iScience, Volume 23

Supplemental Information

An Unsupervised Strategy for Identifying Epithelial-Mesenchymal Transition State Metrics in Breast Cancer and Melanoma David J. Klinke II and Arezo Torang

Table S1. List of genes and corresponding K_i values for state metrics developed separately for breast cancer and melanoma cell lines based on CCLE gene expression, related to Figures 5, 8, and 10. Genes that overlap with the fibroblast gene list are highlighted in yellow.

		В	reast Cancer	Cell Lines			
	Epithelial	Signature			Mesenchym	al Signature	
GENE_SYMBOL	Ki (log2	GENE_SYMBOL	Ki (log2	GENE_SYMBOL	Ki (log2	GENE_SYMBOL	Ki (log2
AGR2	3 /11	SORI 1	0.575	ΔCTΔ2	3 826	108	1 PIVI) 3 0/19
ALDH3B2	-0.162	SPINT1	3.224	ADAM12	1.053	LOXL2	5.029
ANXA9	0.842	SPINT2	6.114	AEBP1	0.789	LRRC15	-2.078
AP1M2	3.229	SPRR3	-4.907	AKAP12	1.603	LUM	0.844
ARHGAP8	1.512	ST14	1.847	AKAP2	3.466	MAP1B	2.602
ATP2C2	0.834	TMC6	2.909	AKT3	1.980	MFAP5	0.349
IK	-0.165	TMPRSS2	-1.064	ANK2	0.019	MME	1.240
LNK	-1.4/8	TSPAN1	2.861	ANKRD1	0.750	MMP14	4.1/3
Jorf106	-0.551	TTC20A	1 960		-3.005		1 062
4orf19	-0.034	TUBBP5	-1.711	B2M	10.551	MT2A	8.204
BLC	-1.002	VAMP8	4.388	BAG2	3.408	MVP	5.543
DH1	3.017	VAV3	1.434	BGN	2.601	MXRA7	5.324
S1	1.307	WNT3A	-4.361	C1S	3.387	MYL9	5.467
ACAM6	-0.326	WNT4	-0.875	CALD1	5.718	NID2	2.203
N	1.816	WNT6	-3.454	CCL2	1.674	OLFML2B	0.722
1T1A	0.752			CD68	3.956	PAPPA	-0.374
N4	4.194			CDH11	1.735	PCOLCE	5.155
N7	3.465			CDH2	2.608	PDGFC	3.104
(4	-0.294			CFH	0.357	PDGFRA	-0.591
+61 2	-2.556			CHN1	2.675	PUGERB	0.074
2	0.489				0.31/ 6.150	PITUAL DITY2	4.025
Δ1	3 246			COLIAI	2 272		1 596
•-	1.722			COL5A1	3.435	PMP22	3,951
	3.661			COL5A2	3.181	POSTN	1.271
M	3.937			COL6A1	5.100	PRKCA	2.585
3	1.121			COL6A2	4.555	PROCR	2.850
13	3.212			COL6A3	1.839	PRRX1	0.603
1	1.473			COMP	-2.917	RCN3	3.333
2	2.192			COPZ2	2.300	RECK	1.623
	1.066			CTSB	7.845	S100A4	6.338
	3.831			CXCL3	-0.458	SACS	2.270
	-1.695			CYBRD1	3.311	SDC2	4.282
1	1 5 2 9			DABZ	2.950	SERPTINE2	0.050
3	3 654			DDR2	1 732	SERPINE2	5 020
5	2.017			EDNRA	-2.082	SFRP4	-2.690
.2	0.375			EIF5A2	2.134	SH3KBP1	3.958
H4B	-3.644			EMP3	4.799	SMARCA1	2.936
13	0.820			ENG	3.451	SPARC	6.312
	1.830			ENO1	10.469	SPOCK1	3.297
N	-1.914			FABP5	5.250	SRPX	1.971
	1.130			FAP	0.521	SULF1	1.789
	4.619			FBN1	3.493	I CF4	0.814
1	1.392			FERMIZ	4.687	TCTP1	3.398
-7	5.403 1 019			FGF2	-0.270 1 013	TGER111	3.796
1R	1.586			FHL1	2,509	TGFB2	2.708
2	0.294			FHL2	5.727	THBS2	0.240
14	1.305			FN1	7.767	THY1	1.438
5C	0.668			FOXC2	-2.163	TIMP3	4.142
14P	-1.719			FST	1.858	TMEFF1	0.345
L2	-0.791			FSTL1	5.764	TMEM158	1.339
i	-0.971			FZD7	2.928	TNC	3.700
:В	0.847			GAS1	-0.404	TNFAIP3	2.728
.в	-2.139			GEM	1.912	TNFAIP6	-2.10206
	1.697			GFP12	1.747	1 PM2	0.788168
•	1./68			GU2	1.859		1.200131
5	2 307			GLT8D2	0.756	TUBB3	-4.36172
.14	3.154			GREM1	0.866	TUBB6	7.167798
1A	2.039			HGF	-1.971	TWIST1	1.57171
1	1.217			HMGA2	1.475	TWIST2	-0.95998
7A1	1.599			HTRA1	3.909	VCAN	1.996064
				IFITM3	7.043	VEGFC	2.485532
				IGFBP3	6.549	VIM	7.664345
				ITGA5	4.594	WISP1	-2.69714
				ITGB1	8.822	WNT5A	2.181108
				LEPRE1	4.883	WNT5B	1.845579
				LGALS1	10.647	ZEB1	0.997605
				LHFP	2.476		

Melanoma Cell Lines							
rentiated S	ignature		D	edifferentiat	ed Signature		
SYMBOL	Ki (log2		GENE SYMBOL	Ki (log2	GENE SYMBOL	Ki (log2	
	TPM)		02112_0111002	TPM)	orur_orupor	TPM)	
3B2	-4.011		ABCC3	1.406	SERPINB2	4.536	
1	-2.562		ACTAZ ADAM12	3 608	SERPINE1	-1 22/	
M1	-0.123		ANKRD1	2.131	SPOCK1	5.385	
1A	-3.107		ASPN	-2.238	SULF1	3.621	
	0.188		BGN	3.567	TCF4	2.083	
3	1.235		C1S	4.607	TFPI	3.789	
	-1.807		CDH11	2.617	TGFBI	8.522	
	3.265		CFH	1.919	THBS2	5.056	
	-0.554		CITED2	5.845	THY1	4.842	
5	-1.932		CU 141	5.813		1.628	
	-1 439		COLIAI	3 977	TWIST2	0.560	
	2.589		COL5A1	4.609	VCAN	5.018	
	3.481		COL5A2	4.965	VEGFC	3.187	
1	1.819		COL6A1	7.388	WISP1	-0.241	
4	-0.758		COL6A2	6.933	WNT2	-2.599	
	1.244		COL6A3	3.714	WNT5A	3.375	
1	-3.873		COMP	-0.745	WNT5B	2.735	
'5	-4.099		CXCL12	1.898	ZEB1	3.080	
			DCN	1.646			
			DES	+.524			
			FDNRA	-1.273			
			EGFR	2.254			
			EPS8L2	2.871			
			FAP	4.634			
			FBN1	5.531			
			FGF1	2.181			
			FGF2	3.328			
			FHL1	5.185			
			FN1 FOXC2	0 224			
			FST	4.619			
			FSTL1	7.571			
			GJA1	2.395			
			GLT8D2	1.638			
			GREM1	3.809			
			HGF	-1.492			
			IFITM2	5.038			
				7.520			
			INHRA	3 419			
			ITGA5	6.247			
			ITGBL1	3.675			
			KRT14	2.253			
			KRT7	3.666			
			LGR5	-2.537			
			LOX	4.766			
			LUXL2	6.880 0 E 9 1			
			MALL	0.361			
			MFAP5	2,224			
			MMP2	6.450			
			MXRA5	-1.191			
			MYL9	5.656			
			NID2	2.973			
			NOTCH3	2.482			
			N15E	6.282			
				1.962			
			PDGEC	2,985			
			PDGFRA	2.568			
			PDGFRB	2.617			
			PLAU	2.660			
			POSTN	3.522			
			PRRX1	4.508			
			PTGS1	0.887			
			PTRF	7.111			
			RCN3	5.553			
			S100A4	0.830			
			3100A4	1.575			

Table S2. List of genes and associated Ki values for refined state metrics based on TCGA breast cancer tissue samples and tissue samples of common acquired melanocytic nevi and primary melanoma, related to Figures 6 and 9. Genes that overlap in the state metrics between breast cancer and melanoma are highlighted in green.

TCG	A Breast C	ancer	Tissue Sample	es
Epithelial Si	gnature		Mesenchymal	Signature
GENE_SYMBOL	Ki (log2 TPM)		GENE_SYMBOL	Ki (log2 TPM)
ALDH3B2	5.860		ASPN	5.774
C1orf106	1.334		B2M	10.641
C4orf19	1.790		CDH2	1.251
CDH1	7.929		CLIC4	7.324
CLDN4	7.355		CTSB	8.506
CLDN7	6.914		EDNRA	4.265
CYP4B1	2.776		FOXC2	0.656
DSC2	4.018		IFITM3	9.645
EHF	5.528		ITGA5	5.290
FA2H	1.907		MMP3	2.950
GRB7	4.897		POSTN	8.570
ICA1	5.021		SERPINE1	5.388
IRF6	6.778		SPOCK1	3.846
JUP	8.167		SULF1	6.026
MSX2	3.530		TGFB1	5.376
OR7E14P	2.594		TUBB3	0.189
POF1B	1.498		WISP1	3.040
PPL	4.865			
SPRR3	-2.907			
TMPRSS2	2.745			
TUBBP5	1.073			
WNT3A	-2.816			
WNT4	2.170			
WNT6	-0.415			

Melanocyti	c Nevi and	Melanc	oma T	Tissue :	Samples
Differentiated	[De-differentiated Signature			
GENE_SYMBOL	Ki (log2 TPM)	GE	ENE_SY	'MBOL	Ki (log2 TPM)
ARAP2	5.322	AC	CTA2		6.008
CEACAM1	3.142	DE	ES		1.865
CKMT1A	0.335	FG	GF1		2.198
EDNRB	8.655	FC	DXC2		-4.064
ERBB3	6.930	HC	GF		2.130
ESRP1	5.179	IN	HBA		2.599
FXYD3	7.487	IT	GA5		4.301
HPGD	6.732	KF	RT7		1.376
MITF	7.547	NI	D2		3.532
MTUS1	5.913	N	отснз		4.783
MYH14	3.382	PD	OGFRB		5.790
		SE	RPINE	1	2.665
		SP	POCK1		2.186
		TP	PM2		5.225
		VE	GFC		2.026
		W	ISP1		1.830
		W	NT5A		3.416

Fig. S1. Consensus matrix for similarity and clustering of cell samples, related to Figures 6 and 9. The symmetric 1034x1034 matrix is colored in element(i,j) by similarity in assigning cells i and j to the same cluster when the clustering parameters are changed. A similarity score of 0 (blue) indicates that the two cells are always assigned to different clusters while a score of 1 (red) indicates that the two cells are always assigned to the same cluster. The similarity of the samples are also illustrated by the dendrograms shown on the top and side. The top bar indicates whether the cell was annotated as a fibroblast based on COL1A1 and COL1A2 co-expression (aqua - fibroblast, pink - other).

Transparent Methods

'Omics Data. Transcriptomics profiling of the same samples using both Agilent microarray and Illumina RNA sequencing for the breast cancer arm (BRCA) of the Cancer Genome Atlas was downloaded from TCGA data commons. Values for gene expression, expressed in TPM for RNA-seq and gene-centric RMA-normalized data for Affymetrix U133+2 microarray, for the cell lines contained within the Cancer Cell Line Encyclopedia were downloaded from the Broad data commons (Website: https://portals.broadinstitute.org/ccle Files: CCLE_RNAseq_rsem_genes_tpm_20180929.txt accessed 04/04/2019 and CCLE_Expression_Entrez_2012-10-18.res accessed 6/15/2018). Reverse phase protein array (RPPA) results for the cancer cell lines were obtained from the M.D. Anderson proteomics website (Website: https://tcpaportal.org/mclp/ File: MCLP-v1.1-Level4.txt accessed 6/15/2018) (Li et al., 2017). Single-cell gene expression (scRNA-seq) for breast cancer and melanoma cells expressed in TPM were downloaded from the Gene Expression Omnibus (GEO) entries GSE75688 and GSE72056, respectively. 10X Genomics scRNA-seq data for CD45-negative cells digested from a normal human female skin sample and expressed in counts of gene-level features was downloaded from European Bioinformatics Institute (EMBL-EBI) ArrayExpress entry E-MTAB-6831. RNA-seq data expressed in counts assayed in samples acquired from benign melanocytic nevi and untreated primary melanoma tissue and associated annotation were downloaded from GEO entry GSE98394.

Non-linear regression of protein abundance to mRNA expression. All data was analyzed in R (V3.5.1) using the 'stats' package (V3.5.1). For each gene where complementary CCLE transcriptomic and RPPA data exist and for which their correlation coefficient was above 0.36, the non-linear function,

$$Y_{protein} = a + \frac{b \cdot X_{mRNA}}{X_{mRNA} + c},\tag{S1}$$

was regressed using the *nls* function to the corresponding protein $(Y_{protein})$ and transcript (X_{mRNA}) abundance data. As the RPPA values are normalized, the parameters *a* and *b* represent the background value and maximum detectable increase above background, respectively, while the parameter *c* represents the midpoint in transcript abundance within the dynamic range of the assay. A minimum in the summed squared errors between model-predicted and observed RPPA values were used to determine the optimal values of the model parameters. Using the optimal values, a threshold was estimated independently for each gene based on the transcript abundance that yields a 2.5% increase in protein abundance above background. The regression was repeated using both RNA-seq and Affymetrix transcriptomics data.

Statistical analysis for cell-level signatures. Principal component analysis (PCA) was performed on log base 2 transformed TPM values using the prcomp function in R on the CCLE RNA-seq data, which was filtered to 780 genes previously associated with epithelialmesenchymal transition. The collective list of genes were assembled from prior studies (Sarrio et al., 2008; Carretero et al., 2010; Alonso et al., 2007; Cheng et al., 2012; Tan et al., 2014; Kaiser et al., 2016; Deng et al., 2019, 2020) and additional gene sets from MSigDB V4.0 including: "EPITHELIAL TO MESENCHYMAL TRANSITION" and "REACTOME TGF BETA RECEPTOR SIGNALING IN EMT EP-ITHELIAL TO MESENCHYMAL TRANSITION". PCA was applied to the genes to extract the features, where the resulting eigenvectors capture the relative influence of a gene's expression on a specific principal component and the eigenvalues represent how much information contained within the dataset is captured by a specific principal component. Drawing upon conventional hypothesis testing where significance is established by rejecting the null hypothesis that experimental observations could be explained by random chance, we used a resampling approach to establish a null hypothesis related to the eigenvalues, that is to determine the true rank of the noisy expression matrix. The resampling approach involved repetitively applying PCA (n = 1000) to a synthetic noise dataset with the same dimensions that was generated from the original data by randomly resampling with replacement from the collection of gene expression values and assigning the values to particular gene-cell line combinations. The resulting distribution of eigenvalues and eigenvectors represent the values that could be obtained by random chance if the underlying dataset has no information (i.e., the null PCA distribution). Principal components with eigenvalues greater than the null PCA distribution were used to define the principal subspace for subsequent analysis, that is the selection of features. Similarly, the distribution in the projection of genes within the null PCA space were used to determine whether the projection of a gene along a particular PC axis was explained by random chance or not by setting thresholds along the PC2 and PC3 axes that enclosed 95% of the null PCA space. The PC projection of genes relative to the null PCA space was used to refine the extracted features.

A metric was developed to estimate the extent that a cell exhibits a gene signature corresponding to a "Epithelial/Terminally Differentiated" versus "Mesenchymal/De-differentiated" state. The state metrics (SM) quantify the cellular state by averaging over a normalized expression level of each gene in the signature ($reads_i$, expressed in TPM) according to the formula:

$$SM = \frac{1}{n_{gs}} \sum_{i=1}^{n_{gs}} \frac{reads_i}{reads_i + 2^{K_i}}.$$
(S2)

The genes included in a signature with their corresponding K_i values are listed in Table S1 and n_{gs} corresponds to the number of genes within a signature. The K_i values were estimated by clustering the log2 expression of each gene into two groups using the k-means method and the value was set as the mid-point in expression between the two groups.

Statistical analysis for tissue-level signatures. Genes differentially expressed in normal epidermal fibroblasts were obtained by analyzing single-cell RNA-seq data of normal skin obtained using a Genomics 10x platform and a bioinformatics workflow based on the scater (V1.12.2) and SC3 (V1.12.0) packages in R. Briefly, scRNA-seq data were filtered to retain samples that had less than 50% of the reads in the top 50 genes and to remove outlier samples based on PCA analysis. Gene-level features were limited to those that were expressed at greater than 1 count in more than 10 cell samples. Read depth was normalized using a variant of CPM contained within the *scran* (V1.12.1) package, which develops a sample-specific normalization factor repetitive sample pooling followed by deconvoluting a sample-specific factor by linear algebra. Following from Davidson et al. (bioRxiv 467225), fibroblasts were annotated based on co-expression of COL1A1 and COL1A2.

Samples were clustered and genes differentially associated with each cluster were identified using the *SC3* workflow (V1.14.0) using default parameters (see Figure S1).

Prior to logistic regression analysis, TCGA BRCA data and the benign nevi and melanoma data were filtered to remove sample outliers and normalized based on housekeeping gene expression (Eisenberg and Levanon, 2013). Using normal versus tumor annotation associated with the data, ridge logistic regression was performed on log base 2 transformed TPM and median-centered values using the *glmnet* package (V2.0-18), which was limited to EMT-related genes identified in the CCLE analysis and not associated with normal fibroblasts. To minimize overfitting, ridge logistic regression was repeated 500 times using a subsample of the original data set using the genes associated with each signature separately. In each iteration, the samples were randomly assigned in an 80:20 ratio between training and testing samples. Regression coefficients were captured for each iteration using a lambda value that minimized the misclassification error of a binomial prediction model estimated by cross-validation. Accuracy was assessed using the testing samples. Genes were determined to have a consistent expression pattern if greater than 95% of the distribution in regression coefficients had the correct sign. Similarly to the cell-level analysis, state metrics were developed for bulk tissue-level RNA-seq measurements to estimate the extent that a tissue sample exhibits a gene signature corresponding to a "Epithelial/Terminally Differentiated" versus "Mesenchymal/De-differentiated" state. The genes included in a signature and their corresponding K_i values are listed in Table S2.

Data and Code Availability. The code used in the analysis can be obtained from the following GitHub repository:

• https://github.com/KlinkeLab/DigitalCytometry_EMT_2020