Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2019.

Supporting Information

for Adv. Sci., DOI: 10.1002/advs.201902868

Unveiling the Effects of Hydrolysis-Derived DMAI/DMAPbI_x Intermediate Compound on the Performance of CsPbI₃ Solar Cells

Hui Bian, Haoran Wang, Zhizai Li, Faguang Zhou, Youkui Xu, Hong Zhang, Qian Wang, Liming Ding,* Shengzhong (Frank) Liu,* and Zhiwen Jin*

Supporting Information

Unveiling the Effects of Hydrolysis-Derived DMAI/DMAPbI_x Intermediate Compound on Performance of CsPbI₃ Solar Cells

Hui Bian¹, Haoran Wang¹, Zhizai Li², Faguang Zhou², Youkui Xu², Hong Zhang^{2,4}, Qian Wang², Liming Ding^{3,*}, Shengzhong (Frank) Liu^{1,*} and Zhiwen Jin^{2,*}

Dr. H. Bian, Dr. H. Wang, Dr. Z. Li, Dr. F. Zhou, Dr. Y. Xu, Dr. H. Zhang, Prof. Q. Wang, Prof. L. Ding, Prof. S. Liu, Prof. Z. Jin

¹Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; School of Materials Science & Engineering, Shaanxi Normal University, Xi'an 710119, PR China

²School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials of MoE & Key Laboratory of Special Function Materials and Structure Design, MoE & National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou 730000, China

³Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China

⁴Electron Microscopy Centre, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China.

E-mail: jinzw@lzu.edu.cn, ding@nanoctr.cn, szliu@dicp.ac.cn

Keywords: DMAPbIx, DMAI, CsPbI3, intermediate compound, solar cells

Experimental

Solution Preparation Section

Materials preparation: Dimethyl formamide (DMF), Dimethyl sulfoxide (DMSO), 4tert-butylpyridine (TBP), bis (trifluoromethylsulfonyl) imidelithium salt (Li-TFSI), and chlorobenzene were purchased from Sigma-Aldrich. PbI₂, CsI, and PbBr₂ were purchased from Xi'an Polymer Light Technology Corp. All materials were used as received without further purification.

Precursor solution preparation: The syn-PbI₂ was prepared by using PbI₂ (1.2 g) dissolved in 2.5 mL DMF at 80 °C under active stirring for 30 min in air atmosphere. Immediately after, different volumes of HI (2.5 mL, 5 mL, 7.5 mL, 10 mL, 12.5 mL) were added to the solution for 2 h and dry overnight using a vacuum oven. Finally, 0.7022 g syn-PbI₂, 0.1468 g PbBr₂ and 0.3638 g CsI were added to the solution of 2 mL DMF and DMSO (9:1) under active stirring for 1 h. The CsPbI₃ precursor solutions were prepared. For comparison, we prepared the same ratio of solutions using PbI₂ purchased directly.

HTL solution preparation: A solution was prepared by dissolving PTAA (36 mg), a sulfonyl imide (Li-TFSI, 22 μ L, 520 mg Li-TFSI in 1 mL acetonitrile), and tert-butylpyridine (TBP, 36 μ L) in 1 mL of CB solution.

Device Fabrication Section

*Preparation of TiO*₂*-blocking layer*: FTO-coated glass was washed and O₂-plasmatreated for 15 min before the deposition of TiO₂. The clean substrates were immersed in a 40 mM TiCl₄ aqueous solution for 1h at 70 °C and washed with distilled water and ethanol, followed by annealing at 200 °C for 30 min in air to form a compact TiO₂ layer.

Growth of the CsPbI₃ film: The CsPbI₃ layer was fabricated via one-step spin-coating. The mixed solution was spin-coated on top of O₂-plasma-treated TiO₂ substrate at 1000 rpm for 10 s. The speed was then increased to 3500 rpm and maintained 40 s. Finally, the films were annealed at 180 °C for 15mim to form the films.

Assembly of the solar cells: An HTL film was prepared by spin-coating the HTL solution onto the CsPbI₃ film at 5000 rpm for 30 s. A 70-nm-thick gold electrode was then thermally evaporated onto the HTL-coated film.

Characterization Section

SEM and AFM: The film surface morphology, elemental distribution, and crosssectional images were characterized by field emission scanning electron microscope (FESEM, Jeol SU-8020). Atomic force microscope (AFM, Bruker Dimension 5000 Scanning Probe Microscope) was used to measure surface roughness of the perovskite film in "tapping" mode.

Absorbance and PL: Absorbance spectra were collected using a Shimadzu UV-3600 double beam spectrometer using the slowest scanning rate with one-second integration and a 2 nm slit width. The PL spectra were measured using a PicoQuant FluoTime 300.

The source light was a xenon short arc lamp. PL (excitation at 532 nm) spectra were measured using a FLS980 spectrometer (Edinburgh Instruments Ltd)

XRD, FTIR, NMR and XPS: XRD patterns of the samples were obtained using a Bruker D8 GADDS Diffractometer with the Cu K α line. FTIR spectra were measured with a Bruker Vertex 70. NMR was performed by using JNM-ECZ400S/L1 with a frequency of 400 MHz and deuterated DMSO was used as solvent. The XPS measurements were performed in a VG ESCALAB MK2 system with monochromatized Al K α radiation at a pressure of 5.0 × 10⁻⁷ Pa. XPS was carried out by using a photoelectron spectrometer (ESCALAB250Xi, Thermo Fisher Scientifc).

J-V and EQE: The active area of solar cell was restrained by a 9 mm² metal mask. The J–V characteristics of the PSCs were collected by using a digital source meter (Keithley Model 2400) under an illumination of an AM 1.5 solar simulator (100 mW cm⁻², SS-F5-3A, Enlitech), as calibrated by a NREL-traceable KG5-fltered silicon reference cell. This used reverse scan mode (from V_{OC} to I_{SC}) and forward scan mode (from I_{SC} to V_{OC}) with a scan rate of 30 mV/s. The external quantum efficiency (EQE) data were obtained by solar-cell spectral-response measurement system (QE-R3011, Enlitech). The monochromatic light intensity for EQE was calibrated using a reference silicon detector.

Long-term stability analysis: The steady photocurrent and PCE were measured at the maximum power point. The long-term stability was measured after storage in air (relative humidity of 30%-40% at 25 °C) over 7 days without any encapsulation. To test the device heat stability, we put the unencapsulated device in a nitrogen glovebox with 80 °C for 30 days.

Figure S1. Characterization of the Syn-CsPbI₃ Film (a) The SEM image of unannealed syn-CsPbI₃ film. (b) and (c) are the EDX spectra of points A and B in Figure S1a, respectively. (d) The SEM image of annealed syn-CsPbI₃ film. (e) and (f) are the EDX spectra of points C and D in Figure S1d, respectively.

Figure S2. Characterization of the Syn-CsPbI3 Film. The SEM image and EDX spectra of (a)-(b) unannealed syn-CsPbI3 film. (c)-(d) annealed syn-CsPbI3 film.

Figure S3. Characterization of Syn-DMAI Powder. (a) XRD patterns of purchased DMAI and syn-DMAI; (b) XRD patterns of syn-DMAI using different HI ratios; (c) corresponding magnification of a portion of the XRD patterns.

Figure S4. Films and Powders Component Studies. XRD patterns of (a) the syn-PbI₂ powder, DMAI and DMAPbI₃; (b) the corresponding magnification of a portion for syn-PbI₂ powder and DMAPbI₃.

Figure S5. XRD patterns of syn-CsPbI₃ films and the corresponding FWHM of the peaks (110).

Figure S6. DSC curves of Syn-PbI₂ Powder.

Figure S7. XPS spectra of (a) Pb 4f; (b) I 3d5 in syn-PbI₂ powder.

Figure S8. XPS spectra of (a) Cs 3d5; (b) Pb 4f; (c) Br 3d; and (d) I 3d5 in syn-CsPbI₃ film.

Figure S9. Different purification times for syn-PbI₂: (a) FTIR spectra; (b) TGA curves.

Figure S10. TRPL decay curves for syn-CsPbI₃ films.

Table S1. TRPL spectroscopy fitting parameters of the syn-CsPbI₃ films (extracted from Figure S10).

Sample	т _{ave} (ns)	т ₁ (ns)	amplitude т ₁ (%)	т ₂ (ns)	amplitude τ ₂ (%)
1:1	1.56	5.63	11.15	1.05	88.85
1:2	4.18	18.76	8.85	2.76	91.15
1:3	4.76	8.9	29.25	3.04	70.75
1:4	10.87	48.01	12.74	5.45	87.26

Figure S11. (a) XPS spectra of syn-CsPbI₃ film before and after etching 300 s; (b) C 1s; (c) N 1s.

Table S2. The measured elements value of the XPS spectra of syn-CsPbI₃ film before and after etching 300 s (extracted from **Figure S11a**).

Element	С	Ι	Pb	N	Br	0	Cs
At% (0nm)	18.73	43.6	12.94	0.07	3.88	2.19	18.59
At% (0nm)	0	46.85	20.48	0	8.1	0	24.57

Figure S12. Photovoltaic Performance of Syn-CsPbI₃ PSCs. (a) J-V curves of 1:1 and 1:4 samples after longer annealing process; (b) J-V curves for 1:4 sample of optimized device and reference device with longer annealing process.

Figure S13. Long-term stability of the best-performing device stored: (a) in N_2 atmosphere at 80 °C; (b) in air at relative humidity of 20%-30%.