
blue, and cells from old monkeys are red. See Fig. 1 for cell type abbreviations. O/Y DEGs were
clustered in two groups, and the number of genes in each cluster is shown to the left of the
heatmap. Genes associated with aging/longevity or cardiovascular disease are shown to the right of
each heatmap panel.
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Supplementary Fig. 7, Transcriptional noise increases in vascular cells from older monkeys.
a, Unique pathways enriched in AA_EC, AA_ SMC and CA_EC1, CA _SMC, respectively. b, The
boxplots show transcriptional noise of individual cells for each cell type. Red p-values (Wilcoxon
rank sum test) and yellow boxes highlight significant differences between young and old cells
concerning transcriptional noise. Cell number, AA EC=2480, CA_EC1=1271, CA _EC2=993,
AA_SMC=667, CA_SMC=858, AF=1161. ¢, GO analysis of highly variable genes in cell types
(AA_EC, CA_EC2, AF) with significantly different transcriptional noise between old and young
monkeys.
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Supplementary Fig. 8, FOXO3A is at the center of the aging interactome. a-b, Interactome and
master regulators (MRs) inferred by ARACNe and VIPER analysis. All age-related DEGs from
different cell types were sorted in order with the largest downregulation (left) and largest
upregulation (right) of aging-related genes shown on the x-axis. P-values were calculated by
Student’s t-test are shown on the left of the heatmap. Different activity (act) of MRs (absolute
normalized enrichment score) and different expression (exp) levels of MRs are shown in the
heatmap on the right. Numbers on the right indicate the rank of each MR among the DEGs. a, Top
candidate MRs during aging. n = 7,989 cells, all cell types included. b, Top candidate master
regulators during aging. n = 4,744 endothelial cells. ¢, Comparisons of GO-enriched terms of
FOXO3A targeted O/Y DEGs which were identified by SCENIC. n = 7,989 cells. d, Venn diagram
depicting the overlap between O/Y genes and cardiovascular disease-related and aging/longevity-
related gene sets. e, Heatmap showing the overlapping cardiovascular disease-related genes with
DEGs (O/Y DEGs, Bonferroni-corrected p-value < 0.05 and log: [fold change] > 0.5) for each cell
type from young and old monkeys. Rows are cell types and columns are representative genes. Red,
upregulated genes; blue, downregulated genes; gray, genes not differentially expressed. P-values
were determined by two-sided Wilcoxon rank-sum tests. f, Negative control for FOXO3A staining in
the aortic artery. Scale bar = 10 pm.
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Supplementary Fig. 9, Silencing FOXO3A activity by siRNA in human aortic endothelial cells
(HAECs) and human umbilical vein endothelial cells (HUVECSs). a, Left, SA-B-gal staining of
young and senescent HAECs and HUVECs. n = 4 experimental repeats. Scale bar, 25 um. b,
Western blotting of FOXO3 protein levels in young and senescent HAECs and HUVECSs. c, Relative
expression level of FOXO3 in HAECs (P6), HUVECs (P8) and heVECs (P2) derived from hESCs
after transfection with siRNAs against FOX0O3 (FOXO3 | and FOXO3 Il). n = 3 experimental
repeats. d, Western blotting of the knockdown efficiency of sSiRNA-FOXO3 in HUVECs, HAECs, and
heVECs. e, Clonal expansion analysis of endothelial cells transfected with SiRNAs against FOXO3.
n = 3 experimental repeats. Scale bar, 100 um. f, In vitro angiogenesis, is assessed by the
formation of capillary-like tubes from endothelial cells transfected with siRNAs against FOX03. n =
3 experimental repeats. Scale bar, 100 ym. Data are presented as mean + SEM; p-values were
determined by two-sided Student’s t-test (a, c, e, ).



Supplementary Figure 10

a
100 Transcription factors
FOXA2
EP300
o, 12 HOXA9
§ KAT7
o 50 MYC
E NRF1
25 RELA
TEAD1
ik TEAD4
0 " Ilr.: i II ll [ n m‘ 1 ZBTB16
-10 k 5k TSS 5k 10k
Position
b N C
NS Young
44 <7 & mm Old
F>’ . Q7 N Young Old
> ® % N o N ©
2 31 . ¥ ° o o oF F N4 No. 1 No. 2 No. 3 No.4 No. 1 No.2No.3 No. 4 kDa
c Q// Q// Q// Q// Q// Q// Q//
) R : : -
S, — F = = = FOXA2 - ‘u 50
o [} . . . . ° .. Ld
g . e . . . oy . L 50
= % v G [ ® o
Il X0 2% ¥1 td 7@ & 20 : ACTIN — e
w v o0 o0 .= / ... -. ‘..
4 "’ 0 oo - %e . .
0 L] . L] L] L] L] z L] ..l L] L]
O &) A O N e ) o
N N A N < ) Y N
R gr S & & & I
S & & ¥ S & & &
>
4
d e f g
BN EV BN FOXA2 2
o P=1x10" o 1.54 _ Phospho-H3 (Ser 10) / DNA 8 15+
& 151 q 3 — g P = 0.0341
| o =
2 - RO « 0 2
o 10 < < kDa Z-E1_O__;_ o 1.0-%—
3 5 W 8 §
o FOXA2 | s w50 S = -+
3 — © - — Y
o 04 3 100 337 <5 _z_ = 05
2024 o FOXO3 | M L 75 2 T
2044 : o s ~ s
1,00 0.59 > 3 < o
2-0.6- o) Coodbr—+—— 3B Y [
T -0.8- GAPDH | s — 37 w A ‘;u e = é ‘?q'
©-1.0- . < Qo* 2 (<0+
P=7x10°
FOXA2 FOXO3
h i j k )
si-NC B si-FOXA2 Ki67 / DNA Phospho-H3 (Ser 10) / DNA 2
S P=1x10% L O 3 2 gl 1)
. 3 ) ] o 2.0 O =
£ 21 2 2 kDa 2 2 z g 1.5 %
4 FOXA2 | s ’ 2 1.5- @ 2
S 11 - %0 o 7 10{%
g o 1.00 038 < 1.0{%pe &
2 0 FOXO3 | M | 75 2 ] N L 2 o
o ° < ® U < I
° 1.00 233 X 9 X S
217 d ® 00+077r 2 2 o0
3 9 o
¥ -2 - - é\'e O“y & é\'é O.l}
P=0.017 é\,‘< &
FOXA2  FOXO3 S
I m n
Iss FOXA2 IzLuciferase & _l—;l_uciferase
?EFOXO3—//— CDX2
PR e 7 — FOXO3 Pro — FOXO03 Pro
5 YT mmge
N 1249 p= 2094 p=
” Ny mm 0-FOXA2 & F=0.004 2 P=0.002
§ 44 ¢ > £2114 ¢ 2
E & P ® = S 1.54
5] % 4 o 104 ]
£ 34 Q7 Q § 'I’ 8
® . £ 094 & 1.04 %a®
2 21 ° S ° g °
® ° T ° < 0.81 =
€143 T & 205
: °® o % 81 - &
: [0}
ol M . . © ool NE Wl © 50l
N 3 9 3 4 O U
P gt @ ¥
0 o 0 s & )
Qo“‘ ot O QL S
< &



Supplementary Fig. 10, Identification of FOXA2 as a regulator of FOXO3A. a, A predicted
model for potential regulators of FOXO3A (see also method). b, The relative contents of potential
FOXO3A regulators in indicated samples. n = 8 monkeys. ¢, Western blotting of FOXA2 protein
levels in indicated samples. n = 8 monkeys. d, RT-gPCR of FOXA2 and FOXO3A in HAECs
transfected with vehicle and FOXA2 expression vectors. n = 4 experimental repeats. e, Western
blotting of FOXO3 protein in HAECs after overexpressed with FOXA2. f, Ki67 immunofluorescence
staining of HAECs transfected with vehicle or FOXA2 expression vectors. Scale bar, 25 ym. n = 3
experimental repeats. g, Phospho-histone 3 immunofluorescence staining of HAECs transfected
with vehicle or FOXA2 expression vectors. Scale bar, 10 ym. n = 3 experimental repeats. h, RT-
gPCR of FOXA2 and FOXO3A in HAECs transfected with si-NC or si-FOXA2. n = 4 experimental
repeats. i, Western blotting of FOXO3 protein in HAECs transfected with si-NC and si-FOXA2. j,
Ki67 immunofluorescence staining of HAECs transfected with si-NC and si-FOXA2. Scale bar, 25
pm. n = 3 experimental repeats. k, Phospho-histone 3 immunofluorescence staining of HAECs
transfected with si-NC and si-FOXA2. n = 3 experimental repeats. Scale bar, 10 ym. |, ChIP-gPCR
assessment of the enrichment of FOXA2 in the upstream region of FOXO3A. FOXO3 | and FOX0O3
Il represent two different regions containing putative FOXA2 binding motifs. CDX2 is used as a
positive control. n = 3 experimental repeats. m, Luciferase activity of the FOXO3A promoter
measured in HAECs transfected with vehicle and FOXA2 expression vectors. n = 6 experimental
repeats. n, Luciferase activity of the FOXO3A promoter measured in HAECs transfected with si-NC
and si-FOXA2. n = 4 experimental repeats. Data are presented as mean + SEM; p-values were
determined by two-sided Student’s t-test (b, d, f, g, h, j-n).

10



Supplementary Figure 11
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Supplementary Fig. 11, Characterization of FOXO3A™ hESCs. a, Schematic representation of
FOXO3A knockout in hESCs by TALEN-mediated gene targeting technique. Exon 1 of FOXO3A
was removed. b, TALEN-facilitated homologous recombination was used to specifically knock out
FOXO3A without affecting FOXO3B. PCR of the FOXO3B gene from the wild-type and FOXO3A™~
cell genomes using primer pairs P1/P2 or P3/P4. The FOXO3B locus remains intact in FOXO3A ™~
cells. ¢, Genomic sequencing of the FOXO3B gene. d, Sequencing of the TALEN-targeted regions
in the FOXO3B or FOXO3A gene. The y-axes show the coverage of detected sequences in wild-
type and FOXO3A™ cells. The red area, missing sequencing in the FOXO3A region. e, Western
blotting of FOXO3A protein levels in FOXO3A** and FOXO3A™ hESCs. f, Immunofluorescence
analysis indicating the expression of three pluripotency markers in wild-type and FOXO3A-deficient
hESCs. Scale bar, 50 um. g, Immunostaining images showing in vivo differentiation potential to
ectodermal (TUJ1), mesodermal (SMA) and endodermal (FOXA2) tissues in teratomas derived from
FOXO3A-deficient hESCs. Scale bar, 50 um. h, DNA methylation status of the OCT4 promoter in
FOXO3A™” hESCs. i, Karyotyping analysis of FOXO3A-deficient hESCs indicating normal
karyotype.
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Supplementary Figure 12

a
FACS enrichment
CD34+CD201+ -
= - , . & &
v N’ | hESC ~ heVEC  Fibroblast
Day 0 M1 medium: Day 3 M2 medium: Day 6 Endothelial cell
EC basal medium+IWP2 (3 uM), EC basal medium+bFGF (20 ng/ml), growth medium
CHIR99021 (3 uM), BMP4 (25 ng/ml) VEGF (50 ng/ml) and IL6 (10 ng/ml)
and bFGF2 (4 ng/ml) for 3 days. for 3 days, sorting at Day 6.
b c
CD31 CLDN5 ERG1 FN1 PDGFRB
25
_ 25 25 25
o Fibroblast & ~ -
i, p g ; p e
) % 0 7 0 & 0
2] Low
=25 =25 -25
-25
-25 0 25 -25 0 25 -25 0 25 -25 0 25 =25 0 25
» tSNE-1 tSNE-1 tSNE-1 tSNE-1 tSNE-1
-25
d f Arterial markers
40 ® heVSMC 15 [ | ERG1  3E?
| || ACVRL1 rg
i Il E sox17 cH-
— NOTCH4
® hMSC ADAM1 --.l sty
20 ANGPT25
forid 'n DLL4
8 cD93 TOX2
£ CLDN5 B epast
hNSC ® EDN1 . ] JAG2
a ESAM GJA4
ESM1 EPHB4
MMRN2 CXCR4
NOS3 | KDR
® heVEC E'IIEDSSC SOX18 I vccFc
20 @ HAEC ' e nm NOTCH1
-40 -20 0 20 0.0 QO Q,O %C) %C) 6()
- F AP ELE
AN
‘Q
ETS: master regulator of endothelial cells
n ‘0
=} =
Pearson Correlation T T =
- - O < S NO
2282232 - E g2 W -
S | a = ++ ++
ggrwﬁggé-ég%%gmé&;i; FOXO3A FOXO3A
s honololdoooSoLme ~ HAEC heVEC HAEC heVEC
- HAEC 5 e 1000 \
- heVECOOO..o.ooooooooooog:gggg
o -
heVEC HAEC...Q.OOO.Q........5:@888 §
i o
heVSMC hESC S oo,
hMSC . s B 4000
hiPSC e gggg 100 10 100 10° 10° 10° 10' 10° 10° 10¢
hNSC 5 g
) hNSC 21000 DAF-FM
hiPSC el o o e
! hESC
heVSMC{® « « =«
O 0 OO0 000
VS FELL
Q <© QA T O



Supplementary Fig. 12, Optimized protocol for endothelial cell differentiation. a, Schematic
showing the method used to generate heVECs from hESCs. b, Single cell sequencing of heVECs
differentiated from hESCs. c, Cell-type expression signatures. (gray, no expression; dark red,
relatively higher expression). d, Principle component analysis (PCA) of the various cell populations.
heVEC, hNSC, hMSC, heVSMC are human vascular endothelial cell, neural stem cell,
mesenchymal stem cell, and vascular smooth cells differentiated from hESCs (human embryonic
stem cells). iPSCs, induced pluripotent stem cells, HAECs, primary aortic endothelial cells. e,
Heatmap showing DEGs between endothelial cells and other cell lines, with endothelial marks are
specifically expressed in both of HAECs and heVECs. f, Heatmap showing arterial endothelial cell
specific gene expression expressed in both of HAECs and heVECs. g, The Pearson correlation
analysis of ATAC-seq atlas from various cell types. h, Endothelial cells specifically enriched TF
motifs from ATAC-seq analysis. i, In vitro angiogenesis, is assessed by the formation of capillary-like
tubes. Scale bar, 100 um. j, FACS analysis to test nitric oxide (NO) production of endothelial cells.
For measurement of nitric oxide (NO), about 5X 10°> HAECs and heVECs were treated with DAF-FM
(Molecular Probes, Invitrogen) for 30 mins at room temperature. After staining, cells were analyzed
by FACS.
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Supplementary Figure 13
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Supplementary Fig. 13, Characterization of FOXO3A” heVECs. a, FACS enrichment of
heVECs. b, Immunostaining for CD31 and VE-cadherin in FOXO3A** and FOXO3A” heVECs.
Scale bar, 10 um. c, Representative Ki67 and CD31 immunofluorescence staining of FOXO3A**
and FOXO3A” heVECs. Numbers represent the percentage of Ki67-positive cells under each
condition. n = 3 experimental repeats. Scale bar, 50 um. d, The raw data of FACS analysis of cell
cycle of FOXO3A** and FOXO3" heVECs. e, Uptake of acetylated low-density lipoprotein (Ac-LDL)
by FOXO3A** and FOXO3A’ heVECs. Numbers represent the relative immunofluorescence
intensity of Ac-LDL under each condition. n = 3 experimental repeats. Scale bar, 10 um. f, Blood
flow recovery kinetics of each hindlimb ischemic mouse (n = 10) after transplantation of PBS,
FOXO3A** and FOXO3A”’ heVECs, separately. Data are the mean = SEM; p-values were
determined by two-tailed Student's t-test (c, e, f).
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Supplementary Figure 14
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Supplementary Fig. 14, Transcriptomic profiling of FOXO3A deficient human vascular cells.
a, Heatmap showing the number of differentially expressed genes (DEGSs) in WT and FOXO3A-
deficient hESCs and heVECs. WT stands for wild-type, KO stands for knockout of FOXO3A. b,
Heatmap of 64 common genes overlapped between O/Y DEGs of aged monkey EC and FOXO3A
KO DEGs of heVECs. These genes were specific upregulated or downregulated in FOXO3A
deficient heVECs, but not FOXO3A deficient heVECs when compared to wildtype heVECs and
wildtype ESCs, respectively. ¢, RT-gPCR of indicated genes in heVECs. n = 3 experimental repeats.
d, ChIP-gPCR assessment of the enrichment of FOXO3A in the upstream region of GLUL. n = 3
experimental repeats. e, Box plots inside showing the expression of the indicated genes across cell
types, p-values were determined by Wilcoxon rank sum test. Data are presented as mean + SEM; p-
values were determined by two-sided Student’s t-test (c, d, e).
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Supplementary Figure 15
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Supplementary Fig. 15, Uncropped scans of gels and western blots. (a-c) Uncropped blots of
Fig. 3h and Supplementary Figs. 9b and 9d. Edited blots or gels were marked by black rectangles.
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Supplementary Figure 16
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Supplementary Fig 16, Uncropped scans of gels and western blots. (a-e) Uncropped blots of
Supplementary Figs. 10c, 10e, 10i, 11b and 1le. Edited blots or gels were marked by black
rectangles.
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