Supplemental Materials Molecular Biology of the Cell

Luong et al.

Supplementary Figure 1

Supplementary Figure 1.

Retrograde trafficking of CTB-mNG2₁₁ from the plasma membrane to the ER. a Coomassie stained gel of recombinant purified CTB-mNG211. b Confocal microscopy of HA-tagged split neon green 2 (HA-mNG21-10) to trans-Golgi (TGN-HA-mNG21-10) in COS7. TGN is marked by immunocytochemistry of Golgin97 and ER is marked by expression of luminal ER-mCherry. Anti-HA detects the split HA-mNG2₁₋₁₀ constructs. c Pearson's and Mander's coefficient calculations for TGN-HA-mNG21-10, ER-HA-mNG21-10 and Sec61β-HA-mNG21-10 with ERmcherry and Golgin97. n=5 individual images. d Confocal performed as in b but with ER-HAmNG2₁₋₁₀. e, f Retrograde trafficking in HEK293T and COS7 cells expressing ER-HA-mNG2₁₋₁₀. Cells were treated with indicated concentrations of CTB-mNG2₁₁ for 4 hours at 37°C. Representative flow cytometry graph is displayed highlighting CTB-mNG2₁₁ concentrations at 0, 1nM, 5nM and 20nM. n=3 independent experiments each performed with 3 biologic replicates and mean marked as one point for each dose. g, h Flow cytometry time course of retrograde trafficking into the ER in HEK293T and COS7 cells with CTB-mNG211, respectively. Cells were treated with 10nM CTB-mNG211 continuously at 0, 0.5, 1, 2, 4, 20-hour and a condition where cells were treated with a 2-hour toxin pulse and chase for a total of 20 hours. n=2 independent experiments with 3 biological replicates per experiment. CT-1XmNG211 CT-2X mNG211 CT-5XmNG2₁₁. i Confocal images as in b but with Sec61β-HA-mNG2₁₋₁₀. j PM-ER retrograde trafficking in COS7 cells stably expressing Sec61β-HA-mNG2₁₋₁₀ incubated for 5 hours with 20nM CTB-mNG211. n=3 independent experiments. k Retrograde trafficking of CTBsfmCherry2₁₁ in K562 cells stably expressing trans-Golgi localized sfmCherry2₁₋₁₀. Cells were incubated with 20nM CTB-sfmCherry2₁₁ for 5 hours at 37°C. n=3 independent experiments. Error bars indicate \pm SEM. Scale bars are 10 μ m.

Supplementary Figure 2

Supplementary Figure 2.

Toxin binding and XBP1 stress response to ER shape gene expression. **a, b** Immunoblots for ER-HA-mNG2₁₋₁₀ in K562 (a) and HEK293T (b) cells treated or not with the indicated compounds used as above. Immunoblots for β -actin provide loading controls. **c** Binding control experiment displays equal loading of CTB-Alexa Fluor 488 in HEK293T cells expressing empty vector (EV), and ER shape genes ATLASTIN1-K80A, CLIMP63 and DP1. Cells were incubated with 2nM CTB-Alexa Fluor 488 for 5 hours 37°C, and then harvested and assayed by flow cytometry. n=5 independent experiments. **d** XBP1 luciferase reporter assay in cells expressing vector (EV), and ER shape genes ATLASTIN1-K80A, CLIMP63 and DP1. Cells were treated with thapsigargin (Thaps) at 300nM for 4 hours as positive control to induce ER stress. Graph displays average of n=3 independent experiments. Error bars indicate ± SEM, *p<0.05.

Supplementary Figure 3

Supplementary Figure 3.

mRNA expression and toxin binding CTB-Alexa Fluor 488 in cells with knockdown of monogenic disease genes. **a** Relative mRNA expression to control by qPCR of MYOVB and TTC7A in HEK293T cells expressing shRNA against indicated gene. Actin is used as expression control. **b** Binding control experiment displays equal loading of CTB-Alexa Fluor 488 in HEK293T expressing control shRNA or shRNA targeting MYOVB or TTC7A. Cells were incubated with 2nM CTB-Alexa Fluor 488 for 5 hours 37°C, and then harvested and assayed by flow cytometry. **c** CTB-Alexa Fluor 488 binding controls for human iPSCs loaded with GM1 C12:0 lipid, Incubation conditions same as above. n=3 independent experiments. **d** Representative flow cytometry graph from Fig 3e. Error bars indicate ± SEM.

Suppl ement ary Table1 :	Sequence of split-FP constructs
CTA2-	TACACCATCGTGGAGCAGTACGAGAGAGCCGAGGCCAGACACAGCACCGGAGG
	TGGAGGTTCCTCGATGAGTAATACTTGCGATGAAAAAACCCAAAGTCTAGGTGTA
rrv211	AAATTCCTTGACGAATACCAATCTAAAGTTAAAAGACAAATATTTTCAGGCTATCA
11 y Z 1 1	ATCTGATATTGATACACATAATAGAATTAAGGATGAATTA
CTA2- mNG2	ACCGAGCTCAACTTCAAGGAGTGGCAAAAGGCCTTTACCGATATGATGGGAGGT
	GGAGGTTCCTCGATGAGTAATACTTGCGATGAAAAAACCCCAAAGTCTAGGTGTAA
11	AATTCCTTGACGAATACCAATCTAAAGTTAAAAGACAAATATTTTCAGGCTATCAAT
11	CTGATATTGATACACATAATAGAATTAAGGATGAATTA
	ATGGGATGGAGCTGTATCATCCTCTTCTTGGTAGCAACAGCTACAGGCGCGCAC
	TCCGGAGAACAGAAGCTGATCTCAGAGGAGGACCTGGGAGGTATGGTGAGCAA
	GGGTGAGGAGGATAACATGGCCTCTCTCCCAGCGACTCATGAGTTACACATCTTT
	GGCTCCATCAACGGTGTGGGACTTTGACATGGTGGGTCAGGGTACCGGCAATCCA
	AATGATGGTTATGAGGAGTTAAACCTGAAGTCCACCAAGGGTGACCTCCAGTTCT
ER-	
HA-	
mNG2	AGTCCATCGCACAATGCAGTTTGAAGATGGTGCCTCCCTTACTGTTAACTACCGC
1-10	
HA_	TATGAGGAGTTAAACCTGAAGTCCACCAAGGGTGACCTCCAGTTCTCCCCCTGG
mNG2	ATTCTGGTCCCTCATATCGGGTATGGCTTCCATCAGTACCTGCCCTACCCTGACG
1_10	GGATGTCGCCTTTCCAGGCCGCCATGGTAGATGGCTCCGGATACCAAGTCCATC
1 10	GCACAATGCAGTTTGAAGATGGTGCCTCCCTTACTGTTAACTACCGCTACACCTA
	CGAGGGAAGCCACATCAAAGGAGAGGCCCAGGTGATGGGGGACTGGTTTCCCTG
	CTGACGGTCCTGTGATGACCAACACGCTGACCGCTGCGGACTGGTGCATGTCGA
	AGAAGACTTACCCCAACGACAAAACCATCATCAGTACCTTTAAGTGGAGTTACAC
	CACTGTAAATGGCAAACGCTACCGGAGCACTGCGCGGACCACCTACACCTTTGC
	CAAGCCAATGGCGGCTAACTATCTGAAGAACCAGCCGATGTACGTGTTCCGTAA
	GACGGAGCTCAAGCACTCCATG
Sec61	ATGCCTGGTCCGACCCCAGTGGCACTAACGTGGGATCCTCAGGGCGCTCTCCC
β-HA-	AGCAAAGCAGTGGCCGCCCGGGCGGCGGGATCCACTGTCCGGCAGAGGAAAAA
mNG2 1-10	TGCCAGCTGTGGGACAAGGAGTGCAGGCCGCACAACCTCGGCAGGCA
	GGATGTGGCGATTCTACACAGAAGATTCACCTGGGCTCAAAGTTGGCCCTGTTC

	CAGTATTGGTTATGAGTCTTCTGTTCATCGCTTCTGTATTTATGTTGCACATTTGG
	GGCAAGTACACTCGTTCGGGAGGAGGAGGATACCCATACGATGTTCCAGATTACGCT
	ATGGTGAGCAAGGGTGAGGAGGAGGATAACATGGCCTCTCTCCCAGCGACTCATGAG
	TTACACATCTTTGGCTCCATCAACGGTGTGGGACTTTGACATGGTGGGTCAGGGTA
	GGGGTAAGCACCCCATTGCAGGGCGGGTCTAATTCAGCGGCTGCGATTGGCCA
	GTCTTCAGGGGAACTGAGAACGGGAGGTGCTGATTATAAAGATGACGATGACAA
TON	AATGGAAGAAGACAATATGGCCATAATCAAGGAGTTCATGAGGTTCAAGGTTCAT
IGN-	AIGGAAGGIAGIGIGAACGGGCAIGAGIIIGAAAICGAGGGAGAGGGCGAGGG
FLAG-	GCACCCTTATGAGGGTACCCAGACGGCCAAATTGAAGGTAACAAAAGGGGGGGCC
stmche	ACTICCTTICGCATGGGATATACTCAGCCCCCAGTTATGTATGGTTCTAAGGCTT
rry21-	ATGTAAAACATCCGGCTGACATACCCGATTATCTCAAGCTCTCATTCCCCGAGGG
10	CTTTACTTGGGAGCGGGTGATGAATTTCGAAGATGGAGGAGTGGTTACGGTTAC
	GCAGGACAGTTCTCTTCAAGACGGGCAATTCATTTACAAAGTTAAACTCCTCGGG
	ATAAACTTCCCTAGTGATGGCCCTGTCATGCAGAAGAAGACTATGGGGTGGGAA
	GCCAGCACGGAGAGGATGTATCCGGAGGATGGTGCCTTGAAAGGTGAGATCAAC
	CAACGCCTCAAGCTCAAAGATGGTGGACACTATGATGCCGAGGTTAAGACCACC
	TATAAAGCCAAGAAACCGGTCCAGCTCCCCGGTGCATACAACGTTGATATAAAGC
	TCGATATAACATCTCACAATGAGGAC
	AATGATGATAAGTTATATCGGGCAGATTCTAGACCTCCTGATGAAATAAAGCAGT
	CAGGTGGTCTTATGCCAAGAGGACAGAGTGAGTACTTTGACCGAGGTACTCAAAT
	GAATATCAACCTTTATGATCATGCAAGAGGAACTCAGACGGGATTTGTTAGGCAC
CTA1-	GATGATGGATATGTTTCCACCTCAATTAGTTTGAGAAGTGCCCACTTAGTGGGTC
	AAACTATATTGTCTGGTCATTCTACTTATTATATATATGTTATAGCCACTGCACCCA
	ACATGTTTAACGTTAATGATGTATTAGGGGCATACAGTCCTCATCCAGATGACCAA
1XmN	GACGTTTCTGCTTTAGGTGGGATTCCATACTCCCAAATATATGGATGG
G2	TTCATTTTGGGGTGCTTGATGAACAATTACATCGTAATAGGGGCTACAGAGATAG
02	ATATTACAGTAACTTAGATATTGCTCCAGCTGCAGATGGTTATGGATTGGCAGGTT
	TCCCTCCGGAGCATAGAGCTTGGAGGGAAGAGCCGTGGATTCATCATGCACCGC
	CGGGTTGTGGGAATGCTGGTGGAGGAGGTGGAACCGAGCTCAACTTCAAGGAG
	TGGCAAAAGGCCTTTACCGATATGATG
	AATGATGATAAGTTATATCGGGCAGATTCTAGACCTCCTGATGAAATAAAGCAGT
CTA1-	CAGGTGGTCTTATGCCAAGAGGACAGAGTGAGTACTTTGACCGAGGTACTCAAAT
(EE/D	GAATATCAACCTTTATGATCATGCAAGAGGAACTCAGACGGGATTTGTTAGGCAC
D)-	GATGATGGATATGTTTCCACCTCAATTAGTTTGAGAAGTGCCCACTTAGTGGGTC
2XmN	AAACTATATTGTCTGGTCATTCTACTTATTATATATATGTTATAGCCACTGCACCCA
G2	ACATGTTTAACGTTAATGATGTATTAGGGGCATACAGTCCTCATCCAGATGACCAA
	GACGTTTCTGCTTTAGGTGGGATTCCATACTCCCAAATATATGGATGG

	TTCATTTTGGGGTGCTTGATGAACAATTACATCGTAATAGGGGCTACAGAGATAG
	ATATTACAGTAACTTAGATATTGCTCCAGCTGCAGATGGTTATGGATTGGCAGGTT
	TCCCTCCGGAGCATAGAGCTTGGAGGGAAGAGCCGTGGATTCATCATGCACCGC
	CGGGTTGTGGGAATGCTGGTGGTTCTGGAGGAACCGAGCTCAACTTCAAGGAGT
	GGCAAAAGGCCTTTACCGATATGATGGGCAGCGCAGGAGGGACTGAATTAAATT
	TTAAAGAATGGCAGAAAGCATTCACTGACATGATG
	AATGATGATAAGTTATATCGGGCAGATTCTAGACCTCCTGATGAAATAAAGCAGT
	CAGGTGGTCTTATGCCAAGAGGACAGAGTGAGTACTTTGACCGAGGTACTCAAAT
	GAATATCAACCTTTATGATCATGCAAGAGGAACTCAGACGGGATTTGTTAGGCAC
	GATGATGGATATGTTTCCACCTCAATTAGTTTGAGAAGTGCCCACTTAGTGGGTC
	AAACTATATTGTCTGGTCATTCTACTTATTATATATATGTTATAGCCACTGCACCCA
CTA1-	ACATGTTTAACGTTAATGATGTATTAGGGGGCATACAGTCCTCATCCAGATGACCAA
(EE/D	GACGTTTCTGCTTTAGGTGGGATTCCATACTCCCAAATATATGGATGG
D)-	TTCATTTTGGGGTGCTTGATGAACAATTACATCGTAATAGGGGGCTACAGAGATAG
5XmN	ATATTACAGTAACTTAGATATTGCTCCAGCTGCAGATGGTTATGGATTGGCAGGTT
G2	TCCCTCCGGAGCATAGAGCTTGGAGGGAAGAGCCGTGGATTCATCATGCACCGC
	CGGGTTGTGGGAATGCTGGTGGTtctGGAGGAACCGAGCTCAACTTCAAGGAGTG
	GCAAAAGGCCTTTACCGATATGATGGGCtctggaAGCGGGACTGAATTAAATTTTAA
	AGAATGGCAGAAAGCATTCACTGACATGATGGGagcaggtggatcaACaGAGCTaAAC
	TTtAAGGAaTGGCAAAAGGCtTTTACaGATATGATGggtgggtctgcaggaACgGAGCTgA
	AtTTCAAaGAGTGGCAgAAGGCCTTTACgGAcATGATG

Supplementary Table2:	shRNA and qPCR oligo sequences
MYOVB	
shRNA-1	TTTgcgtgttacagccgatgatTTCAAGAGAatcatcggctgtaacacgcTTTTTA
Forward	
MYOVB	
shRNA-1	AGCTTAAAAAgcgtgttacagccgatgatTCTCTTGAAatcatcggctgtaacacg
Reverse	
MYOVB	
shRNA-2	TTTgatggtgattcctgtagtataTTCAAGAGAtatactacaggaatcaccatcTTTTA
Forward	
MYOVB	
shRNA-2	AGCTTAAAAAgatggtgattcctgtagtataTCTCTTGAAtatactacaggaatcaccat
Reverse	
TTC7A shRNA-	
1 Forward	
TTC7A shRNA-	
1 Reverse	
TTC7A shRNA-	
2 Forward	
TTC7A shRNA-	
2 Reverse	
TTC7A qPCR	
Primer Forward	
TTC7A qPCR	CTGACTTCCCACAAGCCA

Primer Reverse	
MYOVB qPCR Brimer Forward	TGCTGAGTGACCTTTCCATTC
MYOVB aPCR	
Primer Reverse	CCAGATAGACCCTGAATGCTC