A Anti-Lamin A/C antibodies used in this study

Lamin A/C Antibody	Antigen	Туре	Catalog No.	Application (this study)
Anti-pS22	Synthetic phosphopeptide	Rabbit	Cell Signaling	ELISA, ChIP, IF, Western
	surrounding S22	monoclonal	D2B2E #13448	of endogenous Lamin A/C
Anti-pan-N-terminal	Synthetic non-phospho	Mouse	Santa Cruz	ELISA, ChIP, IF, Western
	peptide aa 2-29	monocional	E1 sc-376248	of endogenous Lamin A/C
Anti-full-length	Recombinant	Mouse	Abcam	ChIP, IF of transgene-derived
	full length aa 1-664	monocional	4C4 ab190380	WT & phospho-mutant Lamin A/C

B Anti-pS22 specificity in ELISA

C No antibody control for flow-cytometry

Figure S1. Characterization of S22-phosphorylated Lamin A/C (related to Figure 1)

(A) Anti-Lamin A/C antibodies used in this study.

(B) ELISA on immobilized synthetic phospho-S22 or non-phospho-S22-Lamin A/C peptides (aa2-29) incubated with anti-pS22-Lamin A/C or anti-pan-N-terminal-Lamin A/C antibodies. Circle, technical replicate. Line, Loess fit.

(C) Control flow cytometry analysis without anti-pS22-Lamin A/C antibody for Fig. 1C.

(D) Uncropped images of Western blots of synchronized wild-type BJ-5ta, part of which are shown in

Fig. 1D. Left, blot detected with the anti-pS22-Lamin A/C antibody. Right, blot detected with the anti-pan-N-terminal-Lamin A/C antibody.

(E) (Top) Same as D, but two additional biological replicates are shown as cropped images.

Figure S2. Characterization of pS22-Lamin A/C-binding sites (related to Figure 2)

(A) ChIP-seq fold-enrichment (FE) scores at Lamin A/C LADs defined by pan-N-terminal-Lamin A/C ChIP-seq. A subset of LADs that do not have adjacent LADs within 250 kb downstream of LADs are shown.

(B) Histogram of the size of pS22-Lamin A/C-binding sites and Lamin A/C LADs.

(C) Comparison of genomic domains covered by Lamin A/C LADs (in BJ-5ta, this study) or Lamin B1

LADs (lung fibroblast, Guelen et al., 2008).

(D) Location of pS22-Lamin A/C-binding sites with respect to the 1,302 Lamin B1 LADs.

(E) (Top) Immunofluorescence of transgene-driven Lamin A or Lamin C with phospho-deficient S22A/S392 mutations, or phospho-mimetic S22D/S392D mutations, or without mutation, expressed in $LMNA^{-/-}$ cells. The anti-full-length-Lamin A/C antibody (Fig. S1A) was used. (Bottom) Immunofluorescence signal distribution along a 5-µm segment that crosses the nuclear periphery at 0 µm (-2.5 to 2.5 µm with negative coordinates indicating positions outside the nucleus). Line, mean. Shade, minimum to maximum. n, number of nuclei analyzed.

(F) Interior-to-periphery Lamin A/C immunofluorescence signal ratio in transgene-driven wild-type (WT), phospho-deficient (AA), and phospho-mimetic (DD) Lamin A/C expressed in $LMNA^{-/-}$ cells. Interior signals are the mean signal within +4 to +5 µm of the aforementioned 5-µm segment. Peripheral signals are the maximum signal within -0.5 to +0.5 µm of the segment. One-way ANOVA compares the ratio of all isoforms, with post-hoc Tukey analysis for pairwise comparison (pairs with P<0.05 are indicated).

(G) Representative ChIP-seq profiles for transgene-driven wild-type (WT), phospho-deficient (AA), and phospho-mimetic (DD) Lamin A/C expressed in *LMNA*^{-/-} cells. The anti-full-length-Lamin A/C antibody (**Fig. S1A**) was used in ChIP. Signals are FE scores. Pan-N-terminal Lamin A/C and pS22-Lamin A/C ChIP-seq profiles in BJ-5ta are shown for comparison. Arrows indicate positions at which phospho-mimetic Lamin C was enriched at pS22-Lamin A/C binding sites.

(H) ChIP-seq FE scores at the 22,966 pS22-Lamin A/C-binding sites.

(I) ChIP-seq FE scores across the 2,178 Lamin A/C LADs for each biological replicate. Mean of all FE scores within one LAD represents the FE score of that LAD. One-way ANOVA compares means of all isoforms, with post-hoc Tukey analysis for pairwise comparison (pairs with P<0.05 are indicated).

А

pS22-Lamin A/C-binding sites vs.chromatin feature

в

D

F

C c-Jun peak occurrence at pLA/C-bound vs. -unbound ATAC sites with matching accessibility

pS22-Lamin A/C-binding sites vs. transcription of genes outside of LADs

pS22-Lamin A/C and chromatin signals at all ATAC sites

c-Jun and H3K27ac levels at pLA/C-bound vs. -unbound c-Jun-bound sites with matching chromatin accessibility

Gene decile stratified by GRO-seq coverage

Figure S3. Chromatin characteristics of pS22-Lamin A/C-binding sites (related to Figures 2 and 3)

(A) Fraction of the 22,966 pS22-Lamin A/C-binding sites that overlap ATAC-seq-defined accessible sites, H3K27ac ChIP-seq peaks, or H3K4me3 ChIP-seq peaks in BJ-5ta.

(B) ATAC-seq and ChIP-seq fold-enrichment (FE) scores at the 73,933 ATAC-seq-defined accessible sites in BJ-5ta.

(C) Fraction of pS22-Lamin A/C-bound or -unbound ATAC sites overlapping c-Jun-binding sites. ATAC sites (total 73,933 sites) are stratified into deciles by ATAC FE scores, and from each decile, 100 pS22-Lamin A/C-bound and 100 pS22-Lamin A/C-unbound ATAC sites are randomly selected, and the intersection is assessed. Fisher's exact test compares association between being bound by pS22-Lamin A/C and being bound by c-Jun, and P-values are adjusted by the Benjamini-Hochberg method.

(D) c-Jun and H3K27ac ChIP-seq FE scores at c-Jun-binding sites bound or unbound by pS22-Lamin A/C. c-Jun-binding sites (total 87,988 sites) are stratified into deciles by ATAC FE scores, and from each decile, 100 pS22-Lamin A/C-bound and 100 pS22-Lamin A/C-unbound ATAC sites are randomly selected, and their FE score distribution is visualized. Sum of FE scores within +/–250 bp of ATAC site center is used for analysis. Mann-Whitney *U*-test compares FE scores between pS22-Lamin A/C-bound and -unbound sites, and P-values are adjusted for multiple comparisons by the Benjamini-Hochberg method.

(E) Fraction of genes with pS22-Lamin A/C-binding sites (within gene body or 100 kb upstream) in gene decile stratified by GRO-seq coverage in BJ-5ta. Genes are first stratified by GRO-seq coverage and then grouped by their TSS positions with respect to Lamin A/C LADs (either overlapped or not). Data for all genes (shown in **Fig. 3H**) is shown again here for comparison. Horizontal dotted line, fraction of all genes with pS22-Lamin A/C-binding sites.

(F) Same as (E), but genes are stratified (after GRO-seq stratification) by gene length (left) or distance to closest genes (right).

А

RNA-seq data sets used in this study

Data ID	Donor type	Cell line name	LMNA genotype	Donor age	Dono sex	or GEO accession	Data source
KI429	Normal	GM08398	N/A	8 yrs	М	GSM3104038	This study
KI430	Normal	GM07492	N/A	17 yrs	М	GSM3104039	This study
KI433	Normal	GM08398	N/A	8 yrs	М	GSM3104042	This study
KI434	Normal	GM07492	N/A	17 yrs	М	GSM3104043	This study
s75	Normal	GM00969	N/A	2 yrs	F	GSM3124626	Fleischer et al.
s76	Normal	GM05565	N/A	3 yrs	М	GSM3124627	Fleischer et al.
s77	Normal	GM00498	N/A	3 yrs	М	GSM3124628	Fleischer et al.
s78	Normal	GM05381	N/A	5 yrs	М	GSM3124629	Fleischer et al.
s79	Normal	GM05400	N/A	6 yrs	М	GSM3124630	Fleischer et al.
s80	Normal	GM05757	N/A	7 yrs	М	GSM3124631	Fleischer et al.
s81	Normal	GM00409	N/A	7 yrs	М	GSM3124632	Fleischer et al.
s82	Normal	GM00499	N/A	8 yrs	М	GSM3124633	Fleischer et al.
s83	Normal	GM08398	N/A	8 yrs	М	GSM3124634	Fleischer et al.
s84	Normal	GM00038	N/A	9 yrs	F	GSM3124635	Fleischer et al.
KI431	HGPS	AG11498	1824C>T	14 yrs	М	GSM3104040	This study
KI432	HGPS	HGADFN167	7 1824C>T	8 yrs 5 mos	М	GSM3104041	This study
KI435	HGPS	AG11498	1824C>T	14 yrs	М	GSM3104044	This study
KI436	HGPS	HGADFN167	7 1824C>T	8 yrs 5 mos	М	GSM3104045	This study
s42	HGPS	AG11513	1824C>T	8 yrs	F	GSM3124693	Fleischer et al.
s43	HGPS	HGADFN167	7 1824C>T	8 yrs 5 mos	М	GSM3124694	Fleischer et al.
s44	HGPS	HGADFN188	3 1824C>T	2 yrs 3 mos	F	GSM3124695	Fleischer et al.
s45	HGPS	HGADFN127	7 1824C>T	3 yrs 9 mos	F	GSM3124696	Fleischer et al.
s46	HGPS	HGADFN164	1824C>T	4 yrs 8 mos	F	GSM3124697	Fleischer et al.
s47	HGPS	HGADFN169	9 1824C>T	8 yrs 6 mos	М	GSM3124698	Fleischer et al.
s48	HGPS	HGADFN178	3 1824C>T	6 yrs 11 mo	s F	GSM3124699	Fleischer et al.
s49	HGPS	HGADFN122	2 1824C>T	5 yrs 0 mos	F	GSM3124700	Fleischer et al.
s50	HGPS	HGADFN143	3 1824C>T	8 yrs 10 mo	sМ	GSM3124701	Fleischer et al.
s51	HGPS	HGADFN367	7 1824C>T	3 yrs 0 mos	F	GSM3124702	Fleischer et al.

Normal, normal individual;

HGPS, patients with Hutchinson-Gilford Progeria Syndrome N/A, not available; M, male; F, female Fleischer et al, *Genome Biology* (2018) PMID: 30567591

в

Pro

Beta-galactosidase assay for senescence evaluation

Quantification of beta-galactosidase assay

Cell	Condition	Positive	cell
ine		cell %	count
VI38	Early passage (PD25)	0%	206
VI38	Late passage (PD41)	75%	156
VI38	400 µM H2O2 (induced)	83%	151
M07	300 µM H2O2 (induced)	47%	201
M07	Upon harvest	0.5%	195
M08	Upon harvest	2%	206
G11	Upon harvest	3%	206
G16	Upon harvest	1.5%	201
	ell /138 /138 /138 /138 M07 M07 M07 M08 G11 G16	iell neCondition//38Early passage (PD25)//38Late passage (PD41)//38400 µM H2O2 (induced)M07300 µM H2O2 (induced)M07Upon harvestM08Upon harvestG11Upon harvestG16Upon harvest	cell neConditionPositive cell %//38Early passage (PD25)0%//38Late passage (PD41)75%//38400 µM H2O2 (induced)83%M07300 µM H2O2 (induced)47%M07Upon harvest0.5%M08Upon harvest2%G11Upon harvest3%G16Upon harvest1.5%

Total

D

Principal component analysis of normal and progeria RNA-seq data sets with data ID annotation

Figure S4. RNA-seq in progeria-patient and normal fibroblasts (related to Figure 4)

(A) The 28 RNA-seq datasets used in this study.

(B) Representative images of beta-galactosidase assay evaluating the extent of cell senescence. The assay was performed in the first biological replicate of cells used in RNA-seq and ChIP-seq.

(C) Quantification of beta-galactosidase assay. Early-passage WI38 fibroblasts serve as a negative control. Late-passage WI38 serves as a positive control. WI38 and GM07492 cells treated with H_2O_2 serve as additional positive controls. Cell line notation: GM08, GM08398. GM07, GM07492. AG11, AG11498. HG16, HGADFN167.

(D) Principal component analyses (PCA) of the 28 RNA-seq datasets with sample labels. PCA was performed on RNA-seq RPKMs for all 31,561 genes (see *Gene annotation* in **Methods**). The left panel without sample labels is shown in **Fig. 4A**.

Figure S5. Gained and lost LADs in progeria-patient fibroblasts (related to Figure 5)

(A) Representative pan-N-terminal-Lamin A/C (pan-Lamin A/C) and pS22-Lamin A/C ChIP-seq profiles in normal (GM07492) and progeria-patient (AG11498) fibroblasts. Signals are fold-enrichment (FE) scores. Box, gained LADs in progeria-patient fibroblasts. Pan-N-terminal-Lamin A/C profiles are in the log₂ scale to visualize LAD patterns.

(B) Same as (A), but boxes indicate lost LADs in progeria-patient fibroblasts.

(C) DisGeNet-curated disease terms over-represented among progeria-down genes linked to gained LADs, progeria-down genes not linked to gained LADs, and all progeria-down genes. No terms are enriched among progeria-down genes linked to gained LADs.

(D) Same as (C), but progeria-up genes linked to lost LADs, progeria-up genes not linked to lost LADs, and all progeria-up genes are shown.

Figure S6. Gained and lost pS22-Lamin A/C-binding sites in progeria-patient fibroblasts (related to Figure 6)

(A) Immunofluorescence using the anti-pan-N-terminal Lamin A/C antibody and anti-pS22-Lamin A/C antibody in normal and progeria fibroblasts. Representative images from 3 biological replicates are shown.
(B) (Left) Western blot for pan-N-terminal-Lamin A/C and pS22-Lamin A/C on normal (GM07492) and progeria fibroblast (AG11498) extracts. Asterisks indicate the Western blot signals for progerin.

(C) MA plot for the 15,323 union pS22-Lamin A/C-binding sites, highlighting gained and lost pS22-Lamin A/C-binding sites. Sum of pS22-Lamin A/C ChIP FE scores within +/–250 bp of the site center is compared. Normal, normal fibroblast GM07492. Progeria, progeria fibroblast AG11498.

(D) pS22-Lamin A/C, c-Jun, and H3K27ac ChIP-seq profiles at the *FHL-1* locus highlighting gained pS22-Lamin A/C-binding sites. Signals are FE scores. The *FHL-1* gene is among the genes up-regulated in progeria fibroblasts, and its mutations cause cardiac and skeletal myopathies. Normal, GM07492 normal fibroblast. Progeria, AG11498 progeria fibroblast.

(E) c-Jun ChIP-seq FE score distribution around gained pS22-Lamin A/C-binding sites and lost pS22-Lamin A/C-binding sites.

(F) Same as (E) but H3K27ac ChIP-seq FE scores are shown.

(G) Number and fraction of genes linked to gained, lost, and steady pS22-Lamin A/C-binding sites.

(H) DisGeNet-curated disease terms over-represented among progeria-down genes linked to lost pS22-Lamin A/C-binding sites, or those not linked to lost pS22-Lamin A/C-binding sites, or all progeria-down genes.